SQUARE-FREE AND CUBE-FREE COLORINGS OF THE ORDINALS

Jean A. Larson, Richard Laver and George F. McNulty

Abstract

We prove: Theorem 1. The class of all ordinals has a square-free 3 -coloring and a cube-free 2 -coloring. Theorem 2. Every k th power-free n-coloring of α can be extended to a maximal k th power-free n-coloring of β, for some $\beta \times \alpha \cdot \omega$, where $k, n \in \omega$.

Every ordinal is conceived as the set of all smaller ordinals; ω is the least infinite ordinal. By an interval of ordinals we mean any set $\{\delta: \beta \leqq \delta<\gamma\}$ where β and γ are ordinals; $[\beta, \gamma)$ abbreviates $\{\delta: \beta \leqq \delta<\gamma\}$. If S and T are intervals then there can be at most one order isomorphism from S onto T.

Let S be an interval of ordinals and κ be a cardinal. A κ-coloring of S is just a function with domain S and range included in κ. Suppose S and T are intervals of ordinals and that f is a coloring of S while g is a coloring of T. Then the coloring f of S is similar to the coloring g of T provided S and T are order isomorphic and $f(\alpha)=g(h(\alpha))$ for all $\alpha \in S$ where h is the unique order isomorphism from S onto T; if f and g are clear from the context we say that S is similar to T. A coloring f of the ordinal α is square-free if no two adjacent nonempty intervals of α are similar; it is cube-free if no three consecutive nonempty intervals are all similar to each other. All these notions extend naturally to the class of all ordinals.

In Bean, Ehrenfeucht, and McNulty [1] it was shown that α has a square-free 3 -coloring and a cube-free 2 -coloring whenever $\alpha<\left(2^{\aleph_{0}}\right)^{+}$and the question of extending this result to all ordinals was left open. This question is resolved here.

ThEOREM 1. The class of all ordinals has a square-free 3-coloring and a cube-free 2-coloring.

If I is a class of ordinals and α_{β} is an ordinal for each $\beta \in I$, then $\sum_{\beta \in I} \alpha_{\beta}$ denotes the ordinal sum of the α_{β} 's with respect to I. (See Sierpinski [2] for details.) Finite ordinal sums are written like $\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n-1}$. For each $\beta \in I$, let $\operatorname{Int}(\beta)=\left[\mu, \mu+\alpha_{\beta}\right)$ where $\mu=\sum_{r \in J} \alpha_{\gamma}$ and $J=I \cap \beta$. For each $\beta \in I$, $\operatorname{Int}(\beta)$ is order isomorphic with α_{β}. In fact, $\sum_{\beta \in I} \alpha_{\beta}$ can be construed as the disjoint union of the $\operatorname{Int}(\beta)$'s as $\beta \in I$ where the intervals are given the order type of I. This means that if f_{β} is a κ-coloring of α_{β},
for each $\beta \in I$, then there is a κ-coloring f of $\sum_{\beta \in I} \alpha_{\beta}$ such that $f \upharpoonright \operatorname{Int}(\beta)$ is similar to f_{β}.

An ordinal α is (additively) indecomposable provided $\alpha \neq \beta+\gamma$ whenever $\beta<\alpha$ and $\gamma<\alpha$. It is known (cf. Sierpinski [2]) that every ordinal is the ordinal sum of finitely many indecomposable ordinals and that the infinite indecomposable ordinals are exactly the ordinal powers of ω.

Lemma 0. If α is the class of all ordinals or α is an indecomposable ordinal with $\alpha>\omega$, then α is the sum of a strictly increasing sequence of smaller limit ordinals.

Proof. There are three cases. First, suppose $\alpha=\omega^{\beta}$ where β is a limit ordinal. So $\alpha=\omega^{\beta}=\sum_{r<\beta} \omega^{\gamma}$. Second, suppose $\alpha=\omega^{\beta+1}$. Then $\alpha=\omega^{\beta+1}=\omega^{\beta} \cdot \omega=\sum_{n \in \omega}\left(\omega^{\beta} \cdot n\right)$. Third, the class of all ordinals is $\sum_{\kappa_{\in I}} \kappa$, where I is the class of cardinals. In each case the lemma holds.

Let f be a coloring of the interval S of ordinals and let g be a coloring of the interval $T . S$ and T are mismatched provided that U and V fail to be similar whenever U is an infinite subinterval of S and V is an infinite subinterval of T. Theorems 1.8 and 1.16 from Bean, Ehrenfeucht, and McNulty [1] are collected in the next lemma.

Lemma 1. (a) There is a collection \mathscr{F} of square-free 3-colorings of ω such that $|\mathscr{F}|=2^{\aleph_{0}}$ and C and D are mismatched whenever $C, D \in \mathscr{F}$ with $C \neq D$.
(b) There is a collection \mathscr{S} of cube-free 2-colorings of ω such that $|\mathscr{S}|=2^{\aleph_{0}}$ and C and D are mismatched whenever $C, D \in \mathscr{S}$ with $C \neq D$.

Proof of Theorem 1. We will provide a proof that the class of all ordinals has a square-free 3 -coloring. This proof can be easily modified to establish that the class of all ordinals has a cube-free 2 -coloring. The property of having a square-free 3 -coloring is hereditary in the sense that if α has a square-free 3 -coloring and $\beta<\alpha$, then β has a square-free 3 -coloring. Below we are concerned with providing each limit ordinal with a square-free 3 -coloring and we proceed by induction.

Induction hypothesis. If α is an infinite limit ordinal or the class of all ordinals, and f_{0}, f_{1}, \cdots are countably many square-free 3 -colorings of ω such that f_{i} and f_{j} are mismatched whenever $i, j \in \omega$ with $i \neq j$, then there is a 3 -coloring g of α such that
(i) g is square-free.
(ii) g and f_{i} are mismatched for each $i \in \omega$.
(iii) Any two similar infinite intervals of α are separated by an infinite interval.

Suppose the induction hypothesis holds for all infinite limit ordinals less than α and that $f_{0}, f_{1}, f_{2}, \cdots$ are countably many pairwise mismatched square-free 3 -colorings of ω. There are two cases.

Case 1. $\alpha=\rho_{0}+\rho_{1}+\cdots+\rho_{n}$ where $\rho_{0}, \cdots, \rho_{n}$ are indecomposable and $0<n \in \omega$.

According to Lemma 1 there must be h_{0}, \cdots, h_{n}, all square-free 3 -colorings of ω, such that $h_{0}, h_{1}, \cdots, h_{n}, f_{0}, f_{1}, \cdots$ are all pairwise mismatched. By the induction hypothesis there are 3 -colorings d_{0}, \cdots, d_{n} of $\rho_{0}, \cdots, \rho_{n}$ respectively such that for each $i \leqq n$
(i) d_{i} is square-free.
(ii)' $d_{i}, h_{0}, h_{1}, \cdots, h_{n}, f_{0}, f_{1} \cdots$ are all pairwise mismatched.
(iii)' Any two similar infinite intervals of ρ_{i} are separated by an infinite interval.
For each $i \leqq n$ and each $\gamma \in \rho_{i}$, let

$$
d_{i}^{*}(\gamma)= \begin{cases}h_{i}(\gamma) & \text { if } \quad \gamma \in \omega \\ d_{i}(\gamma) & \text { otherwise }\end{cases}
$$

and let g be the coloring of α induced by $d_{0}^{*}, \cdots, d_{n}^{*}$.
Condition (ii) of the induction hypothesis holds by (ii)'. To check condition (iii) suppose S and T are distinct similar infinite intervals of α. Since h_{i} and d_{j} are mismatched whenever $i, j \leqq n$ and since $h_{0}, h_{1}, \cdots, h_{n}$ are pairwise mismatched, for each $i \leqq n$ there is exactly one interval U of α (of order type ω) such that $f \mid U$ is similar to h_{i}. Since S and T are distinct but similar neither can have a subinterval similar to any of $h_{0}, h_{1}, \cdots, h_{n}$ or any of their final segments. Consequently there are $i, j \leqq n$, with finite initial segments δ of ρ_{i+1} and ε of ρ_{j+1} such that S is a subinterval of $\rho_{i}+\delta$ missing the initial segment of ρ_{i} of order-type ω, while T is a subinterval of $\rho_{j}+\varepsilon$ missing the initial segment of ρ_{j} of order-type ω. If $i \neq j$ then (iii) follows immediately, so suppose $i=j$. There must be cofinite initial segments S^{\prime} of S and $T^{\prime \prime}$ of T such that S^{\prime} and T^{\prime} are distinct yet similar and both S^{\prime} and T^{\prime} are subintervals of ρ_{i} missing the initial segment of ρ_{i} of order type ω. So S^{\prime} and T^{\prime} are colored by d_{i} and by (iii)' they are separated by an infinite interval and therefore S and T are separated by an infinite interval as well.

To see that g is a square-free coloring of α, observe that (iii) forces any two similar adjacent intervals to be finite. But g was
devised so that all intervals of α of order type ω are colored in a square-free manner. Hence g is square-free and Case I of the induction is complete.

Case II. α is indecomposable with $\alpha>\omega$.
By Lemma $0 \alpha=\sum_{r \in \beta} \rho_{r}$ for some β where $\rho_{r}<\rho_{j}<\alpha$ and ρ_{r} is an infinite limit ordinal, if $\gamma<\delta<\beta$. According to Lemma 1 there must be h_{0} and h_{1}, both square-free 3 -colorings of ω such that $h_{0}, h_{1}, f_{0}, f_{1}, f_{2}, \cdots$ are pairwise mismatched. By the induction hypothesis for each $\gamma \in \beta$ there is a 3 -coloring d_{r} of ρ_{r} such that
(i) ${ }^{\prime \prime} d_{r}$ is square-free.
(i!) ${ }^{\prime \prime} d_{r}, h_{0}, h_{1}, f_{0}, f_{1}, f_{2}, \cdots$ are pairwise mismatched.
(iii)" Any two similar infinite intervals of ρ_{i} are separated by an infinite interval

$$
d_{r}^{*}(\delta)= \begin{cases}h_{0}(\delta) & \text { if } \delta \in \omega \text { and } \gamma \text { is even } \\ h_{1}(\delta) & \text { if } \delta \in \omega \text { and } \gamma \text { is odd } \\ d_{i}(\delta) & \text { otherwise }\end{cases}
$$

and let g be the coloring of α induced by $\left\langle d_{r}^{*}: \gamma \in \beta\right\rangle$.
Conditions (i) and (ii) of the induction hypothesis can be established as in Case I. We argue that (iii) holds. Suppose S and T are similar infinite intervals in α. If S contains an interval of type ω colored the way $h_{0}\left(\right.$ or $\left.h_{1}\right)$ colors some final segment of ω then the same is true for T. According to the construction of g these kinds of colorings occur only on the initial segments of each ρ_{r} of type ω. Since the ρ_{r} 's form an increasing sequence, no interval between an interval colored with h_{0} and the next colored with h_{1} occurs twice. So if S contains an interval of type ω colored the way h_{0} (or h_{1}) colors some final segment of ω, then S does not contain an interval of type ω colored the way h_{1} (alternatively h_{0}) colors some final segment of ω. The same is true for T. Consequently, if S and T were separated by a finite interval, then both S and T would lie entirely in $\rho_{Y}+\delta$ for some γ where δ is a finite initial segment of ρ_{f+1}. From this point the argument proceeds as in Case I.

Since Lemma 1 guarantees the theorem when $\alpha=\omega$, the induction is complete and the theorem established.

For any $k \in \omega$, k th power-free colorings have definitions analogous to those of square-free and cube-free colorings. Every squarefree coloring is k th power-free for all $k \geqq 2$. A k th power-free κ-coloring f of α is maximal provided f cannot be extended to a k th power-free κ-coloring of $\alpha+1$. In Bean, Ehrenfeucht, and McNulty [1] it is shown that every k th power-free n-coloring f of m can be
extended to a maximal k th power-free n-coloring of some natural number, whenever $k, n, m \in \omega$. We remark that the following theorem holds. The proof differs in no important way from the proof of Theorem 2.0 in [1].

Theorem 2. For any natural numbers n and k and any ordinal α, every k th power-free n-coloring of α can be extended to a maximal kth power-free n-coloring of β for some $\beta \in \alpha \cdot \omega$.

References

1. D. Bean, A. Ehrenfeucht, and G. McNulty, Avoidable patterns in strings of symbols, Pacific J. Math., 85 (1979), 261-294.
2. V. Sierpinski, Cardinal and Ordinal Numbers, Warsawa 1958.

Received February 7, 1978.
University of florida
Gainesville, FL 32611
University of Colorado
Boulder, CO 80302
AND
University of South Carolina
Columbia SC 29208

