SQUARE-FREE AND CUBE-FREE COLORINGS OF THE ORDINALS

JEAN A. LARSON, RICHARD LAVER AND GEORGE F. MCNULTY

We prove: Theorem 1. The class of all ordinals has a square-free 3-coloring and a cube-free 2-coloring. Theorem 2. Every kth power-free *n*-coloring of α can be extended to a maximal kth power-free *n*-coloring of β , for some $\beta \times \alpha \cdot \omega$, where $k, n \in \omega$.

Every ordinal is conceived as the set of all smaller ordinals; ω is the least infinite ordinal. By an *interval of ordinals* we mean any set $\{\delta: \beta \leq \delta < \gamma\}$ where β and γ are ordinals; $[\beta, \gamma)$ abbreviates $\{\delta: \beta \leq \delta < \gamma\}$. If S and T are intervals then there can be at most one order isomorphism from S onto T.

Let S be an interval of ordinals and κ be a cardinal. A κ -coloring of S is just a function with domain S and range included in κ . Suppose S and T are intervals of ordinals and that f is a coloring of S while g is a coloring of T. Then the coloring f of S is similar to the coloring g of T provided S and T are order isomorphic and $f(\alpha) = g(h(\alpha))$ for all $\alpha \in S$ where h is the unique order isomorphism from S onto T; if f and g are clear from the context we say that S is similar to T. A coloring f of the ordinal α is square-free if no two adjacent nonempty intervals of α are similar; it is cube-free if no three consecutive nonempty intervals are all similar to each other. All these notions extend naturally to the class of all ordinals.

In Bean, Ehrenfeucht, and McNulty [1] it was shown that α has a square-free 3-coloring and a cube-free 2-coloring whenever $\alpha < (2^{\aleph_0})^+$ and the question of extending this result to all ordinals was left open. This question is resolved here.

THEOREM 1. The class of all ordinals has a square-free 3-coloring and a cube-free 2-coloring.

If I is a class of ordinals and α_{β} is an ordinal for each $\beta \in I$, then $\sum_{\beta \in I} \alpha_{\beta}$ denotes the ordinal sum of the α_{β} 's with respect to I. (See Sierpinski [2] for details.) Finite ordinal sums are written like $\alpha_0 + \alpha_1 + \cdots + \alpha_{n-1}$. For each $\beta \in I$, let $\operatorname{Int}(\beta) = [\mu, \mu + \alpha_{\beta})$ where $\mu = \sum_{T \in J} \alpha_T$ and $J = I \cap \beta$. For each $\beta \in I$, $\operatorname{Int}(\beta)$ is order isomorphic with α_{β} . In fact, $\sum_{\beta \in I} \alpha_{\beta}$ can be construed as the disjoint union of the $\operatorname{Int}(\beta)$'s as $\beta \in I$ where the intervals are given the order type of I. This means that if f_{β} is a κ -coloring of α_{β} , for each $\beta \in I$, then there is a κ -coloring f of $\sum_{\beta \in I} \alpha_{\beta}$ such that $f \upharpoonright \operatorname{Int}(\beta)$ is similar to f_{β} .

An ordinal α is (additively) indecomposable provided $\alpha \neq \beta + \gamma$ whenever $\beta < \alpha$ and $\gamma < \alpha$. It is known (cf. Sierpinski [2]) that every ordinal is the ordinal sum of finitely many indecomposable ordinals and that the infinite indecomposable ordinals are exactly the ordinal powers of ω .

LEMMA 0. If α is the class of all ordinals or α is an indecomposable ordinal with $\alpha > \omega$, then α is the sum of a strictly increasing sequence of smaller limit ordinals.

Proof. There are three cases. First, suppose $\alpha = \omega^{\beta}$ where β is a limit ordinal. So $\alpha = \omega^{\beta} = \sum_{\tau < \beta} \omega^{\tau}$. Second, suppose $\alpha = \omega^{\beta+1}$. Then $\alpha = \omega^{\beta+1} = \omega^{\beta} \cdot \omega = \sum_{n \in \omega} (\omega^{\beta} \cdot n)$. Third, the class of all ordinals is $\sum_{x \in I} \kappa$, where I is the class of cardinals. In each case the lemma holds.

Let f be a coloring of the interval S of ordinals and let g be a coloring of the interval T. S and T are mismatched provided that U and V fail to be similar whenever U is an infinite subinterval of S and V is an infinite subinterval of T. Theorems 1.8 and 1.16 from Bean, Ehrenfeucht, and McNulty [1] are collected in the next lemma.

LEMMA 1. (a) There is a collection \mathscr{F} of square-free 3-colorings of ω such that $|\mathscr{F}| = 2^{\aleph_0}$ and C and D are mismatched whenever $C, D \in \mathscr{F}$ with $C \neq D$.

(b) There is a collection S of cube-free 2-colorings of ω such that $|S| = 2^{\aleph_0}$ and C and D are mismatched whenever $C, D \in S$ with $C \neq D$.

Proof of Theorem 1. We will provide a proof that the class of all ordinals has a square-free 3-coloring. This proof can be easily modified to establish that the class of all ordinals has a cube-free 2-coloring. The property of having a square-free 3-coloring is hereditary in the sense that if α has a square-free 3-coloring and $\beta < \alpha$, then β has a square-free 3-coloring. Below we are concerned with providing each limit ordinal with a square-free 3-coloring and we proceed by induction.

Induction hypothesis. If α is an infinite limit ordinal or the class of all ordinals, and f_0, f_1, \cdots are countably many square-free 3-colorings of ω such that f_i and f_j are mismatched whenever $i, j \in \omega$ with $i \neq j$, then there is a 3-coloring g of α such that

(i) g is square-free.

(ii) g and f_i are mismatched for each $i \in \omega$.

(iii) Any two similar infinite intervals of α are separated by an infinite interval.

Suppose the induction hypothesis holds for all infinite limit ordinals less than α and that f_0, f_1, f_2, \cdots are countably many pairwise mismatched square-free 3-colorings of ω . There are two cases.

Case 1. $\alpha = \rho_0 + \rho_1 + \cdots + \rho_n$ where ρ_0, \cdots, ρ_n are indecomposable and $0 < n \in \omega$.

According to Lemma 1 there must be h_0, \dots, h_n , all square-free 3-colorings of ω , such that $h_0, h_1, \dots, h_n, f_0, f_1, \dots$ are all pairwise mismatched. By the induction hypothesis there are 3-colorings d_0, \dots, d_n of ρ_0, \dots, ρ_n respectively such that for each $i \leq n$

 $(i)' d_i$ is square-free.

(ii)' $d_i, h_0, h_1, \dots, h_n, f_0, f_1 \dots$ are all pairwise mismatched.

(iii)' Any two similar infinite intervals of ρ_i are separated by an infinite interval.

For each $i \leq n$ and each $\gamma \in \rho_i$, let

$$d_i^*(\gamma) = egin{cases} h_i(\gamma) & ext{if} \quad \gamma \in \omega \ d_i(\gamma) & ext{otherwise} \ , \end{cases}$$

and let g be the coloring of α induced by d_0^*, \dots, d_n^* .

Condition (ii) of the induction hypothesis holds by (ii)'. То check condition (iii) suppose S and T are distinct similar infinite intervals of α . Since h_i and d_j are mismatched whenever $i, j \leq n$ and since h_0, h_1, \dots, h_n are pairwise mismatched, for each $i \leq n$ there is exactly one interval U of α (of order type ω) such that f | U is similar to h_i . Since S and T are distinct but similar neither can have a subinterval similar to any of h_0, h_1, \dots, h_n or any of their final segments. Consequently there are $i, j \leq n$, with finite initial segments δ of ρ_{i+1} and ε of ρ_{i+1} such that S is a subinterval of $\rho_i + \delta$ missing the initial segment of ρ_i of order-type ω , while T is a subinterval of $\rho_j + \varepsilon$ missing the initial segment of ρ_j of order-type ω . If $i \neq j$ then (iii) follows immediately, so suppose i = j. There must be cofinite initial segments S' of S and T' of T such that S' and T' are distinct yet similar and both S' and T' are subintervals of ρ_i missing the initial segment of ρ_i of order type ω . So S' and T' are colored by d_i and by (iii)' they are separated by an infinite interval and therefore S and T are separated by an infinite interval as well.

To see that g is a square-free coloring of α , observe that (iii) forces any two similar adjacent intervals to be finite. But g was

139

devised so that all intervals of α of order type ω are colored in a square-free manner. Hence g is square-free and Case I of the induction is complete.

Case II. α is indecomposable with $\alpha > \omega$.

By Lemma 0 $\alpha = \sum_{\tau \in \beta} \rho_{\tau}$ for some β where $\rho_{\tau} < \rho_{s} < \alpha$ and ρ_{τ} is an infinite limit ordinal, if $\gamma < \delta < \beta$. According to Lemma 1 there must be h_0 and h_1 , both square-free 3-colorings of ω such that $h_0, h_1, f_0, f_1, f_2, \cdots$ are pairwise mismatched. By the induction hypothesis for each $\gamma \in \beta$ there is a 3-coloring d_{τ} of ρ_{τ} such that

 $(i)'' d_r$ is square-free.

 $(i!)'' \quad d_7, h_0, h_1, f_0, f_1, f_2, \cdots$ are pairwise mismatched.

(iii)" Any two similar infinite intervals of ρ_i are separated by an infinite interval

 $d^*_r(\delta) = egin{cases} h_0(\delta) & ext{if} \quad \delta \in \omega \quad ext{and} \quad \gamma ext{ is even} \ h_1(\delta) & ext{if} \quad \delta \in \omega \quad ext{and} \quad \gamma ext{ is odd} \ d_\gamma(\delta) \quad ext{otherwise} \ , \end{cases}$

and let g be the coloring of α induced by $\langle d_{\gamma}^*: \gamma \in \beta \rangle$.

Conditions (i) and (ii) of the induction hypothesis can be established as in Case I. We argue that (iii) holds. Suppose S and Tare similar infinite intervals in α . If S contains an interval of type ω colored the way $h_0(\text{or } h_1)$ colors some final segment of ω then the same is true for T. According to the construction of gthese kinds of colorings occur only on the initial segments of each ρ_r of type ω . Since the ρ_r 's form an increasing sequence, no interval between an interval colored with h_0 and the next colored with h_1 occurs twice. So if S contains an interval of type ω colored the way h_0 (or h_1) colors some final segment of ω , then S does not contain an interval of type ω colored the way h_1 (alternatively h_0) colors some final segment of ω . The same is true for T. Consequently, if S and T were separated by a finite interval, then both S and T would lie entirely in $\rho_{\gamma} + \delta$ for some γ where δ is a finite initial segment of $\rho_{\ell+1}$. From this point the argument proceeds as in Case I.

Since Lemma 1 guarantees the theorem when $\alpha = \omega$, the induction is complete and the theorem established.

For any $k \in \omega$, kth power-free colorings have definitions analogous to those of square-free and cube-free colorings. Every squarefree coloring is kth power-free for all $k \ge 2$. A kth power-free κ -coloring f of α is maximal provided f cannot be extended to a kth power-free κ -coloring of $\alpha + 1$. In Bean, Ehrenfeucht, and McNulty [1] it is shown that every kth power-free n-coloring f of m can be extended to a maximal kth power-free *n*-coloring of some natural number, whenever $k, n, m \in \omega$. We remark that the following theorem holds. The proof differs in no important way from the proof of Theorem 2.0 in [1].

THEOREM 2. For any natural numbers n and k and any ordinal α , every kth power-free n-coloring of α can be extended to a maximal kth power-free n-coloring of β for some $\beta \in \alpha \cdot \omega$.

References

1. D. Bean, A. Ehrenfeucht, and G. McNulty, Avoidable patterns in strings of symbols, Pacific J. Math., 85 (1979), 261-294.

2. V. Sierpinski, Cardinal and Ordinal Numbers, Warsawa 1958.

Received February 7, 1978.

UNIVERSITY OF FLORIDA GAINESVILLE, FL 32611 UNIVERSITY OF COLORADO BOULDER, CO 80302 AND UNIVERSITY OF SOUTH CAROLINA COLUMBIA SC 29208