A DOUBLE INVERSION FORMULA

John Brillhart

Let G be an abelian group and suppose $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}, n \geqq 1$, are sequences in G. Let p be an odd prime and set $\eta_{e}=\left(e_{1} / p\right)$, the Legendre symbol, where $e=p^{s} e_{1}, s \geqq 0, p \nmid e_{1}$. Also, let $\chi_{e}^{ \pm}=\left(1 \pm \eta_{e}\right) / 2$. Define the sequence $\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}, n \geqq 1$, by

$$
\begin{equation*}
c_{n}=\sum_{e f=n}\left(\chi_{e}^{+} a_{f}+\chi_{e}^{-} b_{f}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{n}=\sum_{e f=n}\left(\chi_{e}^{-} a_{f}+\chi_{e}^{+} b_{f}\right) \tag{2}
\end{equation*}
$$

Theorem. For $n \geqq 1$ and μ the Möbius function,

$$
\begin{equation*}
a_{n}=\sum_{e f=n} \mu(e)\left(\chi_{e}^{+} c_{f}+\chi_{e}^{-} d_{f}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n}=\sum_{e f=n} \mu(e)\left(\chi_{e}^{-} c_{f}+\chi_{e}^{+} d_{f}\right) \tag{4}
\end{equation*}
$$

Proof of the Theorem. Using (1) and (2) in (3) we obtain

$$
\begin{aligned}
\sum_{e f=n} & \mu(e)\left(\chi_{e}^{+} c_{f}+\chi_{e}^{-} d_{f}\right) \\
& =\sum_{e f=n} \mu(e) \sum_{r s=f}\left[\left(\chi_{e}^{+} \chi_{r}^{+}+\chi_{e}^{-} \chi_{-}^{-}\right) a_{s}+\left(\chi_{e}^{+} \chi_{r}^{-}+\chi_{e}^{-} \chi_{r}^{+}\right) b_{s}\right] \\
& =\sum_{e f=n} \mu(e) \sum_{s \mid f}\left(\chi_{n \mid s}^{+} a_{s}+\chi_{\bar{n} \mid s} b_{s}\right) \\
& =\sum_{s \mid n}\left(\chi_{n ; s}^{+} a_{s}+\chi_{n \mid s}^{-} b_{s}\right) \sum_{e|n| s} \mu(e)=a_{n} .
\end{aligned}
$$

Formula (4) is proven similarly.

Received June 8, 1979.
University of Arizona
Tucson, AZ 85721

