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ASYMPTOTIC CENTERS AND NONEXPANSIVE
MAPPINGS IN CONJUGATE BANACH SPACES

TECK-CHEONG LIM

This paper concerns fixed point theorems for nonexpansive
mappings in conjugate Banach spaces. An example shows that
there exist fixed-point-free affine isometries on weak* compact
convex sets. Asymptotic centers of decreasing net of founded
sets in /! are shown to be compact and a common fixed point
theorem for left reversible topological semigroup of non-
expansive mappings in /' is given.

1. Introduction. Let K be a nonempty weakly compact con-
vex subset of a Banach space and T: K — K a nonexpansive map-
ping, i.e., ||T2z — Ty|| = ||z — ¥, 2z, ye K. A theorem of Kirk [10]
(see also Browder [1], Godhe [6]) states that if K has normal struc-
ture then T has a fixed point. Whether the condition of normal
structure is essential remains an open problem, although Schoneberg
[13] has shown that some weakenings of normal structure suffice.
With a slight modification of normal structure, Kirk’s proof of his
theorem also yields the following theorem in conjugate Banach
spaces.

THEOREM 1 (Kirk). Let K be a momempty weak* compact con-
vex subset of a comjugate Bamnach space and assume that K pos-
sesses weak™ normal structure (see Definition 1 in §3). Then every
nonexpansive selfmapping of K has a fixed point.

One major observation presented in this note is that the con-
dition of weak* normal structure in Theorem 1 is essential, even for
affine isometries. We also derive a sufficient condition for a con-
jugate Banach space to have weak* normal structure. In particular,
we show that [, possesses weak* normal structure. Asymptotic
centers of decreasing nets of bounded subsets in I, are shown to
form a normcompact nonempty subset and an application of this
result is made to obtain a common fixed point theorem for families
of nonexpansive mappings in [,.

2. A counterexample. Let ¢, be the space of null sequences,
equipped with the sup norm || ||, ||#|l. = sup,s; |®;], and I, the
space of absolutely summable sequences equipped with the norm
I, Hell, = e, |«,]. For each sequence z, let at and z~ be the
positive and negative part of x, respectively. Renorm ¢, by the
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new norm defined by
le] = lle*]le + |l27]| -

|-] is equivalent to [|-||.. since ||z||. < |2| £ 2]|%||l.. This method
of renorming was used by Bynum [4] to renorm [, 1 <p < .

LEMMA 1. The dual of (¢, |-|) is isometrically isomorphic to
€y, 1I-11) with the norm ||-|| defined by

2]l = max(||«*|l, |2~ .

Proof. Since || is equivalent to ||-||., the dual of (¢, |-]) is re-
presentable by [,. It suffices to show that

max((|f#ll, [1£-11) = sup {Swfis v ey 1o+l + llo~ o = 1}

for each f= (f,)el,. Note that the supremum on the right can be
taken over « satisfying the further requirment that x,f, = 0 for all
2. (If z,f, <0, replace x by another one with z, = 0.) It then fol-
lows that

gwi.ft = Nl [l + e llallf
= max (| /], 17711 -

For the reverse inequality, note that one can approximate ||f*||,
WNFND by Do, «:.f: by suitably choosing #; =1 or 0 (—1 or 0).

ExAMPLE 1. Let K = {(x;) el 2, =0, S, ¢, =1}. Kisa weak™®
compact convex set in (I, ||-||) since it is the intersection of the
unit ball and the weak* closed set {(«;):x;=0}. Let T: K— K be
the mapping defined by the equation

Ty = <1_§_‘1’% @, Ty - -, Ty )
£

for x = (x,) e K. We show that T is an isometry. Let z, y € K and
letI={ieZ+:2,—y,=0tand J={jeZ+:x; —y; <0}. Assume that
Ser® — Yi = Djes Y5 — ®;. Then ||z — y|| = 3, @ — ¥y, and
[|Tx — Ty|| = Hgl. (Y — @), @ — Yy %, T — Yoy H
= ILé(yj—xj)—ieZl(xi—yi), L= Yoy s Ty — Yy ol
= max(3. @ — Yy 2% — o)

=2 — vy = lle—yll.
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Similarly, we also have || Tx — Ty|| = ||x — || in case S, 2, — ;=<
Sijes¥; — x;. Hence T is an isometry. T is clearly affine and fixed
point free. Further properties of K and T are listed in the fol-
lowing:

(1) lim||ly — T"z|| = Diam(K) = 1, y, z € K.

(2) K does not possess weak* normal structure. This is neces-
sarily true by Theorem 1 and the above demonstration.

(8) T"x converges weakly* to zero for each z € K.

(4) K itself is a minimal T-invariant weak* compact convex set.
Indeed every T-invariant weak* comyact convex subset C of K must
contain 0 by (3). Hence T"(0) =e,€C for all n. Therefore K=
Co({e,} U{0}) = C and C = K.

The above example shows that the condition of weak* normal
structure cannot be removed from Theorem 1 even if the nonexpan-
sive mapping is an affine isometry. In contrast, every affine non-
expansive selfmapping of a weakly compact convex set always has
a fixed point.

3. Conjugate Banach spaces having weak normal structure.
In this section we derive a condition for a conjugate Banach space
to have weak* normal structure.

DEFINITION 1. A weak* closed convex subset C of a conjugate
Banach space is said to have weak* normal structure if every weak*
compact convex subset K of C containing more than one point con-
tains a point «, such that

sup{||z, — ¥|:ye K} < diam K .

In the following theorem, R* = {r € R:r = 0} and the notation
z,— y will denote the weak* convergence of z, to ¥.

THEOREM 2. Let X be a the conjugate space of a separable
Banach space. Suppose that there exists a function o: Rt X R* — R*
satisfying the following conditions.

(1) For each fixed s, o(r, s) is continuous and strictly increas-
mg in v,

(ii) d(s, 8) > s for every s > 0,

(i) if 2, 20 and lim ||z, = s > 0, then

lim ||y — x|l = d(|yll, s) for every ye K.

Then every weak* closed convex subset of X has weak™ mnormal
structure.
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Proof. Suppose on the contrary that X contains a weak* closed
convex subset C which does not have weak* normal structure. Then
there exists a weak* compact convex subset K of C with Card K >1
and for every xc K

sup{||/x —y|:yeK}=diam K =d > 0.
By a method of Brodskii-Milman [3], there exists a sequence {z,} C K

such that lim d(x,+,, Co(%;):<,) = d. Since subsequences of {x,} share

the same property, we may assume that x, = z, for some 2, € K and
lim ||2, — %,|| =s. Clearly, s>0. For each fixed m, we have
lim, ||z, — «,|| = d. Therefore, by (iii)

d = lim [|(@, — @) — @ — @)l = 3(||2n — w]], 5) -
Using (i), d = d(s, s). Using (ii), we have s < d. We shall show

that sup{||z, — ¥|]: € K} < s. Suppose not, then there exists z€ K
with ||z — x,|]| > s. Then

lim ||z — .|| = lim [|(z — @) — (@, — @) ]|
= d(|lz — x], 8)
> 0(s,8) =d

by (iii) and (i). This is impossible. Therefore, sup{||z, — ¥|]: y € K}=
s < d, which again contradicts our initial assumption. Hence C has
weak* normal structure.

The next proposition shows that the spaces [,, p = 1 satisfy the
condition in Theorem 2 with d(r, s) = (»? + s?)»,

ProposiTION 1. In [, if T, — %, then for every yel,
(1)  limsup [z, — y|]” = limsup ||z, — =[] + [z — y| .
In particular, if lim ||z, — x|| exists, we have

lim [, — y|| = (lim [z, — «|” + ||z — y|]?)"*.

Proof. For »p =1, the equality is a special case of a more
general equality given in Proposition 2; see Corollary 3. For p > 1,
let J:1,—1, 1/g + 1/p = 1, be the duality mapping defined by

Jr = (o, ["*sgnw, .-, |2, > sgnw,, ).

J is weakly continuous and {Jx, 2) = ||«||?, see [2]. Since J is the
subdifferential of the convex function f(x) = 1/p||z||”, we have

1
Sz = wllr = iz, — alP + | o — 2+ o~ v), @ — y)at
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(Gossez-Lami-Dozo [7]). Therefore

lim sup ||z, — y||* = limsup ||z, — || + » Slt""l |l — yll*dt
0
= lim sup ||z, — z|]” + ||& — y|” .

Proposition 1 and Theorem 2 implies that every weak* closed
convex subset of I, has weak® normal structure. Note that such a
set may not possess normal structure. For a simple example, let C
be the unit ball and K = {(x,): 2, = 0, 3.2, 2, = 1}. Then K is closed
convex and sup{||x — ¥|]: ¥y € K} = diam K = 2 for every x ¢ K. Com-
bining this result with Theorem 1 we have the following result of

Karlovitz [9].

COROLLARY 1 [9]. Let K be a weak™ compact convex nonempty
subset of I, and T: K -— K be a nonexpansive mapping. Then T
has a fixed point.

4. Asymptotic centers in [,.

DEFINITION 2 [12]. Let C be a nonempty subset of a Banach
space X and {B,: @ € A} a decreasing net of bounded nonempty sub-
sets of X. For each xc€C and ac4, let

ro(x) = sup{||lx — y|[: v € B.} ,
r(x) = lim 7,(x) = inf 7,() ,

and
r = inf{r(x): xeC} .
The set (possibly empty) ¥ & ({B..acd}, C) ={xeC:r(x) = r} and

the number » will be called, respectively, the asymptotic center of
{B,: a € A} w.r.t. C and the asymptotic radius of {B,: « € 4} w.r.t. C.

PROPOSITION 2. Let {B,:ac A} be a decreasing met of bounded
subsets of 1, and vy, a weak® convergent sequence with weak™ limit
y. Then

lim sup{||y — @||: ® € B,} + lim sup ||y, — ¥||
= lim sup lim sup {||y, — «||: x € B,} .

(2)
Proof. For xzel,, we shall denote by x the ith coordinate of

By the triangle inequality, we clearly have the inequality = in
(2). By a simple diagonal process, we may assume that {B,: a ¢ 4}
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is a decreasing sequence {B,: » = 1} of bounded sets. Choose x, € B,
such that limsup ||y — «,|| = lim sup,{/ly — z||: xe B,}. It follows
that it suffices to prove the following inequality:

limsup ||y — @,]| + lim sup ||y, — || < lim sup lim sup ||y, — 2. .
We may also assume, without loss of generality, that vy = 0, and
that lim ||z,]||, lim ||¥.||, and lim, lim sup, ||¥. — .|| exist.

Let » = lim,, lim sup,, ||¥. — %,|] and %k = lim||y,]|]. Suppose, on
the contrary that lim||x,||=7 —k + p for some p>0. Let p>

€>0. Let m, N, and M, (N, and M, depend on m,) be sufficiently
large integers such that

5
1Ymllzh —

S lyelsE

Vi1 8
Hwn—ymlHéTﬂL—Z—,

and

IIx,,Hg'r—k—l-p—i-, for all == M,.
Then for n = M,, we have
] ymln~21wm yml + 3 led — i

> Z I,y(li) Z Ix(z)l _+_ Z Ix(i) Z ly(z)

= 1 — 253 1982 + 1]l — 23 10

>p—-° & — k ____2 N
=k y 4+7’ + 1 ZIx

Hence

z:!x‘“f>§<p~e>, n=M,.

Since y, = 0 there exist m, N, > N, and M, > M, (N, and M,
depend on m,) such that

Zly‘”} =

b

10

[
PHEVESS
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() S ,
Z‘, Y _.—-—0

&

2 = Ymll =7+ =

and

H%H%T—k—i-p—%, for n=M,.

Then for n = M,, we have

rb Szl = v = S0 — v+ X e — v+ 5 2
Ny
Zg.lxif’ Zly‘”l + Zly‘“l - Z. [
+ S0l = 5l
= | Ym,ll — 25_11?/“’ 2 Zly“’
+ @, — 2 le‘”
Zk——f——-—s——— —k ..___2 (1)
sh-g Ty TptroetrTy %;1190
Hence
No
S ad | = -—(p—s) for n=M,.

Nl

Continuing in this way, we obtain two sequences M, < M, <---
and N, < N, <--- such that for » = M,,
N

> el = (p—s), N,=0.

Nj—gtl

Thus for n = M, ||x,|| = >7* x| = k-1/2(p — ¢). This contradicts
the boundedness of the sequence x,.

COROLLARY 2. Let z, be a bounded sequence in 1, and y, > y.
Then

lim sup ||2, — y|| + lim sup [|¥, — y|| = lim sup lim sup [[x, — ¥, .
COROLLARY 3. Proposition 1 for p = 1.

THEOREM 3. Let C be a weak* closed convexr monempty subset
of I, and {B,: e A} a decreasing met of bounded nomempty subsets
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of C. Let the function r(x) be defined as in Definition 2. Then
for each s=0, {xeC:r(x)<s} is weak® compact convexr and the
asymptotic center of {B,: a €A} w.r.t. C is a nonempty (norm) com-
pact convex subset of C.

Proof. Let K, ={xeC:r(x) <s} and let K be the asymptotic
center. Clearly, diam (K,) < 2s. Since 7(-) is a convex function,
K, is also convex. To show that K is weak* compact, it suffices to

sohw that K, is weak* closed. Let y,e K, and v, >vy. By Prop-
osition 2.

(3) »(y) = lim sup »(y,) — limsup ||y, —y|| = s.

Hence ye K, and K, is weak* closed. Suppose now that s =1,
where » is the asymptotic radius of {B,: a € 4} w.r.t.C. If »(y,) =1,
then we must have limsup |y, — y|| = 0 for otherwise 7(y) <7, a
contradiction to the definition of ». Therefore, for a sequence in
K, weak* convergence implies norm convergence. Hence K is com-
pact. Since K = N{K,: K, + @} and each K, is nonempty weak™
compact, we have K #+ @.

COROLLARY 4. Let C be a weak* closed convex subset of I, and
D a nonempty bounded subset of C. Then the Chebyshev center of
D w.r.t. Cis nonempty compact convex. In particular, for any
two points x and Yy, the set {zel;: ||z — x|l = ||z —y|| = 1/2]|x — v]]}
s compact.

Proof. If we let B, = D for every a € 4, the asymptotic center
of {B,: a € 4} is the same as the Chebyshev center of D.

We conclude this section by giving an application of Theorem
3. Let K be a set and S a semigroup of selfmaps of K. 'S is
said to be a topological semigroup if S is equipped with a Hausdorff
topology such that for each a €S, the two mappings from S into S
defined by s — as and s — sa for all se S, are continuous. S is said
to be left reversible if any two nonempty closed right ideals of S
have nonempty intersection (cf. [5, p.34]). If K is a topological
space and S a left reversible topological semigroup of selfmappings
of K suce that the mapping (s, x) — s(x) is separately continuous,
then S becomes a directed set if we define a =b if and only if
aS C cl(dS). Moreover, if for a fixed element u € K, we define W,=
cl(sS(w))) for all se S, then the family {W,: s € S} is a decreasing net
of subsets of K (see [8]).
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THEOREM 4. Let C be a weak® closed convexr momempty subset
of I, and S a left reversible topological semigroup of nonexpansive
selfmappings of C such that the mapping (s, x) — s(x) is separately
continuous. If for some xe€C, seS, sS(x) is bounded, then S has
a common fixed point in C.

Proof. Let W, be defined as in the last paragraph. By
Theorem 2 in [12], the asymptotic center K of {W,:seS}is a
S-invariant subset of C. By Theorem 4, K is a nonempty compact
convev set. Since a compact convex set has normal structure, by
Theorem 8 in [12] or Corollary 1 in [8], S has a common fixed point
in K.
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