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CONGRUENCE CONDITIONS ON INTEGERS REPRESENTED
BY TERNARY QUADRATIC FORMS

A. G. EARNEST

A relationship is proved between certain integers c primi-
tively represented by a spinor genus of integral ternary quad-
ratic forms and integers of the type ct2 primitively represented
by individual forms in the spinor genus. This relationship is
shown to explain various representation properties observed in
the literature.

There are numerous examples in the literature of pairs of
integral ternary quadratic forms which lie in the same genus but
which primitively represent different sets of integers according to
certain congruence properties. For instance, consider the forms
/ = x2 + xy + y2 + 9z2 and g = x2 + Z(y2 + yz + z2), which are re-
presentatives of the two equivalence classes of a genus. / primi-
tively represents an integer of the form 4ί2, t > 0, if and only if
ί Ξ - 1 (mod 3), while g primitively represents such an integer if and
only if t = 1 (mod 3) (see [12]).

Recent work of Peters [10] indicates that the above-illustrated
phenomenon is a consequence of the splitting of the genus into
spinor genera. Much progress has been made in the study of spinor
genus representations in the work of several authors which will be
cited in detail below. However, for definite forms, for which there
may be many equivalence classes within a single spinor genus, there
remains the problem of relating the representations by the individual
forms in the spinor genus to the representations by the spinor genus
as a whole. It is this problem that we address in the present paper.
The main result, appearing as Theorem 2.3, shows that under certain
conditions a relationship holds between integers c primitively re-
presented by a spinor genus and integers of the type ct2 primitive-
ly represented by the forms in the spinor genus.

The behavior discussed here is unique to ternary forms in light
of two major results. First, definite forms in 4 or more variables
(primitively) represent all sufficiently large integers which are
(primitively) represented by their genus. For a proof of this
theorem, and its history, see [1]. Extensions of this result to re-
presentations of forms by forms, and to representations by quadratic
lattices over number fields, are found in [3]. Secondly, indefinite
forms in 4 or more variables (primitively) represent all integers
(primitively) represented by their genus (see e.g., [12], Theorem 53).
As the equivalence class and spinor genus of such indefinite forms
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coincide, this latter result is a special case of general theorems on
spinor genus representations.

l Preliminaries* Throughout the present paper we will adopt
the geometric language of quadratic spaces and lattices. Unexplained
notations and terminology will follow that of [9]. Let (V, Q) be a
3-dimensional quadratic space over the field Q of rational numbers.
All lattices considered will be Z-lattices on V for which Q(y) e Z
for vectors v in the lattice.

The objects of study here will be the sets of integers Q(L),
Q(gen (L)), and Q(spn (L)) which are represented by a lattice L, the
genus gen (L) of L, and the spinor genus spn (L) of L, respectively.
The corresponding sets for integers primitively represented will be
denoted by Q*{L), Q*(gen(L)), and Q*(spn(L)), respectively. The
following result relating Q(L) and Q(gen (L)) is well-known and is
independent of the rank of L except to assume that the rank is
at least 3.

PROPOSITION 1.1. ( i ) ceQ(gen(L)) if and only if cfeQ(L)
for some integer t which is prime to 2d (d denotes the discriminant
ofL).

(ii) ceQ*(gen(L)) if and only if ct2eQ*(L) for some integer
t which is prime to 2d.

The remainder of this paper is largely an attempt to obtain
results of a similar nature relating those integers c (primitively)
represented by spn(L) and those integers of the form cf (primitively)
represented by L itself.

Let JQ denote the full idele group over Q, PD the subgroup of
principal ideles generated by elements of D = θ(O+( V)) (where θ
denotes the spinor norm mapping), and JQ the subgroup of all j for
which jp 6 Θ(O+(LP)) for all finite primes p. Let Σ be an element of
Jv, the group of split rotations on V. Take ί to be an idele satisfy-
ing ipe0(Σ) for all p. If j is another such idele, then jeiJq. So
the map given by sending Σ to the canonical image of i in JQ/JQ is
well-defined; we denote it also by θ.

For an integer t define an idele j(t) componentwise by

(1 if ordp t is even, or p = co
p \p if orάpt is odd.

PROPOSITION 1.2. If cί2eQ*(L) for some t prime to 2d, then
c e Q*(ΣL) for some ΣeJv with j(t) e Θ(Σ).
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Proof. Let v be a primitive vector of L so that Q(v) = cf.
For p\t there exist bases $f, xζ, xl for Lp such that the matrix of

Q is (y2 Vfy J_ <-4d>, and for which v = Σ α?»f with pu\\aζ where
s is the exact power of p dividing t. Modifying the last basis vector
if necessary by a local unit, we can approximate the local bases
over all prime divisors of t by a global basis x19 x2, xz for L see [1],
p. 33 and [3], Lemma 1.6). Writing v = Σ ^ Λ we have p2s\\ax if the
approximation is sufficiently good locally. Consider the lattice

K = tZxι + t~ιZx2 + Zxz .

The vector t~ιv is a primitive vector of K for which Q(t~ιv) = c.
Now locally Kp is given by

Lp for p\t

σpLp f or p \ t ,

where (7̂  is the local isometry defined by x{ —> psxl, xζ -> ^"s^f and
%l ~* a??. The spinor norm of σp is equal to p. We obtain ίΓ = ΣL
and i(ί) G Θ(Σ).

COROLLARY 1.3. If ct2 eQ*(L) for some t prime to 2d for which
j(t)ePDJ%, then c eζ>*(spn (L)).

Proof ΣL lies in spn (L) if and only if Θ(Σ) e PDJΓQ.

The above corollary is not true if Q* is replaced by Q through-
out, as is shown by the following example, which was pointed out
to the author by Professor Jones, who attributes it to G. Pall.

EXAMPLE 1.4. Consider the forms / = x2 + y2 + I622 and g =
2x2 + 2y2 + 5z2 + 2xz + 2yz. Each form lies in a one-class spinor
genus and their genus consists precisely of these two classes. /
primitively represents m2, m odd, m > 0, if and only if m Ξ= 1 (mod 4);
g primitively represents such m2 if and only if m = 3 (mod 4). For
example, g(l, 0, 1) = 32 and so ^(3, 0, 3) = 92. Certainly i(9) e PDJTQ

but gr does not represent 1.
However, the converse of Corollary 1.3 is true with Q* replaced

by Q. This is easily seen by examining the corresponding matrices
and we state it here without proof.

PROPOSITION 1.5. // c e Q(spn (L)), then ct2eQ(L) for some t
prime to 2d for which j(t) e PDJQ.

2. Main results. If 2^ is a genus of forms of rank 4 or more
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and ceQ(&), then it follows that ceQ(S^) for every spinor genus
£f contained in gf. However, if the rank is 3 one can conclude
only that c e Q(Sf) either for all ^ C ^ or for exactly half. This
was shown for indefinite forms over the rationals by Jones and
Watson [6], for lattices over an algebraic number field it is a con-
sequence of work of Kneser [7], and a corresponding result for
higher dimensional representations was obtained by Hsia [2]. The
situation for primitive representations is analogous.

In this section & will denote a genus of ternary lattices. We
will call an integer c a (primitive) spinor-exception for & if c is
(primitively) represented by <& but not by some spinor genus in
gf. Note that the "exceptional integers" of Watson [12], Ch. 7, are
the primitive spinor-exceptional integers in our terminology. Neces-
sary and sufficient conditions for (primitive) spinor-exceptionality
have been determined by Schulze-Pillot [11], extending the techniques
of [2]. For later reference, we record these conditions here.

Let ceQ(^) where & is a genus of ternary lattices of discrimi-
nant d. Let E = Q(Vm) where m is that squarefree integer in the
rational square class of —cd. For any prime p, let Np denote the
group of local norms NEp/Qp(EP), where P is a prime ideal of E lying
over p. If ( , )p denotes the Hubert symbol, an alternative charact-
erization of Np is Np = {x eQp: (x, m)p — 1}.

Let L be a lattice in &. The integer c is a spinor-exception
for & if and only if the following conditions hold:

(*) (i) -cdϊCf (ii) 0(O+(LP)) £ Np (iii) θ(Lp,c) = Np,

the second condition holding for all p (with the convention L^ — VJ)
and the third for finite p. We will not need to compute the groups
Θ(LP, c) explicitly, so we do not give their definition here (see [11]).
The necessity of conditions (i) and (ii) was observed already in [6],
[7], and [2]. For primitive spinor-exceptionality, one needs only to
replace Θ(LP, c) by a slightly different group 0*(LP, c). It is useful
to note here that the only prime divisors of m must be divisors of
2d since Θ(O+(LP)) consists precisely of the unit square classes for
all other primes p, and so condition (ii) forces those primes to be
unramified in E/Q.

The conditions given above guarantee that the group index
(JQ: PDNJQ) equals 2, where N={j e JQ: j p e Np for all p}. We say that
a primitive spinor-exceptional c divides the spinor genera in gf into
two c-half-genera. If c e Q*(spn (L)) for such an integer c, then
c e Q*(spn (ΣL)) if and only if Θ(Σ) = jJ2

Q with jePDNJ% (i.e., under
these conditions L and ΣL lie in the same c-half-genus).

For the ideles j(t) introduced in §1, this last condition can be
expressed concretely in terms of the integer t. We denote by ( —)
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the usual Jacobi symbol.

LEMMA 2.1. Suppose c is a primitive spinor'-exception for
gen (L) and let E = Q(l/m) and N be as above. Let t be a positive
integer prime to 2d. Then j(t) 6 PDNJQ if and only if (m/ί) = 1.

Proof. For any jβJQ, it is a consequence of the Hubert
Reciprocity Law that j e PQN if and only if Π UP, m)P = 1> t h e

product taken over all primes p. By the definition of j(t) and the
condition gcd(t9 Id) — 1 (hence also gcd (ί, m) — 1), this product reduces
to the product taken over all primes p for which ordp t is odd, and
this latter product is equal to the Jacobi symbol (m/ί). So the
proof will be complete if we show that j(t) e PDNJQ is equivalent to
j(t) e PQN. In fact, we will show this to be the case for any j e JQ

for which j ^ > 0.
If D = Q, then PQN £ PDNJQ and equality of the subgroups

follows since both have index 2 in JQ. Otherwise D = Q+. By con-
dition (ii) of (*) we have PDNJQ — PDNI, where / = {i e JQ: ip = 1
for all finite p}. So jePDNI implies that jePDNQPQN when
L > 0. Conversely, suppose jePQN and j ^ > 0. So there exists
b 6 Q such that (bjp, m)p = 1 for all p. If b > 0 then j1 6 PDN and
there is nothing to prove. So assume that b < 0. Consequently,
m > 0 since 1 = (δ L, m)*, = (6, m)^. By the Chinese Remainder
theorem and Dirichlet's theorem on primes in an arithmetic progres-
sion, there exists a prime p0 such that p0 = — 1 (mod 8m). This
assures that ( — pΌ, m)p = 1 for all p ^ po So by Hubert Reciprocity
it follows that also ( — p0, m)Po = 1. This gives

(-Pobjp, m)p = (-p0, m)p(bjp, m)p = 1

for all p, and —pobeD as desired.

LEMMA 2.2. Suppose that c is a primitive spinor-exception for
<& and L e ^ . If ce Q*(spn (L)) <md ct2 e Q*(L) with gcd (t, 2d) - 1

ί > 0, ίfcen (m/ί) = 1.

Proof. It follows from the assumptions and Proposition 1.2 that
c e Q*(spn (ΣL)) where j(t) e 0CΣ). If (m/ί) were equal - 1 then j(t) %
PDNJQ and spn (ΣL) would lie in the c-half-genus of ^ opposite from
L. Then c £ Q*(spn (L)) contrary to assumption.

We now state and prove a partial spinor genus analogue to
Proposition 1.1.

THEOREM 2.3. Suppose that c is a primitive spinor-exception
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for Sf and L e g 7 . Then c e Q*(spn (L)) if and only if ct2 e Q*(L)
for some t with t > 0, gcd (t, 2d) = 1, and (m/t) — 1.

Proof. If c 6 Q*(spn (L)) then ct2 e Q*(L) for some t with ί > 0
and gcd (t9 2d) — 1 by Proposition 1.1. That (m/t) = 1 then follows
from Lemma 2.2. Conversely, if ct2 e Q*(L) with t > 0, gcd (t, 2d) = 1
and (m/ί) = 1, then c is primitively represented by the c-half-genus
of spn(L), hence by spn(L) itself.

We will illustrate the results obtained above by using them to
analyze three specific examples from the literature. In each case
the first step in the procedure is the identification of a primitive
spinor-exceptional integer c. As the verifications of the conditions
of (*) are routine for these examples, we will omit them.

EXAMPLE 2.4. Consider the forms / = x2 + xy + y2 + 9z2 and
g = x2 + 3(y2 + yz + z2). f and g are representatives of the two
spinor genera of a genus, and 4 is a primitive spinor-exception for
the genus. In this case, c — 4, d = 27/4 and m = —3. Since 46
Q*(spn(flf)) it follows from Lemma 2.2 that M2eQ*(g) with t>0
and gcd(ί, 6) = 1 holds only for t such that ((-3)/ί) = 1 or, by
quadratic reciprocity, t = 1 (mod.3). Moreover, by Theorem 2.3
4t2eQ*(f) for such integers t only when t = — 1 (mod 3). In this
specific example one can say more. Since all integers of the form
At2, gcd (tf 6) = 1, are represented primitively by the genus and /
and g are representatives of the only two equivalence classes in the
genus, each of / and g must primitively represent all such integers
which are permitted by the congruence conditions.

EXAMPLE 2.5. (see [10], p. 77) / = x2 + 2y2 + 64.17s2 and g =
(2x + zf + 2y2 + 16.17z2 are representatives of the two spinor genera
of a genus, and 17 is a primitive spinor-exception. Now c = 17,
d = 2U7 and m = - 2 . For t > 0, gcd(ί, 34) = 1, 17ί2 lies in Q*(/)
only when (( —2)/t) = 1; that is, when t = 1 or 3 (mod 8) (note that
/(3, 2, 0) = 17, so that 17 6 Q*(spn (/))). Similarly, such 17ί2 lie in
Q*(flO only when ί = - 1 or - 3 (mod 8).

EXAMPLE 2.6. (see [5], p. 191) / = x2 + %y2 + 36s2 and g = 3x2 +
4τ/2 + 9s2 are representatives of the two spinor genera of a genus
with 1 as a primitive spinor-exceptional integer. Here c = 1, d — 108
and m = - 3 . Since 1 e Q*(/) we have ί2 e Q*(/) implies ί = 1 (mod 3)
for t > 0, gcd(ί, 6) = 1, and t2eQ*(g) implies t = - 1 (mod 3). As
in Example 2.4, we can again draw the stronger conclusion that all
of these integers are indeed primitively represented by the appropriate
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form. We note also that Jones and Pall determined all integers
represented (not necessarily primitively) by these forms. In fact,
/ is a "regular" form, that is, Q(f) = Q(gen (/)), and Q(g) =
Q(geτi(g)) — {t2: t > 0 and all prime factors of t are =1 (mod 3)}.

REMARK 2.7. As there are not effective spinor-generic invariants
known at the present time, we note here that in special cases
primitive representations can be used for the purpose of determining
the spinor genus of a given form. Observe first that the identifica-
tion of primitive spinor-exceptional integers, if any, for a genus is
essentially a local problem due to the nature of the conditions (*).
Assuming the existence of such an integer c, one can determine
whether two given forms in the genus lie in the same c-half-genus
by producing single integers of the type cf, with gcd (t, 2d) = 1,
primitively represented by the forms. In the special case when
there are only two spinor genera in the genus, this gives a procedure
for determining to which spinor genus a given form belongs.

3* The role of exceptional integers* It was mentioned in our
introductory remarks that the work of Peters in [10] indicates that
the representation properties studied in this paper are the results of
the splitting of the genus into spinor genera. More specifically, it is
shown there under the assumption of a suitable generalized Riemann
hypothesis that a positive definite ternary form in a genus consist-
ing of a single spinor genus (primitively) represents all sufficiently
large integers (primitively) represented by its genus. The methods
employed in that paper follow those used extensively by Linnik and
Malyshev in work which is described in [8].

The arguments in fact show that a positive definite ternary
form whose genus contains more than one spinor genus still re-
presents all sufficiently large integers represented by its genus with
the possible exception of those which satisfy the condition (ii) of (*)
for all finite primes p. Note that if an integer c violates such a
condition, then every integer of the type ct2 does so as well. In
that case all sufficiently large integers of this type are represented
by every form in the genus. There is thus a gap between this
theory and the present work in that nothing is said by either con-
cerning those integers ct2 where c is not a primitive spinor-exception
but which still satisfies (ii) of (*) for all finite primes p. Peters
comments ([10], p. 77) that he does not know whether the results of
his paper remain true if only the primitive spinor-exceptional integers
are excluded rather than the larger set.

From the approach taken in this paper it is natural to ask
whether there are cases of ternary genera having more than one
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spinor genus but for which there are no primitive spinor-exceptional
integers. We close this section with two examples showing that
this can indeed be the case, both for definite and indefinite forms.
Note that the second example shows a pair of inequivalent indefinite
forms which lie in the same genus and primitively represent the
same set of integers.

EXAMPLE 3.1. The genus of the form /== x2 + Πy2 + 17V con-
tains two spinor genera. Consider the possible extensions E that
could arise from spinor-exceptional integers c. Since / is positive
definite the value of m occurring must be negative. By the condi-
tion (ii) of (*) the only finite prime that can ramify in E is 17. But
2 ramifies in both Q(i/—1) and Q(V—17), thus eliminating all
potential E's. Note that not only is no c e Q*(gen (/)) spinor-excep-
tional, but none satisfies (ii) of (*). So by the above remarks c e
Q*(/) for all sufficiently large c from Q*(gen (/)).

EXAMPLE 3.2. The genus of the indefinite form / = -x2 + ply2 +
p\%2 with p0 == 1 (mod 8) contains two spinor genera. If c e Q*(gen (/)),
the corresponding extension is E = Q(V c ) since d = —pt. To satisfy
(i) and (ii) of (*), c is not a square and no finite prime different
from p0 ramifies in E. In addition, the condition at °° requires that
E is a real quadratic field. So c must be of the form pQk2 for some
integer k. A computation of the group Θ*(LPQ, p0k

2) for the cor-
responding lattice L shows this group to be equal to QPo which is
not equal to the group of local norms at p0 since p0 ramifies in E =
Q(VrPo). So the integers of the form p0k

2 also fail to be spinor-
exceptional, thus eliminating all possibilities.

4* Residues modulo a prime* The study of ternary representa-
tion properties appears to have been the primary motivation behind
the introduction of the notion of the "quasi-genus" by Jones in [4],
The definition of the quasi-genus depends upon the idea of a prime
"exceptional" for a form /. Here the word exceptional is used in
a sense different from that of Watson, and refers to the property
that all integers which are prime to 2d and occur as denominators
of automorphs of / are quadratic residues modulo this prime. A
prime p is said to have "property A" for the ternary form / if /
primitively represents some integer c, and whenever / primitively
represents cs2 and ct2, with s and t positive and prime to 2c£, there
holds (s/p) = (tip). For instance, the prime 3 has property A for
both forms / and g of Example 2.4.

REMARK 4.1. Suppose that c is a primitive spinor-exception for
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a given genus, and suppose that the condition (m/t) — 1 reduces via
quadratic reciprocity to a residue condition on t modulo a single
prime p0. Given any / in the genus, there exists some t prime to
2d so that ct2 e (?*(/). The sign of (t/p0) depends upon whether or
not c e Q*(spn (/)). If also afk2 e Q*(f) with gcd (fc, 2pQd) = 1, then
(tk/po) has the same sign as (t/p0); thus, (kfp0) == 1 for any such k.
Hence, pQ has property A for every form in the genus.

REMARK 4.2. Jones proves ([4], Theorem 20) that if p has
property A for a ternary form / , then p is exceptional or semiex-
ceptional (slightly different residue conditions are satisfied) for / .
As anticipated by Jones ([4], p. 411), the converse of this theorem
is false as shown by the examples of the preceding section. We
need only note that 17 is an exceptional prime for each of the forms
/ given in Examples 3.1 and 3.2, as can be seen by the conditions
of [4], Theorem 5.
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