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SOLUTION OF THE MIDDLE COEFFICIENT
PROBLEM FOR CERTAIN CLASSES
OF C-POLYNOMIALS

ZALMAN RUBINSTEIN

A well-known conjecture states that for polynomials
having all their zeros on the unit circle C half the maximum
modulus on C bounds the modulus of all the coefficients.
This has been established in all cases except for the middle
coefficient of even degree polynomials greater than four.
In this note this conjecture is verified for all even degree
polynomials having simple zeros in a set of arcs dividing
the circle into equal parts and related classes of polynomials.
The local extremal polynomials are identified.

1. Introduction. Throughout this note polynomials whose
zeros all lie on the unit circumference C = {z||z| = 1} will be con-
sidered and refered to as C-polynomials. If P is a polynomial M(P) =
Max,.. | P(z)|. Also P*(z) = 2"P(1/z), where n is the degree of P.

The following conjecture due to P. Erdos was stated in [3], and
in corrected form in [4].

Comnjecture 1. Let
(1) Pi)=az"+ -+« + a2 + q,

be a C-polynomial. Then |a,| < M(P)/2 for 1=0,1, ---, n. This
conjecture was established in [5] and [6] for all cases except n = 2k
and 7 = k. In [6] another conjecture was raised in this connection.

Conjecture 2. If the zeros of P(z) in (1) all lie on the exterior
of C then |a;| £ M(P)/2 for n/2 £ i < n. For comparison we add

Congecture 8. If the degree of P(z) in (1) is even n = 2k then
@] < M(P)2.

The special significance of Conjecture 3 is that it actually is
equivalent to Conjectures 1 and 2 but its statement is the most
economical. This is summarized in

LEMMA 1. Conjecture 3 implies Conjectures 1 and 2.

Proof. (a) If P(z) is a C-polynomial given by (1) then P3(z) =
Cs?" + -+ +¢,2" + -+ + ¢, is an even degree C-polynomial and ¢, =
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u(lap)* + -+ + |a,|®) where || =1 and a, = ua@,_,. If Conjecture 3
is true

2lc,| = M(P*) = M*P) .
In particular

M*(P)

2la; P = |a;* + |a, ;| = )

if 7 # n/2, so that |a,| £ M(P)/2.

(b) Let Q) =b,2"+ --- +b, be a polynomial of degree =
whose zeros all lie on the closed exterior of C. The polynomials
Q) + e“z"Q*(z) are easily seen to be C-polynomials for any non-
negative integer m and any real 4. Indeed [Q.(2)] = |Q*(2)| for
|z]| 21 and |Q(2)| = |Q*(z)| for |z] = 1. Thus we construct C-poly-
nomials of degree (m + m) whose kth coefficient is b, + €“b,_tim-
Since |Q*()| =< |Q()| on |z| = 1, for a suitable choice of & we have

bl + [b;] = —;—(2M(Q)) = M(Q)

for j=n—k%k n—Fk+1, ---,n If k=n/2 we can also choose
J = k to obtain |b,| < M(Q)/2. This concludes the proof of the lemma.

We may also remark that the above mentioned conjectures have
corresponding counterparts for trigonometric polynomials T,(#) of
degree n with only real zeros. It is easily seen that Conjecture 1
can be stated as an integral inequality

9

(2) |, 70| = =)

where M(T,(0)) = Max, .| T.(0)].
For these polynomials the inequality

|1 7.0)1d0 < 4ba(T,)

was conjectured by P. Erdos and established in [6].

In this note we shall verify Conjecture 3 for several classes of
C-polynomials including the family of C-polynomials whose zeros lie
on fixed disjoint open arcs of length 27/n on the unit circle one zero
on each arc. Although the proof of the main theorem will focus on
this family other classes are mentioned following the proof.

2. The main results. Let n = 2k. Denote by S,, ---, S;._, the
open disjoint arcs on the unit circle of length ¢ = w/k whose endpoint
are the nth roots of unity. Also let S;, ---, Sy_, for ¢ > 0 sufficient-
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ly small denote the closed arcs obtained from S, ---, S,,_, by delet-
ing two symmetric subarcs of length ¢ on each end. =z, and =,
shall denote the class of C-polynomials of degree n whose zeros
z;€8; and z; € S; respectively (j =0,1, ---, » — 1). Furthermore if

(3) Q(R) = que™ + -+ + 2"+ - + ¢,
then
MQ) = I\ilgcx Q)| and L(Q) = |a,|/M@Q) .

We shall consider the values

(4) a = sup L@
and
a, = max L@ .

It is clear that monic C-polynomials P, and P. assuming the extremal
values a and «, exist. Moreover they can be chosen such that P, e 7,
and P.ex,. where the closure is the uniform closure on compact
subsets in the plane.

We shall write

(5) P(2) = @y, 2®* + -+ + ap 2"+ -+ + a. .

The zeros of P.(z) all lie in U%3'S;, they are simple and there is
exactly one zero in each of the ares S;.

In the proof of the main theorem we shall need two auxiliary
results.

THEOREM A. [1] Let I" be a circle in the complex plane and
let v; (1 =1,2, -+, n) be disjoint open arcs on I'. Let z,e I’ — U, 7..
Then for any w, # 0, the set of polynomials P of degree n having
exactly ome zero in each of the arcs v, and satisfying P(z,) = w, is
convex.

The next result applies to all regular functions.

LEMMA 2. [2] Let w(z) be regular in the wnit disk, with
w(0) =0. Then if |w| attains its maximum wvalue on the circle
|2] =7 at a point L, we can write

Lw'(Q) = kw(©)

where k =k (||, w) is real and k = 1.

Now we state the main theorem.
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THEOREM. Let Q(z) = quz™ + -+ + q2* + -+ + ¢, be a C-poly-
nomial of degree 2k.
(a) If Qermy,,. then

Al o1
(6) M@ él—i—sece

and all extremal polynomials are of the same form cP*(ze'r) where
(7) P*(2) = 2% + 2cosez* + 1.

(b) For all Qem,, |q.//MQ) < 1/2.

Proof. Let P,z) be an extremal polynomial in the class =#, .,
given by (6). For ¢ = n/k and fixed ¢ > 0 let R;(z) = P.(ze'%*), j =

0,1, ---,2k — 1. Then R;(2)€m,,.and hence by Theorem A the poly-
nomials

R;(z)
R;(1)

are also in 7,. for a; = 0, > *'a;, = 1. Since R(2) is a solution of
the extremal problem (4) we have

R(z) = Z a;

(8) L3 apis) s LR
(8) can be written as
2k-1 R (z)
9 M(R
(9) )| 3 | = M(F o 248
Since Ry(2) = P.(z) = @y, 2™ + -+ + a2 + ---a,,. is a C-polynomial

Opm,e = W, for m =0,1, ---, 2k and for some u = ¢*. Therefore
Ry(z)z %e-“" is real on C. In particular the numbers 7»; =
Rj(1)e~"#¢=%*" are real for j=0,1, ---, 2k — 1. Moreover since R,
has 2k simple zeros on the intervals S; the numbers #; have constant
sign. Thus (9) can be written in the form

2k—1 .
MR) = M('S, (~1b;R;)
for bj = O, Zg’;—ol bj = 1.
Observing that M(R;) = M(R,) and letting all the even b; (or the odd
b;) equal to zero we obtain

(10) M(R) = M(3}buR0) S 33 buM(R) = M(R) .

(10) implies the existence of a point 2z, on C such that R,(z) =
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M(R,)e* for 1 =0, ---, k — 1. The polynomial R, assumes maximum
modulus at k symmetrically situated points on C. Moreover it assumes
there the same value. Therefore setting M, = M(R,) we have

(11) Ry(2) — Me™ = (2" — 7)q(z)

where ¢(z) is a polynomial of degree k and veC. Let w, | =
0, ---, k — 1 denote the kth roots of v. We have by (11)

Ry(w) _ 1

Towi oy wRy(w,) .

(12) q(w,) =

By Lemma 2 applied to the analytic functions zR,(2) there exists a
nonnegative constant ¢ independent of w, such that

(13) w Ri(w,) = cRy(w)

for 1 =0,1, ---,k — 1. Combining (12) and (13) we have

(14) q(w)) = c,Ry(wy)
where ¢, = ¢/ky. Hence by (14)
(15) q(z) — ¢, Ry(z) = (2* — 7)s(z)

where s(z) is a polynomial of degree k.

By (11) and (15) (2* — 7v) divides the polynomials (¢,R, — M,c.e*)
and (¢ — ¢,R,) and therefore divides the polynomial (¢ — Mg,e™).
Since ¢ is of degree k&

q(z) = ¢2* + ¢,

for some constants ¢, and c,.
Finally by (11)

Ry(2) = @y, 2™ + ay, 2" + a,,. .

It is now easy to evaluate L(R,). For a second degree polynomial
tw) = (w — O(w — {) the maximum of |£(w)| is attained at the points

w=1or w= —1 or both. Therefore
Re (|

LR) = —ReCl

B = 1 Ret]

x/(1 + x) is increasing for » > 0. This establishes (6) for the class
7o for all sufficiently small ¢ (actually one may restrict ¢ to 0 <
e < w/2k).

The preceeding argument also easily implies (7) for the extremals
of m,. up to the transformations indicated. Every polynomial in 7,
is a uniform limit of polynomials in z,. as ¢ — 0. This completes
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the proof.
We conclude with a few corollaries.

COROLLARY 1. If T,(0) is a trigonometric polynomial of degree
n whose 2n zeros all lie ‘'on 2n disjoint adjacent closed imtervals
which can be mapped by a linear transformation onto 2n symmetric
equal arcs on C, one zero in each interval, then T,(0) satisfies the
sharp inequality (2).

COROLLARY 2. Conjecture 3 remains true if the zeros of the
C-polynomials of degree 2k considered lie pairwise on disjoint

arcs of length w/k provided no two such pairs lie on disjoint arcs
mod (z/k).

This follows from the fact that only rotations by multiples of
w/k were used in the proof of the theorem and the condition above
allows the application of Theorem A. As an example consider a C-
polynomial of degree 2k whose zeros have arguments (7/2k; =+ ¢;),
i=1,8,---,2k — 1, where ¢;(0 < ¢; < w/2k) is a monotonic sequence
of positive numbers.

We finally remark that the method outlined here can be applied
to other extremal problems such as the case where the coefficient
of the polynomial is arbitrary.

Added in Proof. Conjecture 3 in form (2) has been recently
established by G. K. Kristiansen in the paper “Some inequalities for
algebraic and trigonometric polynomials” J. London Math. Soc. (2),
20 (1979), 300-314. The estimate of the main theorem of this paper
is independent of the above mentioned result.
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