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THE RELATIONSHIP BETWEEN
LJUSTERNIK-SCHNIRELMAN

CATEGORY AND THE
CONCEPT OF GENUS

EDWARD FADELL

The concept of genus of an invariant, closed set A in a
paracompact free G-space E is introduced for any compact
Lie group G and the general result that G-genus A = cat* A*
is proven where B — E/G, A* — E/G and cat is short for
Ljusternick-Schnirelman category. As a special case, the
concept of genus (Krasnoselskii) coincides with the notion
of category (Ljusternik-Schnirelman) as employed in a real
or complex Banach space.

1* Introduction. The Min-Max principle in critical point theory
as introduced by Ljusternik-Schnirelman [6] is based on the concept
of category of a set X in an ambient space B. Krasnoselskii [5]
and others [9], [1], employed the concept of genus instead of cate-
gory. For example, consider the following setting. Let E denote
a Banach space and observe that Z2 = { — 1, 1} acts freely on E — 0
by scalar multiplication. Let Σ denote the closed invariant (sym-
metric) subsets of E — 0. Furthermore, let B — E — 0/Z2 and for
A e Σ, set A* = A/Z2. Then,

catB A* = k

is defined to mean that there exist k sets Alf , Ak in Σ such that
A — U Ai and for each i, A* is contractible to a point in B and k is
minimal with this property (k — co, allowed). Thus the function y
given by

7(A) - cat* A*

classifies the elements of Σ.
Alternatively, following Krasnoselskii [2], the statement

genus A = k

is defined to mean that there exists an equivariant (odd) map f: A—>
Rk — 0 and k is minimal with this property (k = °o means that there
is no equivariant map /: A —> Rk — 0, for any finite k and, as usual,
Rk is Euclidean fe-space).

REMARK 1.1. Actually this concept of "genus" was introduced
and studied earlier by Yang [11] under the name "iMndex". In
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fact, genus A = B-index + 1.
The function 7' given by

Ί\A) = genus A

also classifies the sets in Σ. Our objective in this note is to verify
that these classifications are identical in general, i.e.,

(1) τ(A) = cat7i A* = genus A = y'(A) , A e Σ .

A special case of (1) for compact A's is contained in Rabinowitz |9j.
We will verify (1) in a very general setting as follows.

Let E denote any contractible paracompact free G-space where
G is a compact Lie group. Let Σ denote the closed, invariant sub-
sets of E and set B = E/G. Then for A e Σ, cat^ A* is defined as
before, where A* is the orbit space A/G. Now, set G-genus A = k
if there is a G-equivariant map

k

(2) /: A >GoGo ...off, (/c-fold join [7])

and k is minimal with this property.

THEOREM. For AeΣ we have

( 3 ) cat^ A* — G-genus A .

Note that (1) is (in the case of infinite dimensional Banach spaces)
a corollary of (3) by taking G — Z2 and observing that the k-ΐolά
join of the 0-sphere S° is just S*"1 which is the unit sphere in Rk.
The corresponding result to (1) for complex Banach spaces is obtained
by taking G = S\ unit circle of complex numbers of norm 1. We
should also remark that the idea of using (2) for an "index theory"
appears briefly in [2].

2* Preliminaries• Throughout G will denote a compact Lie
group and a?" will denote the category of free paracompact G-spaces.
An object I e ^ may be identified with the principal bundle p: X >
X/G, where p is the natural projection to the orbit space X/G.
Hence, the general theory of principal bundles over a paracompact
base applies (see [4]). We will also find the following definitions
convenient.

DEFINITION 2.1. A free G-space YejT is called a G-ENR
(Euclidean Neighborhood Retract G-space) if

(a) there is a real representation φ: G > 0{n) of G as orthogonal
matrices for some n;
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(b) there is an equivariant imbedding h: Y—> Rn of Y in Rn,
i.e., h(gy) = φ(g)h(y);

(c) there is an invariant neighborhood U of /(Y) £ Rn and an
equivariant retraction of U onto f(Y), i.e., there is a map r: U~>
h(Y) such that r{u) — ~u when uef(Y) and r(φ(g)u) = φ(g)r(u).

PROPOSITION 2.2. Lei Xej^7 -A α closed invariant subspace of
X and Y a G-ENR. Then any equivariant map f: A—> Y has an
equivariant extension f: V—> Y, where V is an invariant neighbor-
hood of A in X.

Proof. We assume without loss ttha YcRn and G£*O(n).
Then, employing the Tietze-Gleason Extension Theorem [8], there is
an equivariant extension F:X->Rn. Let U denote the invariant
neighborhood of Y which admits an equivariant retraction r: U—> Y.
Then, if V = r~\U), f= r<>(F\V) is the required extension: V-> Y.

REMARK 2.3. The compact Lie group G is a G-ENR [8]. In
fact, every compact smooth G-manifold is a G-ENR [8]. Hence, the
neighborhood extension theorem (Proposition 2.2) applies for maps
into these spaces. Palais [8] defines a G-ANR as a space Y which
satisfies Proposition 2.2 for normal spaces X, so that every G-ENR
is a G-ANR.

We also recall the notion of join. Let Ylt Y2, •••, Yk denote
G-spaces and consider the space

(4) (/ x ΓJ x (/ x Γ2) x - x (/ x Yk)

a point of which is designated by

(5) {txylf t2y2, , tkyk) .

Let J denote the subset of (4) consisting of points (5) with the
added condition that Σts = 1. Define an equivalence relation ~ by
setting

(*i2/i, tzVi, , tkyk) = (t[y[, t'2y'2, , yky'k)

if ts = t) for all j and yά = y) whenever tά Φ 0. Then we set

(6) Yλo Yfo...oYb = J / ~

employing the identification topology. The action

G x (Y1o...oΓ f c) >Yxo...oYk

given by
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0IA2/1, , tkyk] = \tγgyγ, , tkgyk]

is continuous whenever the F/s are compact [7].

LEMMA 2.4. Suppose Y is a free G-space, with YaRn and
G c 0{n). Then, there is an equivariant imbedding

f: Y >Rn+1

with the additional property that yx Φ y2 implies f(Vι) and f(y2) are
independent, i.e., they do not lie on a line thru the origin.

Proof. Set f{y) - {y, \\y\\"), yeRn, \\y\\ = norai y.
This lemma is used to prove the following proposition which is

essentially Lemma 2.7.9 of [8].

PROPOSITION 2.5. // Yl9 •••, Yk are compact G-ENR's, so is the
k-fold join

Proof. We need only show this for k = 2. Clearly Yι o Y2 is
compact. We may assume without loss, that Y1 is a closed Grsub-
space of Rp, where Gίa0(p) and Gx is isomorphic to G, say by
φγ\ Gλ —> Gί. Similarly, we may assume that there is an isomorphism
φ2: G ~> G2 a O(q) and Y2 is a <?2-subspace of Rq.

Then, there is a natural equivariant map η: Yλ o Y2 —> Rp φ iί9

given by

where G acts on iί2' © i?? via the diagonal action

» 2/2) = (

Now, if we use Lemma 2.4 we may also assume that distinct points
y19 y[ of Fj are independent vectors and similarly for Y2. Then,
if

we have t1y1 — t[y[ and t2y2 = ί^ This forces

[*il/i, ̂ 1/2] = [*Il/ί, ̂ 1/2]

and 7] is injective, hence an imbedding. Now, suppose

PtiUt >Y, i = l ,2

are invariant retractions where U19 U2 are invariant neighborhoods
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of Yx and Y2 in JBP, Rq, respectively. Now, let U denote the union
of all lines L(ulf u2), ute [/<. Thus a point u e U has the form

(1 — t)ux + tU2 , — oo < t < oo .

Set

if t ^

ιθ((l — ί)u1 + to2) = (1 - ί ) / ^ ) + tp2(u2) , if 0 ^ t ^

if t ^ 1 .

ô: U~^η{Y1o Y2) is an equivariant retraction and hence Fxo γ2 is a
G-ENR.

The following proposition uses the obvious fact that L-S category
is subadditive, i.e., if Y= Yt\J Y2c:Mt where Y{ are closed in M,
i = 1, 2, then

Y ^ cat3/ Yλ + catM Y2 .

PROPOSITION 2.6. Suppose Yu Y2 are compact invariant sub-
spaces contained in a free G-space E, and let Y = Y^ Y2. Then,

catF* Γ* ^ catr; Γf + catr* Y,

where A* — A/G.

Proof. Yλ o F2 splits into two pieces

Xι = \[y» t, y2], t ^ —

ί 1

with Yi a strong deformation retract of X̂  (equivalently). Thus
Y* is a strong deformation of Xf and since

catr* F* ^ catxj Xf + cat** X2*

we have the desired result.
k

COROLLARY 2.7. If Y = G ° o G, ίfcβ^ catr* F* g &.

The next proposition establishes that G-genus is also subadditive.

PROPOSITION 2.8. If Ye^~ and Y = Y, U Γ2 wfeere
closed invariant subspaces, then

G-genus Y <; G-genus Yί + G-genus Y2 .
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Proof. Suppose G-genus Yt = kv and G-genus Y2 = k2. Let

ϊlγ = {JO ° ( J , IΊ2 = (j° " ' °u

and observe that HL and H2 are compact G~ENR's (Proposition 2.5).
Suppose

are equivariant maps. Then /, extends to an equivariant map

f't:U% >Hit i = l,2

where Ut is an invariant open set containing Yi:. Select an
equivariant partition of unity φ{: Y > [0, 1] so that

YtCKpzWtlDaUi, ΐ = l , 2 .

Then, define an equivariant map

by setting

f(y) = [<Pι(y)f[(y), ψ^fίiv)]

as the result follows.

REMARK 2.9. Let us recall that if we set Yk =
Y* = Yk/G, we have natural imbeddings

i I
and the direct limit yields the Miίnor universal bundle [7] (EG, pG, BG)
for G. Now, if E is a contractible, paracompact free G-space, and if
E/G = B, then (j?, p9 B) is also a universal boundle for G-bundles
over paracompact spaces [3].

As we have seen, G-genus is subadditive but the proof was
more substantial than the corresponding trivial result for L-S
category. Just the opposite occurs for the "monotone" property.
If φ:X—> Y is an equivariant map (in J^~), then it is immediate
that

G-genus X ^ G-genus Y .

However, the corresponding result for L-S category requires some
details—and makes use of the classification theorem for G-bundles.
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PROPOSITION 2.10. Suppose Xλ and X2 are closed invariant sub-
spaces of paracompact free G-spaces Eλ and E2, respectively. Then,
if φ: Xv -—> X2 is an equivariant map and if

X* = XJG , Xf = XJG , Bγ = EJG , B2 = E2/G ,

then

catB l Xΐ ^ cat*2 X* .

Proof. The bundles (Ei9 pi9 Bt) i = 1, 2 are universal bundles
and hence we have the following diagram of bundle maps

where φ is given, i2 is inclusion and α exists via the universality
of (El9 pl9 BJ.

Now, suppose cat5 2 X* — k < oo. There, X2* admits a closed
cover JBΓf, •••, K% of sets contractible in B2 to a point. If we set
A* = φ~\Kf)f we have a closed cover {A?, , A*} of Xf and

αo ι 2 o(φ | A*) — constant (in i^) .

However, since (El9 pl9 BJ is universal, we have

where iλ: Xx —> Ex is inclusion. Thus, each A* is contractible to a
point in Bλ and

B l f β 2 X2* .

3» Category vs genus*

THEOREM 3.1. Let E denote a contractible, paracompact free G-
space and let Σ denote the closed invariant subspaces of E. Then
if B = E/G and A* = A/G, we have

catgA* = G-genus A , AeΣ .

Proof, (a) We show first that catB A* <; G-genus A. Suppose
that G-genus A = k < oo. Then, we have an equivariant map

k

f: A > Y = G . o T Γ o G c ^ .
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But then, using Proposition 2.10 and Corollary 2.7

Thus,

A* ^ cB,tBa Γ* ^ catF* F* ^ fc .

A* ^ G-genus A .

(b) Now, suppose cat^ A* = k < co. Then,

A* - A* U U At

where each A* is closed and contractible in B. Now, since G-genus
is subadditive (Proposition 2.8) we have

k

G-genus A ^ Σ G-genus At
1 = 1

where Az = p2\A*), pA: A -> A/G = A* the natural projection. Since
each A* is contractible to a point in B, the bundle (A, pΛ, A*) is a
trivial G-bundle and hence we have an equivariant map

/,: A, > G

so that G-genus Ax — 1, I — 1, ••-,&. This proves that

G-genus A <; fc = cat^ A*

and the proof is complete.
There are some noteworthy examples:

3.2. Let .& denote an infinite dimensional Banach space over
the reals R. Let G — Z2 = { — 1, 1} act on & by scalar multiplica-
tion and let Σ denote the closed invariant subsets of E = & — 0.
Define the real genus of A e Σ by

genuSfl A = Z2-genus A .

Then,

genusΛ A = cat5 A*

where B=E/Z2, A* = A/Zi. As we have already observed, genus* A —
k < co is equivalent to saying that there is an equivalent (odd) map
/: A —> Rk — 0 and k is minimal with this property, so that genusΛ

is ordinary genus in the sense of Krasnoselskii [5].

3.3. Let <3%f denote an infinite dimensional Banach space over
the complex numbers C. Let G = S\ the complex numbers of norm
1. Then G acts freely on E = έ%ί — 0, again by scalar multiplica-
tions. Let Σ denote the closed invariant subsets of E and define
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the complex genus of AeΣ by

genusc A = S^genus A

then,

genusc A = cat5 A*

where 5 = E/S1, A* = A/S1. We also mention here that genusc A =
fc < oo is equivalent to saying that there is an equivariant map
/: A —> Ck — 0 and fc is minimal with this property.

Another consequence of Theorem 3.1 is the following result
which asserts the independence of L-S category on the ambient
Banach space.

COROLLARY 3.4. If &if i = 1, 2 are real (complex) Banach spaces
(not necessarily infinite dimensional) and A€ c ^ i — 0 are closed
invariant subsets admitting an equivariant homeomorphism φ: A1 —»
A2f then

catBl A* = eat^ Af

where Bt = , ^ -

Proof. If both Banach spaces are infinite then

catBl A* = G-genus Ax = G-genus A2 = cat^2 A* .

To complete the proof it suffices to prove the following lemma.

LEMMA 3.5. Let & denote an infinite dimensional Banach space
over R or C and let L denote a finite dimensional subspace. Let
A denote a closed invariant set in L — 0. If C = (L — 0)/G, B =
{0 - 0)/G, A* = A/G, where G = Z2 or S1, then

Proof. We consider only the real case. Wemay identify L with
Rn and if Z2-genus A = k, then k ^ n and we have a diagram of
bundle maps

A i Ofc 1 Cfτι 1 Cft

q\ \vk-i Ipn-i Ipn

where <p is the equivariant map obtained from the fact that 2Γ2-genus
A = k and i is inclusion. RPkl is the union of k contractible closed
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sets, K?, ••-, Kt and hence if we set A* == φ~\K?), we have that
each map

To(φ\Af) ~ constant (in RPn-1) .

We may assume without loss that At — q~\Af) c Sn~ι and is a
finite subcomplex of dimension <.n — 1. Since (Sn, P%, RPn) is it-
universal [10]

j*oϊoφ\Aΐ ~ jΐ.AϊczRP* .

Thus, A* is contractible in RP*. This forces A* to be a proper
subset of RP"-1 and hence Af is deformable in RP»~ι to RPn~\
Repeating the above argument then forces A* to be contractible in
RP"-1 and so

A* ^ & = Z2-genus A = catβ A* .

Since the inequality cat5 A* ^ catc A* is obvious the lemma follows
and the proof of Corollary 3.4 is complete.
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