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[0, o0]-VALUED, TRANSLATION INVARIANT
MEASURES ON N AND THE DEDEKIND
COMPLETION OF *R

FRANK WATTENBERG

This paper investigates {0, co}-valued, translation invariant
measures on the set N of positive integers. The main tool in
this investigation is Nonstandard Analysis and especially the
completion, *R, in the sense of Dedekind of the Nonstandard
Reals, *R. The algebraic and topological properties of *R are
developed and exploited to obtain a classification theorem for
a particularly nice class of {0, oo}-valued, translation invariant
measures on N.

1. Introduction. One of the basic problems in mathematics is
to define a measure for a suitable collection of subsets of a given
set X. When X is the real line there is a unique (up to scale) na-
tural, countably additive, translation invariant measure, namely
Lebesgue measure. However, if X is the set of positive integers,
N={1,2,8, ---} then the situation is not so neat. First, since N
is countable the only (up to scale) countably additive, translation
invariant measure is the measure which assigns + « to every in-
finite set and to every finite set assigns its cardinality. Although,
this measure is very important it fails to distinguish between in-
finite sets in any way. One way to obtain a measure which does
make some distinction between different infinite sets is to apply
Zorn’s lemma to find a nonprincipal ultrafilter & on N. Such an
ultrafilter is a collection of subsets of N satisfying the following
properties

(1) 0¢e=Z, Nez

(2) Ae=zZ, A BZ N implies Be &7

(8) A, BeZ implies ANBeZ

(4) nN{AlAdez}=0

(5) = is maximal with respect to properties (1)-(3).

Properties (1)-(8) are the defining properties for.a filter on N.
Property (4) says that the filter is not principal, and Property (5)
says that & is an ultrafilter. Property (5) is equivalent to (5').

() AUBe <= implies Ae<ZZ or Be=Z.

Intuitively, one thinks of the sets in &2 as “big” and assigns
them measure one while the sets outside of & are given measure
zero. This yields a finitely additive {0, 1}-valued measure which is
extremely useful for many purposes. However, this measure lacks
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some properties which are intuitively natural. In particular this
measure is not translation invariant. Indeed, translation invariance
implies that the two sets A ={1,8,5, ---} and A +1=1{2,4,6, ---}
have the same measure contradicting (1), (8) and (5'). The purpose
of this paper is to investigate a class of {0, «}-valued measures on
N which are translation invariant and satisfy properties (1), (2),
(4) and (5').

DEFINITION I.1. A premeasure on N is a set & of subsets of
N which satisfies the following properties.

(A) Ne&, 0e¢&.

(B) Ae®, AC BC N implies Be &.

(C) AUBe& implies Ae& or BeZ.

D) Ae&, keZ implies A + ke &
where Z denotes the set {0, +1, —1, +2, —2, ---} of all integers.

The sets in & are thought of as “big” and are assigned infinite
measure while those outside of & are given zero measure. Thus,
% corresponds to a {0, o}-valued, finitely additive, translation in-
variant measure on N.

ExampLES 1.2.

(i) Let & be the collection of all infinite subsets of N. Then
% 1is easily seen to be a premeasure on N. In fact, & is the uni-
que maximal premeasure on N since if F' is a finite set, F =
{2, 2, -+, 2} with o, <2, < :-- <@, then F is in no premeasure
since if it were, @ = F — x, would be also, violating (A).

(ii) Let v be a fixed infinite integer in a Nonstandard Model
*R of the reals. For AC Nlet A ={ac*A|a <} and let ||4,]
denote the *cardinality of 4,. Then let &) denote the set of all
subsets AS N such that ||A,]|/v is not infinitesimal. The collection
#7 is a premeasure.

(iii) Using the notation above, let & denote the set of all
subsets A £ N such that ||4,||/Vv is not infinitesimal. Then &% is
a premeasure containing #. Notice the set {1, 4,9, 16, ---} is con-
tained in &, but not &.

(iv) Let # Dbe the set of all subsets A S N such that
Liminf, . (]| 4,)l/n) is positive. That is, Ae¥ if and only if
|A,ll/v is not infinitesimal for every infinite ». & is not a pre-
measure. To see this let a, be any sequence such that a, <a,<a,---
and Lim,__a,.,/a, = . Then let

[azm a/zn+1) ﬂ N

C:s

n

[

1

[aZ”‘l, aZﬂ) ﬂ N .

1

A=
B =

C:s

”
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Then A, B¢ # but N= AU Be.# contradicting (C).

Examples (ii), (iii) and (iv) above indicate the importance of
Nonstandard Analysis in the study of premeasures. This is not
surprising in view of the fact that one way of representing ultra-
filters is via the correspondence between an infinite nonstandard in-
teger v and the ultrafilter 2, = {A S N|v e *A}.

In §5 of this paper we will obtain a similar representation for
a particularly nice class of premeasures. However, in this case the
correspondence will be between such premeasures and integers in
the completion (in the Dedekind sense), *R, of *R. §§2-4 of this
paper are concerned with the construction and investigation of
*R.

One of the uncomfortable facts about ultrafilters is their high
degree of arbitrariness. In faect, except for finite sets (which are
in no nonprincipal ultrafilters) and cofinite sets (which are in every
nonprincipal ultrafilter), given any set A there are infinitely many
ultrafilters containing A as well as infinitely many which exclude
A. Premeasures are also very far from being unique. However,
we do have the following lemma.

DEFINITION AND LEMMA I1.8. Suppose A = {a, a,, a,, --:} is a
subset of N with a, <a,<a;,<---. Then A is said to be univer-
sally big provided Sup(a,., — a@,) <. A is universally big if and
only if A is contained in every premeasure on N.

Proof.

(=) Suppose A is universally big, so Sup(a,:; — a,) = k < .
Then N = Uizi(A + 7). Let & be any premeasure. By (A) N =
Uizt (A + 1) e &, so by (C) for some 4, (A + 7)€ &. Hence, by (D),
Ac&.

(=) Suppose Sup(a,+, — @,) = . Then there is an infinite »
such that a,., — a, is infinite. Let & be the set of all subsets
E C N such that 3ec*E such that |e — (a,., + @,)/2] is finite. & is
a premeasure which excludes A.

COROLLARY 1.4. There 1s no premeasure which s contained in
every Ppremeasure.

Proof. If there were such a premeasure & it would have to
consist entirely of universally big sets. But this is impossible by
Example 1.2(iv).

However, a straightforward Zorn’s lemma argument gives us
the following proposition.
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ProPoSITION 1.5. Ewery premeasure contains a minimal pre-
measure.

For ultrafilters conditions (1) and (38) imply that if Ae < then
N\A¢ 2. As we have seen this violates translation invariance.
However, for minimal premeasures the following proposition gives
us a weaker but analogous property.

PROPOSITION 1.6. Suppose & is a premeasure. Then the fol-
lowing conditions are equivalent.

P,) & s minimal.

(P,) For every Ae & there is a k€ N such that

N/[Lij (A + i)]% = .

Proof. (P, implies P,) suppose P, is false. Then there is a set
A e such that for every k, N\[U!, (4 + 9)]e &. This implies that
for every S¢ & and every i, ---, 1,

N;e[g(A + ij)]u S.

Let &7 be the set of all subsets £ & N contained in sets of the
form

U@+i)us, Sez.

Let &' ={E|E¢.%”}. It is straightforward to verify that &’ is a
premeasure and &’ C &. Thus & was not minimal.

(P, implies P,) Suppose & is not minimal. Then there is a pre-
measure 'S &. Let Ae&\&’'. By (P, there is a k such that
N\[U%, (A + 4)]¢ & and hence not in &’ as well. But since A¢ &/,
Uko(A +19)e &’ by Properties (C) and (D). But now N =
{N\[Ui= (A + 9)JU[UY-, (A + )] ¢ &’ contradicting (A). This com-
pletes the proof.

In §5 we will show that minimal premeasures have additional
desirable properties. However, before continuing the study of pre-
measures we will construct and study the completion of *R.

II. The Dedekind completion of *R. For the remainder of
this paper *R will denote the set of nonstandard real numbers in
a r-saturated, higher order, nonstandard model *_# of the complete
structure _# on the reals, R, where £ is any cardinal greater than
that of the universe of .#. If P denotes a given entity in .#,
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*P will denote the corresponding entity in *.#. Thus, for example,
*N denotes the set of nonstandard positive integers and *[ ]: *R—*Z
denotes the extension to *R of the greatest integer function. We
use the usual notation a ~ b, for a infinitely close to b, and St(a)
for the unique standard number infinitely close to a finite nonstand-
ard number a. The monad of a, the set {x € *R|x ~ a} is denoted,
p(a). See, for example, [1], [2], [3], or [4] for the necessary ma-
terial on Nonstandard Analysis.

It is well-known that for arbitrary subsets *R is not complete.
For example, ¢(0) and R are bounded subsets of *R which have no
suprema or infima. In this section we use the method of Dedekind
cuts to construct and study a completion *R of *R. The set *R in-
herits some but by no means all of the structure on *R. For ex-
ample, ‘R is not a group with respect to addition since if £ denotes
the supremum of p(0) then g+ g =g+ 0= p. Thus, one must
proceed somewhat cautiously. In this section more details than is
customary will be included in proofs because propositions which at
first glance appear clear often at second glance reveal themselves

to be false.

DEFINITION. II.1. A #-real is a subset a £ *R such that
(i) For every aca and b<a, bea.
(ii) a=# @, *R.
(ili) «a has no greatest element.
*R is the set of all f-reals.
We embed *R in *R in the obvious way. If ac*R the corre-

sponding element, *a, of *R is
‘o ={xe*R|x <a}.

Condition (iii) above is included only to avoid nonuniqueness.
Without it fa would be represented by both *a and *a U{a}. If E
is a subset of *R satisfying (i) and (ii) then (&) will denote E if
E has no greatest element and E\{e} if e¢ is the greatest element

of E.
Two elements of *R will be particularly useful for examples,

1= (=, 0] U (0)
@ = U*(_OO’ n)-

nenN

For a ¢ R we will often by abuse of notation write *a or even

just a for #*a.
If a, B€*R we define the sum a + 8 by

a+p3={+blaca, bep}.
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Note, for example, that # + ¢t =p and ¢ + ¢ = ¢ so +is not a
group operation.

Lemma II1.2.

(i) +1is commutative and associative in *R.
(ii) Vae*R a + %0 = a.

(iii) Va, be*R *a + b) = *a + *.

Proof.

(i) is clear,

(ii) a + *0 <C « is clear.

Now, suppose a€a. Since a has no greatest element 356> a
bea..a —bec*0 and a =(a —b) +bec? + a.

(iii) *a + *6 S ¥a + b) is clear since

x<a, y<b implies z +y<a+5b.
Now, suppose z < (a + b)
_(a+b)—2

a 5 <a
and
p—letb—2 4
2
So

x:[a—io‘—tlg—)—:i”—]+[b—(“_+%)—_x]e#a+#b.

This completes the proof.

DerFInNITION II.8. Suppose a, 3€ R. Then a < B if and only if
a S B. Notice, here again something is lost going from *R to *R
since @ < @ does not imply ¢ + @ < B + a since 0 < ¢ but 0 + ¢ =
¢ =+ p. However, we do have the following.

LemMmaA I1.4.
(i) =is a linear ordering on *R, which extends the usual
ordering on *R.
(ii) aZad, =g wa+p=a + 4.
(ii) a<d, < —»a+p<a +4.
(iv) If AZ*R is bounded above then
SupA=Supa=U a exists in *R.

ac A acA
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If AC*R 1s bounded below then
InfA=Infa=<{N a erists in *R.
[ L=V}

aeAd

(v) *R is demse in *R. That is if a < B in *R, there is an
ac*R s.t. a<fa<p.

Proof.
@), @i), (iv), (v) are clear.
(iii) a< o, B< B imply 3a,d, b, b'e*R

s.t., a<fa<id’<a and B<H<H B
La+ Bt +h<fd +=a + 4
Soa+ RB< a + 3 completing the proof .

Our next task is to define —a for a€*R. By earlier remarks
—a can only have some of the properties of an additive inverse.
In particular, @ + (—a) need not be #0.

DEFINITION II.5. Suppose a€*R. Then —a is defined by

—a={{ac*R|—ac¢al).

Lemma II1.6.

(i) —(Ca)=*%—a)

(ii) —(—o)=«a

(iii) a<p——pB= —a

(iv) (—a) +(=p)= —(a+ p)

(v) if ae*R, {(—a) + (—=p) = —(a + B)
vi) a+ (—a)xt0.

Proof.

(1)-(iii) are clear.

(iv) Suppose ae(—a) and be(—p).
Then 3a,b, a < a,€(—a), b < b, e(—p)

-, ¢, —be¢p
La<¥—a), B<H—b)
SLa+B< H—a)+H(—=b)=4—a,—b)
So—a,—béa+ B
c.since a+b<a, +b,, a+dbe —(a+p).
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(v) By (iv) (—a) + (=8) = — (fa + p).

Suppose ce —(*a + B)

sode st e<ee—(Ca+R)
So—aéfa+ 3
S.o—c—a¢épB (since —c¢c—aep
and
a — (¢, — ¢) €a imply
—c,=a—(¢,—¢)+(—c—a)eta + B)

Le+tae—g.

By similar reasoning ¢, + a € —g.
But —a — (¢, — ¢)e¥(—a).
So

c=—a—(e,—a)+e +ac*(—a)+ (—pB).
(vi) Suppose aca and be —a
So—bea
La< —b so a+b< -b+b=0
La+(—a)s0.

This completes the proof.

Next we consider a few examples which show that Lemma I1.6

is best possible.

ExampLES II.7.

(i) p+(—p)y=—p and ¢ + (—¢)=—¢. So Lemma IL.6 (vi) is

best possible.

(ii) [—(=¢) + —¢l =9 + (=9)=—¢ < g=—(—9)=—((—9) + 9).

So Lemma I1.6 (iv) is best possible.

(iii) One might conjecture that equality would hold in Lemma
I1.6(iv) whenever both «, B were positive. However, the following

a counterexample.
Let a=*+ p 3=* — p then

(—) + (=) = (=1 + (=) + (=1 +

=H=2) + (=) + p
=H=2) + (—p) .

But a = *(—, 1JUp1) g = *(— oo, 1]\p4(1).
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So

a+ B = *(—oo, 2\«(2)
and
—(a + B) = *(—o, =2]lU(—2) =¥ —2) + ¢
L)+ (R < —(a+P).
From now on we will write « — 8 for a + (—g). Also, by
abuse of notation we will sometime write a instead of ‘a. Next we
define absolute value in *R. Although the definition is completely

straightforward, its properties are not. In fact, the triangle ine-
quality fails.

DErFINITION I1.8. Suppose ac?*R. The absolute walue of «,
written |a| is defined as follows.

a if a=0

|l = —a if a<0.

ExampPLE I1.9. The triangle inequality fails in *R. Let a =
—1— ¢ and B=—1 + p then

a+pB=—2—-—p so la+Bl=—(—2—p)=2+p
lal=1+p  |gl=1—p

and
la| +1B8l=1+p+1—-p=2—-—pu<2+p=la+pg|.

DEFINITION I1.10. Suppose a, 3e€*R. The product a-g, is de-
fined as follows.
Case (i). a,3>0
a-B=1{abl0<*a<a, 0<*H<BIU*—-co,0].
Case (il). a=0o0r 3=0
a-3=20.

Case (iili). a<0or <0

a-8=|a|-|g] if both a, <0
a-g=—la|-|B] if a<0, >0
or «>0, B<O0.

The bad news for multiplication is that it is not a group
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operation (since ¢-¢ = ¢) and the distributive law does not hold in
full generality (if it did *(—1)-a=—a would imply a + (—a) = 0).
The good new is.

LemMma I1.11.

(i) VYa, be*R *ab) = *a-*b.

(ii) Multiplication is associative and commutative.
(iii) l-a=a *(—1)-a=—a.

iv) lallgl =lagl.

(v) Ifa, By v=0 a(B+7) =ap + av.

(vi) 0<a<a,0<p<g —ag<ag.

Proof.

(i) First, suppose a, b > 0 then clearly *a*b < ¥ab)

since 0<x<a, 0<y<b implies a2y < ab. Now . suppose
0<ec<ablet

a'=a\/c—f_%<b

' c
=2= \/ 3 <b
¢ = a't’ e*a*d
S0
*(ab) < *a®b .

The other cases follow from (iv).
(iv) Immediate from Definition II1.10 and Lemma II.6(ii).
(ii) is immediate from the definition for a, 8, ¥ =0 and (iv)

otherwise.
(ili) We may assume a > 0. Clearly ‘1.a < a«. Now suppose

aca then 3d’'ea a < a’
S.afa’ <1 so ala’efl
and

a'-(afa’) =aefl-a.

By the definition *—1)a=—(*la)=—a.
(v) Clearly a(B + 7)< apg + av.
Suppose d € ap + av

S.d=ab+dae a,d/ea bep cev

Without loss of generality we may assume a < a'.
Hence d = ab + a’'c < a'b + a’'c =a'(b + ¢) e a(B + 7).
(vi) 0<a<a 0<pB< B implies
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da,a,b,b st. 0<a<’a<fd<a
o<pg<sH<H <Q
Soag £ Hab) < Ha'V) = o'
sLag < a'g.
This completes the proof.

The next step is to define a~'. As we have seen above a™
cannot have all the properties of a multiplicative inverse.

DEFINITION II.12. Suppose @€ *R and a # 0 then a~' is defined
as follows.
Case (i). a >0

at=Infla |0 < aca}.

Case (ii), a <0
a'l=—(—a)".
LEmMMmA II1.13.
(i) (a)?=*%*a™).
(ii) (@™t =a.
(jii) 0<asp=p"'=a™.
(iv) a,8>0=(a)(B)=(ap)™"
(v) Vae*R, a+#0 implies (*a)™' B = (*aB)~".
(vi) a(a™) <.

Proof.
(1i)-(iii) are clear.
(iv) Suppose xz e (a ) (B™)

Sx=hg heat', gep™*, h,g>0
S Yaea, a>0h=a", Vbep, b>0gb!
SLhTtZzZa, gtz=b
o (hg) ' = ab
s Vteag (hg) =t
S Vieag t>0 implies hg <!
cohg = (ap)t.
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(v) We may assume a > 0. The case for a < 0 follows from
this case.

By (iv) (a)'p' = (Fap).
Now suppose xz€ (faB)™ .. Iye(ag) 2 < y

SLVbepg, b>0 y=(ab)?
Say =b!

SLayep?
S =alax = [a“‘ (%):lay e¥a)p™.

(vi) We may assume a > 0. Suppose aca, bea'anda,b > 0
b<at
ab<aat=1
Saat <1,

This completes the proof.

ExampLE I1.14.

(i) ¢=p, =9

(ii) ¢p' =gt = £t < 1 so Lemma I11.13(vi) is best possible.
(i) pp = p

So (up) = p = ¢ > 797 = gpt = .

So Lemma II.13(iv) is best possible.

III. The topology of *R. Topologically, *R has many pro-
perties strongly reminiscent of R itself. We proceed as follows.

DEFINITION III.1. Suppose US*R. Then U is open if and only
if for every we U, 3a, Bc*Ra < u < B such that

ue(a,U.

(Notice because of the peculiarities of addition this is not equivalent
to Vue U3¢ > 0 such that (u — ¢, u +¢) & U.)

LEmMMmA II1.2.
(1) *R 1is dense in R.
(ii) *R\*R is demse in *R.

Proof.
(i) 1is just Lemma II.4(v).
(ii) Suppose U # @ is open.
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Then 3a < b s.t. (a,d) S U.

We may assume a, be*R.

Let a =Inf,.5(a + (b — a)/n).

Then by a straightforward saturation argument ae€(a, b) and
ae¢*R.

This completes the proof.

LemMmA III.3. Suppose A S *R. Then A is closed if and only if
(i) VEC A E bounded above implies Sup K € A, and
(ii) VE S A E bounded below implies Inf E ¢ A.

Proof.
(=) Suppose A is closed and E S A is bounded above.

Let s = Sup E.
If s¢ Ada, g s.t. se(a, B) and (@, 3)NA=0Q

S, BNE=9g.
So s cannot be the Sup £
.s€A.

(i1) is proved similarly.
(=) Suppose x¢ A.
Set

o = Supf{t|t < =, tc A},
and
B =Inf{t|lx <t teAd}.

Clearly a <z < 8 and (i) and (ii) imply a < x < 8.
Clearly (o, YN A= Q.

Thus the complement of A is open.

This completes the proof.

ProrosITION II1.4. *R is comnected.

Proof. Suppose ‘R =AU B where A, B+ @ are both closed
and ANB= Q.

Choose ac A, be B. We may assume a < b.

Let x = Sup{t € A|[a, t] < A}

Note, = exists and is <b.

Since A is closed x ¢ A. Hence z = b.

Since B is closed 3, s a<z<pB

s.t. (o, B S A dex<e<@s.t.

[t,e] < A .. [a, ¢] £ A contradicting the definition of z.
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COROLLARY IIL.5. (Intermediate Value Theorem). Suppose
Sfila, 81— *R is continuous and fla) < v < f(B). Then 37 ela, 8]
such that f(7') = 7.

Proof. Straightforward.
ProrosiTION III.6. For a < g in *R. [a, B8] is compact.

Proof.

Let Zr = {U,},es be an open covering of [a, 8].

Let A= {x € [a’ ﬁ]lgaly c0y O [a, x]—g—Uolu U Uak}-

A straightforward argument shows A is both open and closed,
so B € A completing the proof.

COROLLARY III.7. Suppose A S*R. Then A is compact if and
only if A is closed and bounded.

Proof. Straightforward.
COROLLARY III.8. *R is mormal.
Proof. Straightforward.

DEFINITION AND LEMMA III.9.

(i) Suppose a€(—¢, $). Then there is a unique standard z,
called ST(a), such that ze[a — 4, @ + #].

(ii) a = B implies ST(a) < ST(R).

(iii) ST is continuous.

(iv) ST(a + B) = ST(a) + ST(B)

ST(ag) = ST()ST(B)

ST(—a)=—ST(a)

ST(a™) = [ST(a)]™ if ag¢[—p, .

Proof.

(i) ST(a) is clearly unique if it exists.

Let X={rxeR|* < a}.

Since X is bounded above X has a supremum z.

a=x+p since a>x+ p
implies 3ae*R 2+ pu<a <

x + St(a)
2

Sr#SupX.

S << <a
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Also, a =2 — psince a<ax— p
implies 3ae*R, a <fa <z —
implies X is bounded by St(a) < «

Soaelr—p o+ p].

(ii)-(iv) are completely straightforward.

Despite the fact that the topology on *R is quite nice, one must
still be cautious. For example, mappings which one might expect
to be continuous may not be. In particular, the map ar—a + (—a)
is not continuous since if it were it would be zero since it is zero
on the dense subset *R. The next two propositions show that the
problem is not in the map @ — —a but in the map (a, B)— a + g.

ProposiTION III.10.
(i) The map a+— —a is continuous.
(ii) The map a — o™ is continuous.

Proof.
(i) Suppose —ae(B, v) then

ae(——v, _.8)
and
06('—7, _B) = —06(85 7) .

(ii) The proof is identical.

ProprosITION III.11. The maps (o, B)—a + B and (a, B —a-B
are not continuous.

Proof. We will show addition is not continuous. The proof for
multiplication is similar. Notice (¢, —¢) — —¢.

Now, (— o, —1) is an open neighborhood of —g.

Suppose («, B)X(a’, ') is a basic open neighborhood of (3, —g).
We may assume a and B’ are finite. Hence, there is a finitea e *R
such that (a, —a) e (a, B) x(a', B).

But (a, —a)—~0¢(—c, —1).

The next question we wish to consider is when a “continuous”
function on *R can be extended to *R.

THEOREM II[.12. Suppose f:{a, b] — A< *R s internal, *conti-
nuous, and monotonic. Then f has a unique continuous extension
tf: [*a, o] — A S R, where A denotes the closure of A in *R.

Proof.
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(i) Uniqueness is immediate since [a, b] is dense in [*a, *b].

(i1) We may assume f is monotonically increasing.

Define *f(a) = Sup{f(x)|x < a and z<[a, b]}.

(8) Clarm. *f(a) = g = Inf{f(x)|a <z and z€[a, b]}.

Clearly *f(a) < .

Now suppose *f(a) < 8 .. 3ye*R *fla) < y < B.

Then by the *Intermediate Value Theorem 3z €[a, b] such that
flx) =y.

But either ¢ < a or x = « and either case leads to an immediate
contradiction.

Now suppose 6 € [*a, *b] and *f(d) € (a, B). In view of

(#) 3u,ve*R, u < 0 < v such that a < flu) < f(6) < f(v) < B.

Hence *f maps (*u, *v) into (a, B).

Thus, *f is continuous.

COROLLARY III.13. The conclusion above holds if [a, b] is 7e-
placed by (a, b) even if a=—o0 or b=+ o,

COROLLARY III.14. The conclusion above holds if f is piecewise
monotonic (i.e., the domain can be decomposed into a finite (not
* finite) number of intervals om each of which f is monotonic).

Next, we consider some examples showing that the assumptions
above are necessary.

ExampPLES II1.15.
(i) The internality of f is needed (via the *Intermediate Value
Theorem). Consider the function

x x € ¢(0)
f@)y=31+2x *x>p
—1l4+z x< —p

which clearly has no continuous extension to *R.
(ii) Let v be a fixed infinite *integer. The function

sinz |2| < 27y

fw) = 0 x| > 27y

can not be defined at ¢, but is *piecewise monotonic.

ProrosSITION II1.16. Suppose f, g are *continuous, piecewise
monotonic functions then

(1) fog is also and

(ii) *(feg) = *fo’g.
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Proof.

(1) 1is straightforward.

(ii) follows from continuity and the fact that *R is dense in
*R. '

IV. #-Integers. The set ‘R has within it a set *Z of #-integers
which behave very much like *Z inside *R. In particular the
greatest integer function *[ ]: *R — *Z extends in a natural way
to { J:*R —*Z. To simplify the notation we will denote *[ ] by [ ].

DEFINITION AND LEMMA IV.1. Suppose a¢ €*R. Then the follow-
ing two conditions on « are equivalent. If « satisfies these condi-
tions « is said to be a #-integer. The set of #-integers is denoted
*7Z and *Z N[#1, =) is denoted *N.

(i) a=Sup{v|ve*Z and v < a}

(ii) a=Inf{v|ve*Z and a < v}.

Proof.
Let

G =Sup{’»|ve*Z and v =< a}
and
B, =Inf{’v|ve*Z and a =<v}.

Clearly B, < g..

Suppose 3, < (..
Then 3be*R s.t. B, <* < B,

Sbl<a and [l +1>a
SoB=fb] and B, =%b] +1

so a+# B, and a # G,
This completes the proof.

LeMMmA IV.2.

(1) *Z is the closure in *R of *Z.

(ii) *N 1is the closure in *R of *N.
Hence both *Z and *N are closed with respect to taking Suprema
and Infima.

Proof. We prove (i), (ii) follows immediately.
Clearly *Z < *Z.

Suppose a¢*Z.

Let g, = Sup{rve*Z|v < a}
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B =Inflve*Z|a < v}.
Since a¢*Z, B, < a < B,
But, clearly (8, 8.) N *Z = @.
So, @ ¢ *Z which completes the proof.

LeEmMmA IV.3. Suppose a, B€*Z. Then,
(i) a+ BetZ.

(ii) —aetZ.

(iii) a-BetZ.

Proof. Completely straightforward.

CONSTRUCTION IV.4. Suppose ac*R. Then, we define [a]e*Z
by

[a] = Sup{v|ve*Z, v < a}.

There are two possibilities.

(i) {v]ve*N,» £ a} has no greatest element. In this case
[¢] = a since [a¢] < a implies 3a€*R such that [a] <a < a. But
then [e¢] < a which implies [a] + 1 < a contradicting [a] < a < [a]+1.

(ii) {v|re*N, v < a} has a greatest element, v.

In this case [a] = ve*N.

Notice in case (i) [#] = a and in case (ii) [@] £ a < [a] + 1.

LEMMA AND DEFINITION IV.5. Suppose A is a standard subset
of N. Suppose ve€*N/*N. Then the following are equivalent.

(i) v = Sup{ac*d|a < v}.

(ii) v=Infleae*4|v < a}.
When these two equivalent conditions hold, v is said to be in the
tail of A, written v e 7(4).

Proof.

Let B, = Sup{a e *4|a < v}

and B, = Inflae*Aly < a}.

If B, < B, then 3be*R such that 8, < b < g,.

Let A={a, ay -} a,<a, < -+

Let o be the greatest integer such that a, < b. (o exists since
be*R.)

Thus ¢, < B, and a,4; < B,

So a, = B < By = Apise

But now since v € *N/*N

YVFE Uy oty -

On the other hand if 8, = 8, then v = g, = g,.
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ExampLES IV.6.
(i) A is infinite = ¢ € 7(4) <= t(4) = O.
(i) 7(A) = z(N) = A is universally big.

Proof.

(i) is clear.

(ii) First, suppose A is not wuniversally big. Then
Sup(a,., — a,) = « and there is an infinite v such that a,., — a, is
infinite.

Let a = Sup,.y(a, + n).

Then a ¢ z(A) but a€z(N).

Now, suppose Sup,(@,.; — a,) =k < oo,

If aez(N) then e €*N/N and the set {v€*N|v < a} = E has no
maximum. Thus veF implies v+ 1, v+ 2, ---, v+ keE. Clearly
Sup{ea e *Ala < a} < a.

If Sup{ae*Ala < a} < a then there is an z € *R such that Sup
fec*Ala<a} <2< a.

But then [#] < a and

Hz] +1, Hz]+2,---,z] + k< a

and at least one of these *integers must be in *4 contradicting
Sup{a € *Ala < a} < [x] + 1.
This completes the proof.

PrROPOSITION IV.7 Suppose AS N. Then t(A) 1s closed.

Proof. Suppose a ¢ 7(A). There are two cases.

(i) a=*,ae*N
then (a — 1/2, *a + 1/2)N (A\fa}) = @ and since z(A4) < A\{a},
(a — 1/2, *a + 1/2)N7(4) = @.

(ii) a +# Sup{eac*Ala < a}.

Hence 3z € *R such that

Sup{fee*4la< a} <z < a.
Hence, {v|a, < 2} being an internal set in *N has a maximum .
o'o (a,, ay-(-l) n *A = @

o (a'w au+1) n 7'-(‘4) = @
But ac(a,, a,+).
This completes the proof.

LemMmaA IV.8.
(i) aer(A) implies VneZ a + n = a.
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(ii) vneZ t(A) = (A + n).
(ili) A & B implies 7(A) < ©(B).
(iv) z(AN B) S t(4) N (B).

(v) 7(AUB) = 7(A) U 7(B).

Proof.
(i) aez(4) implies a¢ *N and

a = Sup{re*Ajy < a}.

So {re*A|y < a} has no maximum.

This is sufficient to imply ().

(ii) follows from (i)

(iii) and (iv) are immediate.

(v) If a =Sup{re*(4U B)|yv < a} then either
a = Supfre*A|v < a}

or

a = Sup{re*Bly < a}

so a€7(A) or aer(B).
This completes the proof.

Notice that z(A) N z(B) need not equal z(A) N z(B). In fact, if
A={1,8,5 ---}and B=A+1 then z(A)N7z(B) =*N\*N but ANB=©
so 7(ANB) = @. However, given A, B< N we can construct a set
AAB such that z(AAB) = 7(A) N z(B) as follows.

CONSTRUCTION AND LEMMA IV.9. Suppose 4, A4,, ---, A, are in-
finite subsets of N. Write, A4, = {a,, @, -} with a,, < a,.,<---.
Then we define A ANAN---NA, = {¢, ¢, -} as follows.

€, = Qay
¢+, = least a,; such that ¢, < a,; where p =u + 1 (modulo %) .

Then,
T(Al/\Ag/\ A /\Ak) = T(Al) ﬂ T(Ag) ﬂ tee ﬂ T(Ak) .

Proof.
(1) T(ANAN--NA) S (A) NT(4) NN (4.
Suppose ac (A, ANA,A---NA,). Then

a=Supfce ANAN - NA, e < a}.

Hence the set {ce A, AA,A---NA,]le < a} has no greatest element.
By the construction of A,AA4,A---AA, this implies
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a=Sup{acd,la < a}.
So,
aect(A)NtA)N- - N4 .

(ii) z(A)Nzd)N--- Nt(4) S T(ANAN - NAY.
Suppose a €7(A4,) N 7(4,)N -+ N (4.

Hence a = Sup{a € *4,|a < a}.

Now, suppose a > Sup{ce€ *(A,ANA,A---NA) e < a).
Then, 32 € *R such that

a>2x > Sup{ece *(A,LANAN---NAYle < a}.

Let o be the largest *integer such that ¢, < . Hence ¢, < 2 < €,4,.
Without loss of generality we may assume o =1 (modulo k). But
since a = Sup{a € *4,]|a < a}, ¢+, < @. This contradiction completes
the proof.

V. Premeasures. The work of the preceding section immedi-
ately gives rise to a large number of examples of premeasures.

DEFINITION AND ExAMPLES V.1. Suppose a €*N/*N.
Let &, be the set

&.={AS Nlaer(A)}.

It is an immediate consequence of Lemma IV.8 that &, is a pre-
measure.

Notice, for example, that &, is the maximal premeasure of all
infinite sets.

Premeasures of the form &, have two additional interesting
properties.

DEFINITION V.2. Suppose A, BS N; A={e,aqa, ---}, B=
b, b, -}, e, <@, < --+, by < b, < ---. Then B is said to be dense
wn A iff v [a,, a.+) N B+ @.

Suppose & is a premeasure. & is said to satisfy property
(B) iff

(B) VAe®, BC N if B is dense in A then Be &.

Suppose & is a premeasure. & is said to satisfy property
(F) ift

(F) VA, A, -, A&, ANAN---NAEZE .

The following examples show the properties (E) and (F) are in-
dependent of the defining properties (A)-(D) for premeasures.

ExAMPLES V.3.
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(i) Let s, s, --+ be an increasing sequence such that

Let
A = G [82'",—19 Szn) n N
B

= U [S‘Z'M 82n+1) n N .

n=1

Notice as n— || A4,]|/n fluctuates back and forth between close to
zero and close to 1 and that ||B,||/n =1 — ||4.]|/n. Choose an in-
finite v € *N such that ||A,||/v ~ 1/2. Hence ||B,||/v ~ 1/2.

Let & ={E < N|||E,||/v # 0}.

Hence A, Be &;.

But AAB=1{s, s, +--}¢ &.

Thus & does not satisfy Property (F).

However &} does satisfy Property (E) since D dense in C
implies V n || D,|| = ||C,||.

(i1) Choose an infinite v€ *N. Let

& = {AZ N|3ee*A, |e— »*| is finite} .

In particular the set A =1{1,4,9,16, ---, %% ---}€&.
Let B=1{2,6,12, ---[a,+; + a,})/2, ---}.

Then B is dense in A but B¢ & .

Hence & does not satisfy Property (E).

On the other hand & does satisfy Property (F).
Suppose A, A,, -+, A, €&, C=ANAN--NA,.
C={e,ec -}

Let ¢, be the largest element of the internal set

{e;e*Cle, < v} .

If |e; — »?| is finite Ce & and we’re done.

If |e, — »?| is infinite we may assume without loss of generality
that ¢, e *A,.

Hence ¢,,, is the least element of *A, wihch is greater than c,.
But *A, has an element b such that |b — »?| is finite. So |e;+, — ¥?|
must also be finite. ‘

This brings us to the following representation theorem for
some premeasures.

THEOREM V.4. Suppose & is a premeasure. Then there exists
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an a€*N\*N such that & = &, if and only if & satisfies Pro-
perties (E) and (F).

Proof.
(=) By Lemma IV.9 &, satisfies Property (F).
Now, suppose A€ &, and B is dense in A. Since A¢ &,

a = Sup{ac*Ala < a}

and since a ¢ *N, {ee*A|a < a} has no last element. Thus since B
is dense in A

a = Sup{be *B|b < a}

so Be &, and %, satisfies Property (E).
(=) (i) Claim. Property (E) implies that vBe%, vS¢ &,
vneN

3k[by, b)) NS = O .

Proof. Suppose no such k exists. Then S is dense in each of
the sets B, = {b;, bysn, Dyiom, -} 1=1,2, -+, m

But B= B, UB,U---UB,.

Thus 34 such that B, e & .

But now Property (E) implies Se& contradicting S¢ & and
completing the proof.

(ii) Claim. Suppose B, B,, ---,B,€& and S, S, -+, S, ¢ &.

Let B= B AB,A---AB, = {b, b,---}.

Let S=S,UuS,U---US,.

Then Vpe N 3g such that [b,, b,.,)NS = &.

Proof. By Property (F) Be% and the claim follows from (i).

(iii) By saturation choose a *finite set {B, B, ---, B} & *&
containing *B for every Be & .

Also, by saturation choose a *finite set

{S,, S,, -+, Si} S *(P(N)\&) containing *S for every S¢ & .
Let
B =B, ANB,A-++AB,
and
S=81U82U"'U81.

Let B=1{b,b,, ---} with b, <b, << --- .
By *(@ii) 3¢ such that

[0, 0,6, M) NS =@
where A = V%,
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Let a = Sup{b,...|n € N}.

Claim. & = &,.
Notice, first if T¢ & then *T < S and hence

[6,, 0, M) N*T =@ .

So a = Sup{te*T|t < a} < b,.

Thus, &£, S &.

Conversely, suppose T'e &. Thus for some p, *T = B,.
But for each =

B, N[04y bystarn) # D .

Hence o = Sup{zr e *T|x < a}.
Thus, Te &, and & & &,.
This completes the proof.

LEMMA V.5. Suppose & is any premeasure. Then there exists
an o €*N/N such that &,< & .

Proof. If S¢ & then Sis not universally big so Sup(s,.,—s,)= .
Hence there are infinite v, » € *N such that
[,y +NIN*S= 0.

Hence, if S, S,, -+, S,¢ & then there are infinite v, A€ *N such
that [y, vy + AN S, US,U---US) = @ and by a straightforward
saturation argument there exists an infinite », » € *N such that

vSe [y+Aln*S=90.

Let a = Sup,ex v + 7.
Then S¢ & implies S¢ &, so that &,Z &, completing the proof.

COROLLARY V.6. Suppose & is a minimal premeasure. Then
(1) there is a a€*N/*N s.t. & = &,.
(ii) & satisfies Properties (B) and (F).

Proof. Immediate.

ExampLE V.7. Notice Properties (E) and (F) do not imply & is
minimal since &, has properties (E) and (F) and is not minimal.
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