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A PROBABILISTIC PROOF OF THE GARNETT-JONES
THEOREM ON BMO

N. TH. VAROPOULOS

I give a probabilistic proof (via Brownian motion) of the
real variable Garnett-Jones Theorem, which states that there
exists some constant C,, depending only on the dimension #,
such that for all f€BMO (R") in the John-Nirenberg class 1
we have distance (f, L”) < C, (the distance being measured in
the BMO norm).

0. Introduction.

0.1. Statement of the theorems. Let fe Ll (R") (n=1). We
then say that feBMO (R") if:

0.1.) sp - |17 = filde = |1 F o < +o0

I in the above expression runs through all cubes with sides parallel
to the axes, |I| denotes the Euclidean measure of I and

f,=|—}l-81fdx.

It is well known that if fe BMO then there exists some a > 0
such that:
(0.1.2) sup 1 S e idy < 4 o0

r [I] )

where I runs through the same collection as above. Let us denote
by a, = a,(f) > 0 the supremum of all a’s for which (0.1.2) holds.
a, can then be used to estimate the distance of f from L~ in BMO.
More precisely we have the following theorem which is due to John
Garnett and Peter Jones [4].

THEOREM (G.J.). There exist two constants C, C, > 0 that only
depend on the dimension n such that for all feBMO (R™) we have

G <inf || f— dllao= & .
o, YeL® @,
In this note I propose to give a probabilistic proof of the above
theorem that goes via Brownian motion. To state the relevant
theorem from probability theory I shall need to introduce some
notation.

201



202 N. TH. VAROPOULOS

Let (2, &, P) be a probability space; for any subfield zc.& 1
shall denote by E(f//Z) the conditional expectation of fe L'(2) with
respect to the subfield 2. Let now (&, C.# ;¢ = 0) be an increasing
family of subfields (¢, < t,— .7, C.#;) such that U .7, = 7, and
for any fe L'(2) let us denote

(0.1.3) fo=Efll7) t=z0.

I shall make the following hypothesis on (2; & ; .5, t = 0; P) which
will be assumed to be verified by all the spaces that we shall consider
in this paper.

Hygothesis (H). For all fe L'(2) there exists a family of func-
tions (f, e L'(2),t = 0) such that:

fi= f: a.s. on Q2
for all ¢ = 0, and such that for almost all w € 2 the function
t— ft(w) ’

is a continuous function of ¢ = 0.

The above hypothesis requires that the L*-martingales with
respect to the subfields (&, ¢ = 0) should all have “continuous paths”.
This hypothesis, as we shall see, is widely verified in nature.

Let now 2 be as above and let feL'(2). We then say that
e BMO () if there exists a constant K > 0 such that

Ellf-flll#l=sK, tz0.

The Garnett-Jones theorem then has the following probabilistic
analogue.

THEOREM (G.J. Prob.). Let 2 be a probability space as above.
Then there exist two constants C,, C, > 0 such that for all fe BMO (2)
we have:

G

0

&[N

< inf [[f— ¥l =
Y€ L*®

where , 18 the supremum of all a = 0 that satisfy
sup [| B~/ /|57l < +<o .

The above theorem, in fact, holds for all martingales, i.e., with-
out the restrictive hypothesis (H) (with an appropriately modified
definition of BMO). It is only for simplicity that I introduced the
hypothesis (H) and also because this is the only case that we shall
need for the applications.
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The above theorem in its “diadic martingale” (Paley-Walsh)
version was known to J. Garnett even before they (together with
Peter Jones) proved the general real variable theorem (G.J.).

My proof of Theorem G.J. Prob. is directly inspired from
Garnett’s original proof which is unpublished and which he gratiously
put at my disposal.

The plan now is to prove Theorem G.J. Prob.; this is done in
§1 and then to deduce from that Theorem G.J. This is done in §2.
Before that however in the remainder of this paragraph I shall
recall some standard facts and some notation of probability theory
and on BMO (R").

0.2. Notations and facts of probability theory. Let (2; % ;. Z,,
t = 0, P) be as above. We then say that 7, a nonnegative (possibly
+0), r.v. is a stopping time if for all ¢ = 0 we have:

[T =tles,; t=0.

With a stopping time T we can associate then &, a field of events
(the events prior to T) defined by

Ae g, — AN[T<tlez;; t=0)

Observe that for two stopping times T, < T, we have 7, & .7,.
Let now feL'2) and let f, (¢ = 0) be as in (0.1.83) and let us
suppose, by hypothesis (H), that we have already taken representa-
tives of f, such that the trajectories f,(w) are continuous in ¢ (a.s.
we ). Let us finally denote by f, = f. For any stopping time T

we then have

(0.2.1) fr=E(f[[Z7) .

(fr)(w) is of course defined to be fr.,(®@). The above is a basic fact
of Martingale theory (cf. [10], IV. 5.5).

We shall finally find it convenient to adopt also the following
abusive notation

E(f/IT) = E(f/|Z7)
for any fe L'2) and any stopping time 7T and also
E(A|Z) = E[I(4)/|Z]

for any event AC 2 and any & C.&# subfield of &, where I(A)
denotes the indicator function of A.

Let now feBMO (2); there exist then positive constants such
that
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(0.2.2) El|f - flllZ:] = K,
(0.2.3) Ele?/~7[| 7] = K,

(0.2.2) is the definition of BMO (2) and (0.2.3) is the John-Nirenberg
theorem which also holds for continuous time martingales (ef. [9],
p. 348. The proof is in fact even easier for continuous time!).

Let then T be a stopping time and feBMO (Q). It is easy to
verify that if f satisfies (0.2.2) then

El|f — f21/]T] = K,
and if f satisfies (0.2.3) then

Efe"/~1/|T] £ K, .
Let us also denote by

p=f"=f—Jr;
we then have:
(0.2.4) [p#01CIT < +e]

and it is easy to verify that if f satisfies (0.2.2) for some K, then
@ = f7 satisfies (0.2.2) also with the same K,. Similarly if f satisfies
(0.2.3) for some K, then @ = f” also satisfies (0.2.3) with the same
K,.

The standard way to prove all the above assertions is to verify
them first under the additional assumption that 7 takes only finitely
many values, and then to write a general stopping time 7T as the
limit of a nonincreasing sequence of such special stopping times.

One final fact will be needed:

LEMMA 0.1. Let fe L'(2) and let us suppose that for all ¢t =0
there exists a, € L'(2) which is measurable with respect to the subfield
F, and which satisfies

E[|f—a.)/[7] = K

for some comstant K. It then follows that feBMO (2) and that
I1f llewo = 2K.

The proof is obvious.

0.3. Notations and facts from real wariable theory. Let z =
(x, y) e R*"', x€ R*, y > 0 and let us denote by

_ yf(t)dt
(0.3.1) P.f=c, Stek” W + ||z — t|H=ore
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the Poisson integral of fe L, (R") evaluated at z, i.e., the value at
z of the harmonic extension of f on the upper half space (this under
the assumption that the integral in (0.3.1) converges absolutely (ef.
[11]). Let then fe BMO (R"*); it is an easy matter to verify that:

(0.3.2) sup Pl f— P.f]] < +oo.

n
zeR+

This fact is well known.
What is perhaps a little less evident is that if fe BMO (R") and
a > 0 are such that (0.1.2) is verified then:

(0.3.3) sup Plef'/~F] < +, VR<ZX.
n

zeRZ"(fl

Observe that the situation both in (0.3.2) and (0.3.8) is dilation and
translation invariant and this means that we can suppose that z =
1 =1(0,1). For z =1 then the proof of both (0.3.2) and (0.3.3) is
based on the following elementary inequalities that will be stated
without proof.

PF < CYS, 2 @i S Fda, - - dx,

izl EIELY

for all F = 0 where C is a constant that only depends on n.

WP.f — fu,ll = Cll f llewo

for all fe BMO (R") where I, is the unit cube of R” centered at the
origin and where C is as above.
Finally if fe€ BMO satisfies (0.1.2) for some a > 0 then

e I=r1 < Kl___{l_
R

for any two cubes I and J with sides parallel to the axes such that
IcJ where now K depends both on » and on a.

The proof of both (0.3.2) and (0.3.3) can now be supplied by the
reader (I hope).

1. Proof of Theorem G.J. Prob. In this paragraph we shall
fix once and for all a probability space (2, &, P) and (&, t=0) a
family of subfields that satisfy the conditions introduced in § 0.1, in
particular hypothesis (H).

1.1. Graded sequences of stopping times. Let 0=T, =T, =---Z
T, < --- be a nondecreasing sequence of stopping times. We shall
say that the above sequence is v-Graded for some 0 < v < 1 if
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E[(Tir, < +)//Ti]=v; i=0,1,--

We have then:
PrROPOSITION 1.1. Let 9 = (T;1=0) be a Y“-Graded sequence
of stopping times for some 0 < v <1 and some positive integer m.

There exists them = (S;;1=0) a v-Graded sequence of stopping
times s.t. T; =8,;, 7=0,1, ---.

The above proposition follows immediately from the following.
LEMMA 1.1. Let v and m be as in Proposition 1.1 and let R < S
be two stopping times on £ s.t.
1.1.2) E[(S < +)/|[R] =™ .

There exists them a sequence of stopping times (T,,©=20,1, ---, m)
s.t.

1.1.3) R=T,

IA

Tl Tm = S

A
A

a@d
(1.1.4)  E[Ti < +)/|T1<v; i=0,1,---,m—1.
Proof. Let us denote:
fi= B8 < +)[57], t20; fo=f=IS< +];
and let us define stopping times:
T, =inf{¢; f, =y ; 1=1,2,-+-,m—1.

The claim is that R =T, T\, - -+, Tpn-,, T = S satisfy the conditions
of the lemma. Indeed (1.1.2) and (0.2.1) imply that

e Ss = I(8 < + o)

and this implies (1.1.3) at once. On the other hand the definition of
the T’s and (0.2.1) imply that:

E(f))T) = 7T, < +=]; i=12-,m—1
E(f/|T) < vIITo < +-].

If we substitute the above in the relation
E(f/|T) = EIE(f/|T:+)//T); 1=0,1,---,m—1
we obtain:

Y E(Ton < +00)/[T] = v I T, < + 0]
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1=0,1, ---, m — 1; this proves (1.1.4) and completes the proof of
the lemma.

1.2. Graded Functions. Let feL'(2) and 0 < v < 1. We shall
then say that f is a v-Graded function if there exists a v-Graded
sequence of stopping times (T;; 1 = 0) s.t.

F=35NT < +=].
We have then:

ProrosiTiON 1.2. If fe L'(R2) is a v-Graded function then f € BMO
and ||fllswo = 2/(1 — 7).

Proof. Let (T;;1 = 0) be a v-Graded sequence of stopping times
s.t.

F=3SIT < +].

Forallt=0and »=0,1, --- let us then define
;= > KT, < +eo)

1215 Tyt
Xr={wel|T, £t, -+, T, =t, Tpy, > t}.
The following facts are then clear (cf. (1.1.1)):
1.2.1) [a, = n] = X e 7, ; t=0, n=20,1,2 ---

(1.2.2) P(y XZ”) =1; ¢=0.

For all » =1 and ¢ = 0- we also have
Ellf — a.|//Z HXE) = E[| f — a,| (X?)//F (X
= B| (3 KT, < +) X)) |1

= E{B[(3 11 < +o)/[1. ][} 1y

because T, >t on X7, and because X7~ = [T,-, < t]N[T, > t]e #7,.
But:
23  E[(SKT, < +=)/[1.|= S BT, < +)T.]

1
1—v

Sl+v+7+ - =
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a direct substitution of (1.2.3) into the previous relation, together
with (1.2.2) implies therefore that:

1

Bl f - al/j57) S 7=

and this together with Lemma 0.1 (which can be applied here because
of (1.2.1), completes the proof of Proposition 1.2.

The above proposition admits a converse which presents some
independent interest.

THEOREM 1.2. Let F be a real valued function in BMO (2) and
let «a > 0 and K be such that:

Elexp (a|F — F,)/|#1=K, t=0.

Then for all » = M(a, K) [some explicit positive function of a and
K that will be determined in the proof] there exists a decomposition
of F

F =0+ — Ao~ + ¥ + E(F)

where ¥ € L=(2) and ||V ||« £ N and where the two functions O+ and

O~ are e~ ***~-Graded on 2.

The proof of the theorem depends on the following elementary
but fairly lengthy combinatorial:

LEmMMA 1.2. Let 0 <v < 1/2 and let
0=T=T=---=T,=--
be a mondecreasing sequence of stopping times; let further
A, ST < +oo]; A e Fy, t=1,2 ---
be a sequence of events s.t.
EA./IT) =7; 1=0,1, --
Then the function
F= ﬁ; I(4)
ia a v/(1 — 7v)-Graded function.
Proof. (cf. Addendum for a simpler proof). The proof will re-

quire a number of notations.
Let us denote by _% (n = 1) the set of increasing multi-indices
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ie., Ie 7 if
I:‘(il"ib""'in); 1§7:1<7:2<"'<7:”.

For Ie. % as above we shall denote by m(I) = 1, its largest element
and for any », 1 £ < n we shall denote by

I =@, i) €S

the multi-index obtained by truncating I at r.
For every fixed n we shall give to .7 its lexicographical total
order i.e., for I, Je. % we shall say
I:(i” ...’fi”) < J = (_7'1, ...,j“)

if for some r,1 <7 <n wehavei, =73, ---, %,_, = J,_y, i, < J,. For
every fixed Ie._Z let us then denote by:

A= DIAi s X, = AI\ '¢LJI Aj

igﬂ'(l)
and for all m =1 let us denote by

B,,,= UAI'

Iery

It is evident that for all J, J < I we have
4, U 4;.
I

LJE
jsm(I)

This implies that the sets {X;; Ie_%} are disjoint. On the other
hand:

(1.2.4) B,= U X, (disjoint union) .

Ie sy

Indeed let @ € B, and let I be the first multi-index in _# (first in
the order of %) such that

weA,.
It is then clear that for all j¢1I, 7 < m(I) we have:
w¢A;.

For if we A; for soxhe such j we could then construct a multi-index
I’ e 7, that is strictly smaller than I and s.t. w€ A;.. The above
sets satisfy:

(1.2.5) X € Frnn
(1.2.6) - X,cX;,; va,r, 1<r=n; Vlie .
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(1.2.5) follows from the hypothesis and the definition of the X,’s.

To prove (1.2.6) observe that we always have:

1.2.7 X;CA; , vn,r, 1<r=n; Vle 7.

But also if we fix I = (4, --+, 1,) €%, and some 7, 1 = » < n ‘then
XiNA; =0, viel,, j=t1,

by the definition of X;; this together with (1.2.7) implies (1.2.6).
(1.2.6) and the fact that the X,’s, I €. % are disjoint implies: that

(1.2.8) B,,NX; = U X n=1l, Ie 7.

Je‘/n-i'l: I =1
For every fixed n = 1 let us now define a r.v.

Tan(@) if weX,, Ie

S, (@) =
@ =1} if weB,.

It is clear then that:
(1‘2-9) [Sn < + OO] = Bn ; [S'n g t] = U [XI m (Tm(l) g t)] .

1€,

From this and (1.2.5) it follows that S, (m = 1) is a stopping time.
On the other hand if 1 < » < ¢ and if w € B, there exists a unique
Ie 7 s.t. we X; but this implies that w € X; by (1.2.6) and there-

fore that:
Sq(w) = Tm(l)(a)) g Tm(Ip)(a)) = Sp(w)

so that we have:

A

0=5=8=---=8,
It is finally clear that
F = ]ZZII(A,-) = JZ{I(B,-) = ;:_}I(Sj < +0)

by (1.2.9); therefore to prove our lemma it suffices to show that:

(L210) &= B[S, < +0)//8,] S 5 = —5 m=0,1, .-

Assume first that » = 1. We have then
(1.2.11)  &I(B,) = E[(S,+; < +)N(B,//S.] =0, (B, = 2\B,) .

On the other hand for every ﬁxed Ie 7 we have X,e % by
(1.2.9) and this implies that (cf. (1.2.8)):
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&I(X;) = E(Bn+1 N XI//Tm(I)) = Jegu E(AJ//Tm(I))

n+1
Tp=1

< 3 EAJTa) Sv 47+ oo =1

Ge=m )41 1—7

This together with (1.2.5) and (1.2.11) proves (1.2.10) for » = 1. For
n = 0 we have

f= B(B) = 35 B(X) S S BA) S v+ 7+ - = 17—

(1.2.6) therefore always holds. This completes the proof of Lemma
1.2.
We can now give the:

Proof of Theorem 1.2. Let «, K, F be as in the theorem and
let us choose 2, s.t.

Ke (1 — Ke )™ < e YA 2= A -

Let also > )\, be fixed. We shall determine then a sequence of
stopping times

O:ToéTxé"'

A

T,

A

and a sequence of functions
F9eLY(Q); i=12 -
by the following relations:

F® = F — E(F)
T, = inf {t; | F{"| = \}
‘F(i—H) — F(i) — E(F(i)//TZ)

for:=1,2, .--.
It is clear that:

Fi+w = o e

and this implies that F™ =0 if ¢t £ T, so that the sequence of
stopping times (7T; % = 0) so constructed is indeed increasing. By
the remarks made in §0.1 we then have:

Elexp (@|F® — FP)/[Z]1 = K
Elexp (| F?))//T;..] = K

forall 1=1,2, ---.
By Jensen’s convexity inequality we also have:

(1.2.12)
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Elexp a| F?|/|T;] = exp [aE( F“|/[T)]

= expa|E(F?/[T)| = exp a| F{)
= eI[T, < +o°].

This implies that:
Elexp (a| F*))/|T:-] = E{E[exp (| F*))//T.)/| T:-:}
= ¢ E[(T: < +)//T;:-;]
and this together with (1.2.12) implies that
E[(T; < +)/|Ti ] £ Ke® =17 1=12 ---

i.e., that the sequence (T;; ¢ = 0) is 7-Graded, (v < 1 by our hypothesis
on \).

We shall need the following further facts about the above
funections

(1.2.13) F» ——0

N — o0

(1.2.14) SSFOIT, = +]| Sn;  n=12 -

(1.2.13) follows from the fact
[F(Z)VEO]C[T¢_1<+°°]; i=1,2,"‘

[ef. (0.2.4)] and the fact that the T,’s are v-Graded. To prove
(1.2.14) observe that the general term of the summation is

a; = F(TiZI[Ti = +oo]
and satisfies

[a; # 01T = +o] N [Tiey < + 0]
so that a,a; = 0 for all 7+ 5. (1.2.14) then follows from the fact
|F] = n

(by the definition of T).
We can now complete the proof of our theorem. Indeed we
have

F — Zﬂl E(F(i)//T,:) + F('n—i—l) _I__ E’(F)

for all » = 1. Letting % — o and taking into account (1.2.13) we
obtain therefore that:

F =3 FQIT, < +]+ ¥ + EF)

i=1
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where:
T — ;F;?I[T,- = 4 oo]

and where [|7||, <) by (1.2.14).

Let us then set

Ap = {w; T(@) < +oFf) =)}
A7 = {0; T(w) < +Ff) = =)}

0t = S I(47); 07 = S I(47).

It then follows that:
F =0t -0~ + ¥ + E(F).

The sets (47;%2=1) and (A:7;%=1) on the other hand satisfy the
conditions of Lemma 1.2 for the stopping times (T;%=0). The
Lemma 1.2 and the choice of \, therefore implies that the two funec-
tions @+ and @~ are e *¥*-Graded. This completes the proof of the
theorem.

1.3. Proof of Theorem G.J. Prob. We shall need the following.

LEMMA 1.3. Let 0 < v <1 and m a positive integer. Let also
D be a v"-Graded function. Then there exists @ a v-Graded function
s.t. @ — (1/m)O® e L™.

Proof. Indeed if 9 = (T;1=0) is a v"-Graded sequence of
stopping times such that

and if by Proposition 1.1, .= (S,; 1 = 0) is a v-Graded sequence of
stopping times such that S,;=T; (j =0,1, ---) then clearly

oL <+ =1,
m i=1

This proves the lemma. We shall now give the:
Proof of Theorem G.J. Prob. Let F eBMO (2) and let us suppose,

as we may, that F is real, that E(F) = 0 and that « > 0 an K are
such that

E(exp (@|F — F.)/[#) =K, t=0.
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Let us fix some M = M(a, K) (M(a, K) is the function defined in
Theorem 1.2) such that Ma = m is a positive integer and let us
decompose

F=X0t — 0+ 7
as in Theorem 1.2. If we set then v = ¢ * we see that both the

functions @* and @~ are Y™-Graded; it follows therefore by Lemma
1.3 that there exist two v-Graded functions @+ and ©- such that:

o+ ___1_@+
m

<1; {q)+—l@—] <1.
m

This implies that:
m m

F-2er12g-—p_Log yLlgcp-
« a

and since by Proposition 1.2

_ 2 2V e
6+ MOy ¢ M é =
” [[BOH HBO 1_7 ﬁ.—.l
we conclude that d(F, L) the distance of F' from L~ in BMO satisfies
aF, L) <0
«a

which is the nontrivial inequality in Theorem G.J. Prob. This com-
pletes the proof.

2. Proof of the Garnett-Jones Theorem. I shall prove The-
orem G.J. in the setting of the unit circle (i.e., the periodic case
R mod (27)). The reason is that Brownian motion in the unit dise
has a natural starting point, namely the origin. The proof, of
course, readily generalizes to R" by considering Brownian motion
starting from some appropriately high level (cf. [2]; [9], p. 129 of
X) in R*". The reader who possesses some technique can do that
for himself without any difficulty, I am sure. (ef. Addendum for
an alternative approach).

2.1. Brownian motion in the unit disc. Let b(t), by(t) (t = 0;
b,0) =0, i =1,2) be two independent copies of standard Brownian
motion starting at the origin and let us denote by

2(t) = 2z, () = b,(t) + b,(t) el

which we shall call Brownian motion in the plane starting at the
origin, or simply complex Brownian motion. Let us also define
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., = {o-field generated by 2(s), s < t}.

It is then well known (cf. [5], [9], p. 286 of X) that the probability
space and the g-algebras that we obtain (2; .7 ; &, (t = 0); P) satisfy

the hypothesis (H).
We shall need to apply the Markov property so we recall here

some of the standard notations and facts of Markov processes (cf.
[6], especially 2.5). The way to define the Markov process underlying
complex Brownian motion is to set for 2 the space of all paths (and
not only the ones that start at the origin). In that space £ we have

then

0,: 2 — 2
the shift operator that is defined by [6.(®)], = ®.+,, [®.€C is the
position of the path @ at time a = 0]. A family of probabilities is
also defined (P,;aeC) on £ that is connected by the Chapman-
Kolmogorov Equations. (P, is the probability that controls Brownian

motion starting from a € C.) With our previous notations we have
of course P, = P. The Markov property of Brownian motion can

then be expressed by
2.11) E[Go(w)/]F] = ElGw], a=2; P, as.

for any bounded Borel function G on 2. E, denotes, of course, the

expectation associated with P, (cf. [6], §2.5).
We shall now define T a nonnegative function on 2 by

T = inf {t; |0,] = 1)

which is the hitting time of the path @ on the complemeht of the
unit dise D = {|z] < 1} and it satisfies:

(2.1.2) _ t+ T[0(®)] = T(w) on the set [T =¢]
(cf. [1], Chapter I, §10). We finally have z.(®) = @, (P, a.e.).
2.2. The link between Brownian motion and analysis. We shall
denote here by T = R(mod 2x) the unit cirele. Let us first define
M: C(T) — L>(2; P)
a linear operator by:
Mf=XeL*(®Q), X(®)=fru,(@); YfeCT).

Using the fact that the hitting probability of Brownian motion
on 0D = T is Lebesgue measure (P(z,¢ E) =1/2x Leb. measure of
E for all ECaD), it is easy to see that M extends to a mapping
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M: L*(T)— L*(2) (1 = p < +o0) and that || Mf|l, = || fll, (VfeL*(T)
Vp, 1 <p £ +). The main link between Brownian motion and
probability is supplied by the following fact. Let uweC(D) be a
function continuous on the closed disc and harmonic on D, and let
us denote by X = M(u|;,). We have then:

(2.1.3) X, = E(X/|57;) =u@@(T A1) .

This is but a variant of S. Kakutani’s celebrated theorem that says
that if “you compose Brownian motion with a harmonie function you
get a Brownian Martingale”; at any rate, for the above and other
information on potential theory ecf. [6], 2.19.

For v and X as in (2.1.3) we then have:

(2.1.4) [[sup X,||;10) = C||sup u(re®)

0=7r<1

JATY ]

This is a well known fact and is contained in [2] and [3]. With «
and X again as in (2.1.3) we also have:

(2.1.5) | X [lex0 @0 = sup P{lu(6) — u(2)|}

zeD

(2.1.6) sup || E(e®*~*t//.77)||.. < sup P,[ex*@-u=1]
12 o

zeD

for all @ > 0, P,J[f(6)] denotes here the Poisson integral of the funec-
tion f = f(6) (6 eT) evaluated at the point z e D.

Both the above inequalities follow from the following more
general inequality

2.1.7) sup E{Q[u(2(T)) — u(z(T A 0))/[.F:}

< max {Q)(O); sup P,(®[u(f) — u(z)])}

zeD

where @(¢) is a nonnegative continuous function of £ C. To prove
the above inequality observe that

E[0]].7.] = E{@[u(2(T)) — w(z(T A t))//.#}
= E{QI[T = t)//.%,} + O(OI[T < t] .

Let us then define G a function on 2, the space of all paths, by
setting:

G(w) = O[u(@rw) — u(@,)] .
It is then clear by (2.1.2) that on the set [T = t] we have
Gl0(@)] = Ou(z(T)) — u(z(T A t))]
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almost everywhere w.r.t. P, = P. We conclude therefore that:
E[9//7;] = max {9(0), E[G[0.(0)]//.7]} .
By the Markov property (2.1.1) we have on the other hand:
sup || E{GI0.@)V/ 7}l = sup | E(@) -

Observe finally that
E(&) = Po[u(®) — w(@)]; aeD
E,(G) =00); aelD

(cf. [6], §2.19). This completes the proof of (2.1.7).
Let us now define another linear operator (which was first
considered by B. Mauray in a recent article (cf. [8])).

N: L\(2; P)— LXT)
NF =f;  f0) = E[F|/z, = 6]

(i.e., conditional expectation w.r.t. the field generated by the r.v. z,).

Clearly N satisfies
INF|lory = || Fllzey 5 l1=p =+

We also have the following lemma which is due to B. Mauray [8].

LEMMA 2.2. There exists C > 0 some positive constant such that
for all FeBMO (2) we have NF € BMO(T) and

INFllsxo ) = Cll Fllzwo o -

Proof (B. Mauray). The proof of the lemma is based on the
classical Fefferman duality theorem between H® and BMO. Indeed
we have:

2w
2.1.8) 1£llwo = Csup ||" fpdo| 5 vfeL=(T)
where the supermum is taken over all @ € C(T') that satisfy

=1

L)

H sup w(re”)

where # is the harmonic extension of @ in the unit dise, and Cis a
numerical constant.
We also have:

219 EF-G) < c||s13p F,

. |G leyo 3
J2T0)

VFeL*2), GeBMO(Q)
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where C is again a numerical constant. The above two inequalities
are the essence of the duality theorem in its classical and probabilistic
variant (respectively) (cf. [3]; [9], VI, p. 132). "'Let now F e L~(2).
By (2.1.8) we have therefore:

2

(2.1.10) | NF|[syo ay < C sup Q—l—g NF¢d0'
¢ 21

0

where @ runs through the same set as in (2.1.8). But for a fixed
® in that set we have [cf. (2.1.9)]:

2.1.11) ]51%_5 NF@dﬁr = | E(F - M9)| < C|| F|lsxo @

sup (Mp),

JATE))

But from (2.1.4) we also have:

=C

Y2

(2.1.12) Hsgp (Mq))z‘

for some numerical constant. Putting together (2.1.10), (2.1.11) and
(2.1.12) we have a proof of the lemma. The two operators M and
N are related by:

(2.1.13) NMf=f; vfe LXT) .

Indeed the above is obvious if fe C(T) and continuity does the rest.

2.3. Proof of Theorem G.J. Let feBMO (T) and let us suppose,
as we may, that f is real. Let us also suppose that for some a > 0

sup-—l— S e f1ldh < + o
r |1 Js
where I runs through all the intervals of 7. Let us then denote
by X = Mf. It then follows from (0.3.3) and from (2.1.6) that
sup [| E[e" " "[|F ]l < 4005 VB<a.

Applying Theorem G.J. Prob. to X then we obtain

X=Y+2Z; YeL"; | Zllmo=2x.
(44

But then by Lemma 2.2 and (2.1.13) we have:
f=NX=NY+NZ=p+4; @ =NY, W= NZ
and

”@]lmé ¥l 5 {4 lBato (m) élg[ﬁ
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This proves the nontrivial inequality of Theorem G.J. and com-
pletes the proof.

ApDENDUM I. I am indebted to R. Durrett and to the referece
(who, incidentally may well be one and the same person) for the
following drastic simplification of Lemma 1.2.

Let us adopt the notations and the hypothesis of Lemma 1.2
imposing however the additional condition that the sequence {T; 7 = 0}
is v-Graded (with 0 < v < 1 arbitrary). For the use that we will
make of the lemma this is good enough. Let us define

n(w) =inf {1 = 1: we A}
and continue
N (@) = inf {T > n;(@); wc A} .

With the above notation it is then clear that the {S;, 7 = 0} that
were defined in the proof of Lemma 1.2 can also be defined by

Si:Tnj(w); .’]‘:1’2’

(with the convention T., = ), and that therefore:
F= il[sj< +oo].
=

So far, of course, this is but a notational improvement; what is nice

however is that under the above additional condition and with this

new notation it is almost evident that the {S;; 7 = 1} are v-Graded.
Indeed one can prove very easily that

[n; = kle 77, ; [n; = kle 75,
and conclude from this that
E[S;i, < +oof[Fs[n; = k]

= E[%5+L < +Oo, Tnj_H <+ OO//%,JI[’)’LQ = k]
< E[Tyi, < + oo/ 52, M[n; = b1 < 7

which concludes the proof of the lemma.

ADDENDUM II. I am indebted to the referee and to P. Jones
for the following.

REMARK. To deduce the Garnett-Jones theorem for R" (n = 2)
one can use the conformal mapping that mape R™ onto ¥, the unit
sphere. This mapping preserves BMO. To obtain the theorem for
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BMO(X,) one then has to consider harmonic functions in the unit
ball and Brownian motion starting from its center which is much
simpler then starting Brownian motion “at < in R*,

ADDENDUM III. The proof of Theorem 1.2 as given above can
easily be adapted to yield the following more precise result:

THEOREM 1.2'. Let F be a real valued function in BMO (2) and
let at, a= > 0 be two positive constants that satisfy

Sl:tlp {E(e"HF_F”//%), E(e‘“—(F_F”//%)} <K ae. wecQ

where K is a positive constant. Then for every N = N, [N, depends
on a*, a= and K] there exists a decomposition of F

F=\0"— A0~ + ¥ + EF)

where ||¥]|.. < N and where the two functions @+ and @~ are vt and
v~-Graded (respectively) with

vt = Ke* (1 — Ke*™)™1; 7 = Ke* *(1 — Ke* 9.

The reader can supply the details, I am sure. Observe however
that for the proof of Theorem 1.2" the full thrust of Lemma 1.2,
as given in the text, seems to be needed, and the simplification given
in Addendum I no longer seems to work.

Let now W = e’ be a positive function on £ (with fe L'(Q)).
We then say that We A, for some pe (1, + ) if

sup (|| Ee’~"/[. ) [lw [| Ele™ 0] F ) [} = oo

We also say that fe A, if there exists some K > 0 s.t.

Ee ]| 7))L K ae. wef
f—fi=z=—K ae wef
for all ¢t = 0.

Theorem 1.2 and the well known fact that for all We 4, (some
1< p< +) there exists some ¢ >0 s.t. W'*e A4, (cf. [12], [13])
imply the following probabilistic version of P. Jones’ factorization
theorem [13].

THEOREM (P. Jones Prob.). A weight W satisfies the A, condi-
tion, 1 < p < o if and only if

W = W(Wy'*
where W,, W,€ A,.
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The interested reader should look at [13] for the significance of
the above theorem.
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