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SOLUTION OF THE MIDDLE COEFFICIENT
PROBLEM FOR CERTAIN CLASSES

OF C-POLYNOMIALS

ZALMAN RUBINSTEIN

A well-known conjecture states that for polynomials
having all their zeros on the unit circle C half the maximum
modulus on C bounds the modulus of all the coefficients.
This has been established in all cases except for the middle
coefficient of even degree polynomials greater than four.
In this note this conjecture is verified for all even degree
polynomials having simple zeros in a set of arcs dividing
the circle into equal parts and related classes of polynomials.
The local extremal polynomials are identified.

l Introduction. Throughout this note polynomials whose
zeros all lie on the unit circumference C = {z | | z | = 1} will be con-
sidered and refered to as C-polynomials. If P is a polynomial M(P) —
Max,eC7|P(z)|. Also P*{z) = znP(l/z), where n is the degree of P.

The following conjecture due to P. Erdos was stated in [3], and
in corrected form in [4].

Conjecture 1. Let

(1) P(z) = anz
n + + a,z + α0

be a C-polynomial. Then | at \ <> M(P)/2 for i = 0, 1, , n. This
conjecture was established in [5] and [6] for all cases except n = 2k
and i = k. In [6] another conjecture was raised in this connection.

Conjecture 2. If the zeros of P{z) in (1) all lie on the exterior
of C then |α<| ^ M(P)/2 for n/2 ^ i ^ n. For comparison we add

Conjecture 3. If the degree of P(z) in (1) is even n — 2k then

The special significance of Conjecture 3 is that it actually is
equivalent to Conjectures 1 and 2 but its statement is the most
economical. This is summarized in

LEMMA 1. Conjecture 3 implies Conjectures 1 and 2.

Proof, (a) If P(z) is a C-polynomial given by (1) then P\z) —
c2*3* •'+ ''' + cnz" + + c0 is an even degree C-polynomial and cn =
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u(\aQ\2 + - " + \an\
2) where \u\ = 1 and ak — uan_k. If Conjecture 3

is true

21 c.l ^ M(P2) = M\P) .

In particular

if i Φ n/2, so that | αt | ^ M(P)/2.
(b) Let Q(z) = bnz

n + + 60 be a polynomial of degree n
whose zeros all lie on the closed exterior of C. The polynomials
Q(z) + eίθzmQ*(z) are easily seen to be C-polynomials for any non-
negative integer m and any real θ. Indeed \Qn(z)\ ̂  \Q*(z)\ for
|* | ^ 1 and \Q(z)\ ̂  \Q*(z)\ for \z\ ^ 1. Thus we construct C-poly-
nomials of degree (m + n) whose fcth coefficient is bk + eiΰbn.k+m.
Since \Q*(z)\ ^ \Q(z)\ on \z\ = 1, for a suitable choice of θ we have

for j — n — k, n — ά + 1, , n. If k ^ w/2 we can also choose
i = Λ to obtain \bk\ ̂  M(Q)/2. This concludes the proof of the lemma.

We may also remark that the above mentioned conjectures have
corresponding counterparts for trigonometric polynomials TJβ) of
degree n with only real zeros. It is easily seen that Conjecture 1
can be stated as an integral inequality

( 2 )

where M(Tn(θ)) = Max,ei21 Tn{θ)\.
For these polynomials the inequality

was conjectured by P. Erdos and established in [6].
In this note we shall verify Conjecture 3 for several classes of

C-polynomials including the family of C-polynomials whose zeros lie
on fixed disjoint open arcs of length 2πjn on the unit circle one zero
on each arc. Although the proof of the main theorem will focus on
this family other classes are mentioned following the proof.

2. The main results. Let n = 2k. Denote by So, , S2k^ the
open disjoint arcs on the unit circle of length φ = π/k whose endpoint
are the wth roots of unity. Also let Si, , SU-i for ε > 0 sufficient-
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ly small denote the closed arcs obtained from So, , S2*-i by delet-
ing two symmetric subarcs of length ε on each end. πn and πn>ε

shall denote the class of C-polynomials of degree n whose zeros

zό 6 Sά and zό e Sj respectively (j — 0, 1, , n — 1). Furthermore if

o ) Q(z) = q2kz + + Qk% + * * + Qo

then

M(Q) = Max I Q(z) | and L(Q) = | ak \/M(Q) .
zetf

We shall consider the values

( 4 ) a = sup L(Q)

and

α'ε = max L(Q) .

It is clear that monic C-polynomials PQ and Pε assuming the extremal
values a and aε exist. Moreover they can be chosen such that Po e πn

and Pε e πn,ε where the closure is the uniform closure on compact
subsets in the plane.

We shall write

( 5) Pε(z) = a2k>εz
2k + + ak,εz

k + - + αo,ε .

The zeros of Pε(z) all lie in \JfJo1 Sε

jf they are simple and there is
exactly one zero in each of the arcs S}.

In the proof of the main theorem we shall need two auxiliary
results.

THEOREM A. [1] Let Γ be a circle in the complex plane and
let Ji (i — 1, 2, •••,%) be disjoint open arcs on Γ. Let zoeΓ — U?=i ^*
T%£w /or αwί/ w0 ^ 0, ί/̂ e seί o/ polynomials P of degree n having
exactly one zero in each of the arcs 7£ and satisfying P(zQ) — wQ is
convex.

The next result applies to all regular functions.

LEMMA 2. [2] Let wiz) be regular in the unit disk, with
w(0) = 0. Then if \w\ attains its maximum value on the circle
\z\ = r at a point ζ, we can write

ζw'(Q = kw(ζ)

where k — k (|ζ|, w) is real and k ^ 1.

Now we state the main theorem.
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THEOREM. Let Q(z) = q2kz
2k +

nomίal of degree 2ft.
(a) If,Qeπ2k}S then

( 6 )
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+ qkz
k + q0 be a C-poly-

M(Q) ~~ 1 + sees

and all extremal polynomials are of the same form cP*(zei¥) where

( 7 ) P*(z) = z2k + 2 cos εzk + 1 .

(b) For all Qeπ2k, \qh\/M(Q) ^ 1/2.

Proof. Let Pε(2) be an extremal polynomial in the class πn>ε,
given by (5). For ψ = ττ/ft and fixed ε > 0 let Rά(z) = Pε(zeijφ), j =
0,1, , 2ft — 1. Then Rj(z) eπn,ε and hence by Theorem A the poly-
nomials

are also in τr%>£ for a3- ̂  0, Σ f c 1 ^ -
the extremal problem (4) we have

( 8 )

(8) can be written as

= l Since R{z) is a solution of

( 9 ) M(R0)
2 f c - l

-

Since R0(z) = Pβ(z) = α2fc>εz
2A: + + αfc,ε^

fc + αOfβ is a C-polynomial
α2fc_w>ε = uαw, ε for m = 0, 1, , 2ft and for some u — eiθ. Therefore
R0(z)z~ke{~id/2) is real on C. In particular the numbers rά —
R5(l)e-π5ίe-{ίθ/2) are real for j = 0, 1, , 2ft - 1. Moreover since Ro

has 2ft simple zeros on the intervals S} the numbers rό have constant
sign. Thus (9) can be written in the form

M(R0) <ί
i=o

for 6 , ^ 0 , ΣJt i 1 δi = l-
Observing that Λf(J2y) = Λf(i20)

 a n ( i letting all the even bj (or the odd
bj) equal to zero we obtain

Σ
1=0

(10) AΓ(Λ0) ^

(10) implies the existence of a point 2̂  on C such that
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M(RQ)eίa for I = 0, , fc — 1. The polynomial Ro assumes maximum
modulus at k symmetrically situated points on C. Moreover it assumes
there the same value. Therefore setting Mo = M(R0) we have

(11) Ro(z) - MQeίa = (zk - y)q(z)

where q(z) is a polynomial of degree k and 7 e C. Let wlf I —
0, - 9h — 1 denote the kth roots of 7. We have by (11)

(12) q(wι) - ψψl = 1 WιR[{wι) .
kwi ky

By Lemma 2 applied to the analytic functions zR0(z) there exists a
nonnegative constant c independent of wx such that

(13) wιR[{wι) = c

for I = 0, 1, •••,& — ! . Combining (12) and (13) we have

(14) q(w%) = cJt^Wi)

where cx — c/krγ. Hence by (14)

(15) q(z) - cMz) = (zk - 7)s(z)

where s(z) is a polynomial of degree &.
By (11) and (15) (zk — 7) divides the polynomials (C.RQ

and (q — cxR0) and therefore divides the polynomial (q
Since q is of degree k

q{z) = c22;& + c3

for some constants c2 and c8.
Finally by (11)

R0(z) = α2A;,^
2fc + αfc,ε2

& + αo,ε .

It is now easy to evaluate L(R0). For a second degree polynomial
t(w) — {w — ζ)(w — ζ) the maximum of | t{w) \ is attained at the points
w = I oτ w — — l o r both. Therefore

R e ζ |

l + |ReC|

x/(l -f x) is increasing for x > 0. This establishes (6) for the class
π2ktε for all sufficiently small ε (actually one may restrict ε to 0 <
ε<τr/2&).

The preceeding argument also easily implies (7) for the extremals
of τrΛ,ε up to the transformations indicated. Every polynomial in πn

is a uniform limit of polynomials in πn,ε as ε —> 0. This completes
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the proof.

We conclude with a few corollaries.

COROLLARY 1. // TJβ) is a trigonometric polynomial of degree
n whose 2n zeros all lie \on 2n disjoint adjacent closed intervals
which can be mapped by a linear transformation onto 2n symmetric
equal arcs on C, one zero in each interval, then Tn(θ) satisfies the
sharp inequality (2).

COROLLARY 2. Conjecture 3 remains true if the zeros of the
C-polynomials of degree 2k considered lie pairwise on disjoint
arcs of length π/k provided no two such pairs lie on disjoint arcs
mod (π/k).

This follows from the fact that only rotations by multiples of
π/k were used in the proof of the theorem and the condition above
allows the application of Theorem A. As an example consider a C-
polynomial of degree 2k whose zeros have arguments {πj2kά ± εs),
j — 1, 3, , 2k — 1, where e, (0 < es < π/2k) is a mono tonic sequence
of positive numbers.

We finally remark that the method outlined here can be applied
to other extremal problems such as the case where the coefficient
of the polynomial is arbitrary.

Added in Proof Conjecture 3 in form (2) has been recently
established by G. K. Kristiansen in the paper "Some inequalities for
algebraic and trigonometric polynomials" J. London Math. Soc. (2),
20 (1979), 300-314. The estimate of the main theorem of this paper
is independent of the above mentioned result.
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