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ASYMPTOTIC CENTERS AND NONEXPANSIVE
MAPPINGS IN CONJUGATE BANACH SPACES

TECK-CHEONG LIM

This paper concerns fixed point theorems for nonexpansive
mappings in conjugate Banach spaces. An example shows that
there exist fixed-point-free affine isometries on weak* compact
convex sets. Asymptotic centers of decreasing net of founded
sets in I1 are shown to be compact and a common fixed point
theorem for left reversible topological semigroup of non-
expansive mappings in I1 is given.

I* Introduction* Let K be a nonempty weakly compact con-
vex subset of a Banach space and T: K —> K a nonexpansive map-
ping-, i.e., \\Tx - Ty\\ ̂  \\x - y\\, x, yeK. A theorem of Kirk [10]
(see also Browder [1], Godhe [6]) states that if K has normal struc-
ture then T has a fixed point. Whether the condition of normal
structure is essential remains an open problem, although Schδneberg
[13] has shown that some weakenings of normal structure suffice.
With a slight modification of normal structure, Kirk's proof of his
theorem also yields the following theorem in conjugate Banach
spaces.

THEOREM 1 {Kirk). Let K be a nonempty weak* compact con-
vex subset of a conjugate Banach space and assume that K pos-
sesses weak* normal structure {see Definition 1 in §3). Then every
nonexpansive selfmapping of K has a fixed point.

One major observation presented in this note is that the con-
dition of weak* normal structure in Theorem 1 is essential, even for
affine isometries. We also derive a sufficient condition for a con-
jugate Banach space to have weak* normal structure. In particular,
we show that lx possesses weak* normal structure. Asymptotic
centers of decreasing nets of bounded subsets in lx are shown to
form a normcompact nonempty subset and an application of this
result is made to obtain a common fixed point theorem for families
of nonexpansive mappings in llm

2. A counterexample* Let c0 be the space of null sequences,
equipped with the sup norm || IU, HίcIL = sup^.\x t\, and lx the
space of absolutely summable sequences equipped with the norm
II Hi, 11$Hi = ΣΓ=i \$i\. For each sequence x, let x+ and x~ be the
positive and negative part of x, respectively. Renorm c0 by the
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new norm defined by

| | is equivalent to ||-IU since | | a | L ^ί l&l 2S 2 ||aj|U. This method
of renorming was used by Bynum [4] to renorm lp, 1 < p < oo.

LEMMA 1. The dual of (c0, | |) is isometrically ίsomorphic to
(K 11*11) with the norm || || defined by

Proof. Since | | is equivalent to \\-\U, the dual of (c0, | |) is re-
presentable by Z1# It suffices to show that

maxdlZ+lk, II/1L) = sup j j > j ; : xec0> ||»+|L + | | a r | L £ l}

for each / = (/<) e Zlβ Note that the supremum on the right can be
taken over x satisfying the further requirment that cc*/* ̂  0 for all
i, (If Xifi < 0, replace x by another one with xt — 0.) It then fol-
lows that

L, H/-IL) .
For the reverse inequality, note that one can approximate | | / + | | i

(Il/Ίli) by ΣΓ=i^/ί by suitably choosing xt = 1 or 0 ( - 1 or 0).

EXAMPLE 1. Let K = {(xt) e k: xt ^ 0, ΣΓ=i ̂  ^ 1}. i ί is a weak*
compact convex set in (lu || ||) since it is the intersection of the
unit ball and the weak* closed set {($<): xt ^ 0}. Let T: K-+ K be
the mapping defined by the equation

Tx — ( 1 ^ j Xif Xί9 X2f * * * , %n> ' * * )

for α; = (xt) e ϋΓ. We show that T is an isometry. Let x, y eK and
let I = {ie Z+: xt — yt ^ 0} and J = {i e Z + : xά — ̂ /y < 0}. Assume that
Σiei X i - y ^ Σiej I/,- - a?,-. Then ||a? - y\\ = Σie/ ^ - 2/* and

Σ
i=l

= IIΣ (vj - xί) - Σ fa - Vi),
jej- ie/

= max(Σ «< ~ Vt, Σ ^ - 1/*)
i e / i e /

= Σ ^ - i/i = \\χ - 2/11
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Similarly, we also have || Tx — Ty\\ = \\x — y\\ in case Σ ί e i # ί — ViS.
ΣidejVd — Xj Hence T is an isometry. T is clearly affine and fixed
point free. Further properties of K and T are listed in the fol-
lowing:

(1) lim||» - T*x\\ =Diam(iO = l,y,xeK.
(2 ) K does not possess weak* normal structure. This is neces-

sarily true by Theorem 1 and the above demonstration.
( 3) Tnx converges weakly* to zero for each x e K.
(4) K itself is a minimal Γ-in variant weak* compact convex set.

Indeed every T-in variant weak* corny act convex subset C of K must
contain 0 by (3). Hence T (0) = en e C for all n. Therefore K=
Co(K) U {0}) £ C and C - K.

The above example shows that the condition of weak* normal
structure cannot be removed from Theorem 1 even if the nonexpan-
sive mapping is an affine isometry. In contrast, every affine non-
expansive self mapping of a weakly compact convex set always has
a fixed point.

3* Conjugate Banach spaces having weak normal structure*
In this section we derive a condition for a conjugate Banach space
to have weak* normal structure.

DEFINITION 1. A weak* closed convex subset C of a conjugate
Banach space is said to have weak* normal structure if every weak*
compact convex subset K of C containing more than one point con-
tains a point x0 such that

sup{||#0 — y\\:yeK] < diam K .

In the following theorem, R+ = {r e R: r ^ 0} and the notation

xn^y will denote the weak* convergence of xn to y.

THEOREM 2. Let X be a the conjugate space of a separable
Banach space. Suppose that there exists a function δ: R+xR+—>R+

satisfying the following conditions.
( i ) For each fixed s, d(r, s) is continuous and strictly increas-

ing in r,
(ii) δ(s, s) > s for every s > 0,

(iii) if xn -^ 0 and lim \\xn\\ — s > 0, then

lim \\y — xn\\ = δ(\\y\\, s) for every y eK .

Then every weak* closed convex subset of X has weak* normal
structure.
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Proof. Suppose on the contrary that X contains a weak* closed
convex subset C which does not have weak* normal structure. Then
there exists a weak* compact convex subset K of C with Card K > 1
and for every x e K

sup{||x - y\\:yeK] = diam K = d > 0 .

By a method of Brodskii-Milman [3], there exists a sequence {xn} c K
such that lim d(x%+lf Co(xt)t^n) — d. Since subsequences of {xn} share

the same property, we may assume that xn^xQ for some x0 e K and
lim \\xn — xo\\ = s. Clearly, s > 0. For each fixed m, we have
lim% ||a?m — xn\\ = ώ. Therefore, by (iii)

d = lim \\(xn - x0) - (xm - a?0)|| = δ(||a?Λ - αo | |, β) .

Using (i), d = 5(8, s). Using (ii), we have s < d. We shall show
that sup{||#0 — y\\: y eK} <^ s. Suppose not, then there exists zeK
with ||z - α?o|| > s. Then

l i m \\z - xn\\ = l i m \\(z - x0) - (xn - α?0)||

by (iii) and (i). This is impossible. Therefore, sup{|| x0 — y ||: y e K}^
8 < rf, which again contradicts our initial assumption. Hence C has
weak* normal structure.

The next proposition shows that the spaces lp, p ^ 1 satisfy the
condition in Theorem 2 with <5(r, s) = (rp + sp)1/p.

PROPOSITION 1. In lp, if xn^ x, then for every y elp,

( 1 ) l i m s u p | | £ Λ - y \ \ p = l i m s u p | | ^ - a ; | | p 4- \\x - y \ \ p .

In particular, if lim ||α?Λ — x\\ exists, we have

lim 11 a;. - y\\ - (lim \\xn - x\\p + \\x - y | | » ) ^ .

Proof For p = 1, t h e equality is a special case of a more
general equality given in Proposition 2; see Corollary 3. For p > 1,
let J: lp -> lq, 1/q + 1/p = 1, be t h e dual i ty mapping defined by

Jx = (\x1\
p-18gnx1, •••, Iα J * - 1 sgna?n, •••).

/ is weakly continuous and <Jίc, x) — \\x\\p, see [2]. Since J is t h e
subdifferential of t h e convex function f(x) = 1/p \\x\\p, we have

I I & 2 / l l p - l l » ^ l l pII l l ll ll Γ <^fe - « + t{x - y), x - y))dt
P p Jo
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(Gossez-Lami-Dozo [7]). Therefore

l i m s u p | | £ Λ - y\\p = l i m s u p | | α j n - x\\p + p \ tp~ι\\x - y\\pdt
Jo

= limsup||a?w-&|lp + \\x-y\\p .

Proposition 1 and Theorem 2 implies that every weak* closed
convex subset of lx has weak* normal structure. Note that such a
set may not possess normal structure. For a simple example, let C
be the unit ball and K — {(&*): xt ^ 0, ΣΓ=i x% = 1}. Then K is closed
convex and sup{||x — y\\: y eK} = diam ϋΓ = 2 for every a? e K. Com-
bining this result with Theorem 1 we have the following result of
Karlovitz [9].

COROLLARY 1 [9]. Let K be a weak* compact convex nonempty
subset of Zx and T: K —> K be a nonexpansive mapping. Then T
has a fixed point.

4* Asymptotic centers in lx.

DEFINITION 2 [12]. Let C be a nonempty subset of a Banach
space X and {Ba: a e A) a decreasing net of bounded nonempty sub-
sets of X. For each xeC and aeΛf let

ra(x) = sup{||α - y\\:yeBa] ,

r(x) — lim ra(x) — inf ra(x) ,

a a

and
r = inΐ{r(x): xeC} .

The set (possibly empty) j ^ ί f ({Ba: a e Λ}, C) = {xe C: r(x) = r} and
the number r will be called, respectively, the asymptotic center of
{Ba: aeΛ} w.r.t. C and the asymptotic radius of {Ba: aeΛ} w.r.t. C.

PROPOSITION 2. Let {Ba: aeΛ} be a decreasing net of bounded
subsets of ix and yn a weak* convergent sequence with weak* limit
y. Then

- x\\:xeBa) + limsup||#Λ - y\\

— lim sup lim sup {||ί/w — x\\: xeBa} .

Proof. For xel19 we shall denote by x{i) the ith coordinate of
x.

By the triangle inequality, we clearly have the inequality ^ in
(2). By a simple diagonal process, we may assume that {Ba:aeΛ}
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is a decreasing sequence {Bn: n ;> 1} of bounded sets. Choose xn e Bn

such t h a t lim sup \\y — xn\\ = lim sup»{||i/ — x\\: x e Bn}. I t follows
t h a t i t suffices to prove the following inequality:

lim sup Hi/ - xn\\ + lim sup ||2Λ, -y\\£ lim sup lim sup \\ym - xn\\ .
% m m n

We may also assume, without loss of generality, that y = 0, and
that l i m | | # J | , l i m | | # J | , and limmlim sup% \\ym — xn\\ exist.

Let r = limOT lim supΛ ||^/m — xn\\ and A; = lim \\ym\\. Suppose, on
the contrary that lim | | x j | = r — k + p for some p > 0. Let p>
ε > 0. Let m l y JVΊ and ik^ (iVj and Mx depend on mλ) be sufficiently
large integers such that

h ι 1 ^ 8

and

11 < r -4- —

I a?n|| ^ r - & + p - — , for all ^ ^ M x4

Then for n^ Mlf we have

r A-— >\\r —v II — V l τ ( ί ) — 7y ( ί )! 4- V
4 i V i4

i
ί ) I — V ! /y(ί) I 4- V I τ ( ί ) I — V I

oo

4 4

Hence

Since i/w -^ 0 there exist m2, JNΓ2 > JVΊ and M2 > Mx (N2 and M2

depend on m2) such that
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#2+1 10

5 '

and

Then for n ^ M2, we have

Λ. _L
 ε > ll/i — w II — V l τ ( ί )

^ Σ I * i Ί

- — , for n^
5

#2
X~< I /v (ί)

# ! + l

£1 + Σ

j { i ) I

/»2ι
N2

+ Σ I * i Ί - Σly
#o+l #2+1

4 4 4
5 5 5

# 2

Hence

• I - 2

Continuing in this way, we obtain two sequences Mλ < M2 <
and JYj. < N2 < such that for w ^ Λffc,

Thus for w ^ Mk, \\xn\\ ^ Σf& l»?} 1 ̂  k l/2(p - ε). This contradicts
the boundedness of the sequence xn.

COROLLARY 2. Let xn be a bounded sequence in lλ and yn-^y.
Then

l i m s u p \\xn — y\\ + l i m s u p \\ym — y\\ — l i m s u p l i m s u p \\xn — 2/m|[ .
n m m n

COROLLARY 3. Proposition 1 for p = 1.

THEOREM 3. Le£ C be a weak* closed convex nonempty subset
of lx and {Ba: a e A} a decreasing net of bounded nonempty subsets
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of C. Let the function r{x) be defined as in Definition 2. Then
for each s ^> 0, {x e C: r(x) ̂  s) is weak* compact convex and the
asymptotic center of {Ba: aeΛ} w.r.t. C is a nonempty (norm) com-
pact convex subset of C.

Proof. Let K8 = {x e C: r(x) <̂  s} and let K be the asymptotic
center. Clearly, diam (Ks) ̂  2s. Since r( ) is a convex function,
Ks is also convex. To show that K is weak* compact, it suffices to

sohw that Ks is weak* closed. Let yn e Ks and yn -^ y. By Prop-
osition 2.

( 3 ) r(y) = lim sup r(yn) - lim sup | |y n - y \\ <: s .

Hence y eKs and iΓs is weak* closed. Suppose now that s = r,
where r is the asymptotic radius of {Ba: aeΛ} w.r.t. C. If r(i/J = r,
then we must have lim sup \\yn — y\\ = 0 for otherwise r(y) < r, a
contradiction to the definition of r. Therefore, for a sequence in
K, weak* convergence implies norm convergence. Hence K is com-
pact. Since K = f]{Ks: Ks Φ 0} and each iζ, is nonempty weak*
compact, we have KΦ 0 .

COROLLARY 4. Lei C be a weak* closed convex subset of lλ and

D a nonempty bounded subset of C. Then the Chebyshev center of

D w.r.t. C is nonempty compact convex. In particular, for any

two points x and y, the set \z e lx: \\z — x\\ = \\z — y\\ = 1/2 \\x — y\\\

is compact.

Proof. If we let Ba = D for every aeΛ, the asymptotic center
of {Ba: aeΛ} is the same as the Chebyshev center of D.

We conclude this section by giving an application of Theorem
3. Let K be a set and S a semigroup of self maps of K. S is
said to be a topological semigroup if S is equipped with a Hausdorff
topology such that for each aeS, the two mappings from S into S
defined by s —> as and s —> sa for all s eS, are continuous. S is said
to be left reversible if any two nonempty closed right ideals of S
have nonempty intersection (cf. [5, p. 34]). If K is a topological
space and S a left reversible topological semigroup of selfmappings
of K suce that the mapping (s, x) —> s(x) is separately continuous,
then S becomes a directed set if we define a ̂  b if and only if
aSQclφS). Moreover, if for a fixed element w e if, we define W8~
c\(sS(u))) for all s eS, then the family {W8: s eS} is a decreasing net
of subsets of K (see [8]).
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THEOREM 4. Let C be a weak* closed convex nonempty subset
of lx and S a left reversible topological semigroup of nonexpansive
selfmappings of C such that the mapping (s, x) —> s(x) is separately
continuous. If for some x e C, s e S, sS(x) is bounded, then S has
a common fixed point in C.

Proof. Let Ws be defined as in the last paragraph. By
Theorem 2 in [12], the asymptotic center K of {TFs:seS}is a
S-invariant subset of C. By Theorem 4, K is a nonempty compact
convev set. Since a compact convex set has normal structure, by
Theorem 3 in [12] or Corollary 1 in [8], S has a common fixed point
in K.
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