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SPECTRAL ANALYSIS IN SPACES OF VECTOR
VALUED FUNCTIONS

YiTZHAK WEIT

Spectral analysis properties of L7”(R), where H is a separ-
able Hilbert space, are investigated. It is proved that spectral
analysis holds for LZ(R) if and only if H is finite-dimensional.
The one-sided analogue of Wiener’s theorem for some sub-
groups of the Euclidean motion group, is obtained.

1. Introduction. Let A be a Banach space and F a class of
bounded linear transformations of A into itself. Following [2] we
say that spectral analysis holds for A4 if every proper closed subspace
of A, invariant under F, is included in a closed maximal invariant
subspace of A.

The case where A is the Banach space of sequences summable
with weights and F is the class of the translation operators was
studied in [2].

We are going to study the problem of spectral analysis with A
being the Banach space L7(R) of functions defined on R, taking
values in a separable Hilbert space H, and F' is the class of transla-
tions by the group R.

Wiener’s classical theorem states that spectral analysis holds
for L{'(R) where H is one-dimensional.

Our main goal is to show that spectral analysis holds for L{(R),
if and only if, H is finite-dimensional.

In §2 we characterize the minimal w*-closed, translation in-
variant subspaces of LZ(R), the dual space of LI(R).

Spectral analysis in the finite-dimensional case is considered in
§3. In §4 we construct a w*-closed invariant subspace of LZ(R)
which does not contain a nontrivial, minimal, w*-closed, invariant
subspace. One-sided spectral analysis in subgroups of the motion
group, is studied in §5.

For x € H let ||z|] = (x, ®)"* denote the norm of xz. For fe L (R),
let Sp (f) denote the spectrum of f.

2. Minimal invariant subspaces. The minimal invariant w™*-
closed subspace of LZ(R) are characterized as follows:

THEOREM 1. Let H be a separable Hilbert space with the basis
{e.}n=i.  Then the function feLXZ(R), f+ 0 generates a minimal,
w*-closed, invariant subspace, if and only +f
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(f(x)y €.) = anein (n = 1’ 2: o ")

for some n€ R and {a,}y-, €1,

Proof. Let f,(x) = (f(x), e,) for n =12, ---,.

If f.(x) = a,e'™ then, obviously, the invariant subspace generated
by f is one-dimensional.

To prove the “only if” part, let M denote the w*-closed, in-
variant subspace generated by f, feLZ(R). Suppose that i e
Sp (fx)s N €Sp (fn) Where m # k and », < \,. Let ¢e L,(R) be such
that Supp ¢ = [r,, 7,] where 7, < A, < 7, < \,. Let geLZ(R) be the
funetion g(x) = S fle—a)p(a)da. Let h e L,(R) with Supp ﬁc(rg, o),
such that g fm(x)h(x)d:c # 0. Then, for 4 € LY(R), where (%), e,) =

h(x) and (q;r(x), e,) = 0 for n # m, we have

| (0@ — @, y@)ds = |”_gulz — @)h()dz = 0

for all « € R, where ¢,(x) = (g.(2), €¢.). On the other hand, we have
S (f(®@), r(x))dx —S fu@)h(x)dx #= 0 which implies that M is not
minimal and the result follows.

3. The finite-dimensional case. Spectral analysis holds for
LZ(R), where H is finite-dimensional. By duality, this result is a
consequence of the following:

THEOREM 2. Let H be finite-dimensional Hilbert space. Then
every w*-closed, invariant, nontrivial subspace of LZ(R) contains
an one-dimensional invariant subspace.

Proof. Let fe LZ(R) and f,(x)=(f(x), e,) (n =1,2, ..., N) where
{e.}i-, is a basis of H. We may assume that f, # 0 and 0 € Sp (f). Let
M denote the w*-closed, invariant subspace of LZ(R) generated by f.
Let ¢, € L,(R) where Supp ¢, = [—1/k, 1/k] $,(0) %= 0 for k=1,2, ---,
Hence, g,(x) = S flx — a)g,(a)da is not identically zero and belongs
to Mk=1,2, ---,). Let g,.(x)= (g1, e, for k=1,2, --., and n =
1,2..., N.

There exist an integer 7, 1 < 7 < N, and a subsequence %k, — oo
such that

max ”gkl wllze = ”gkl,jHLoo .

1SnEN

If gz?,,l is multiplied by an appropriate function, it will follow that
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giillze =1 and  g,,,(0) > 1 — _;_ )

1
By Bernstein’s inequality [5, p. 149] we have

ghyillz. = 761— l=12 ---,).
i

Hence,

|1y 5(@) — 1] < ki<|x| +1) which
1

implies that {g,,;}iz, converges uniformly on compact sets to the

constant function 1.
By the w*-compactness of the unit ball in L_(R) there exists a
subsequence of k;, which will be denoted again by k&, such that

Gun(@) == Pu(@)  m=12, - N

where 4, € L. (R) and ,(x) = 1.
Obviously, Sp (4,) C {0} and by an elementary theorem on spectral
synthesis (see, for instance, [1] or [4] pp. 151 and 181) we deduce

¥ (x) = ¢, ¢, eC (=12 ---,N).

Hence, the function € LZ(R), + # 0, where (4(x),e,) =c,
(m=1,2,---, N) belongs to M which completes the proof of the
theorem.

REMARK 1. We have verified, actually, that the analogue of
Beurling’s theorem [1] in spectral analysis of bounded functions on
the real line, holds for LZ(R) where H is finite-dimensional.

REMARK 2. Theorem 2 may be, similarly, proved for LZ(R™)
where n > 1 and H is finite-dimensional.

4, The infinite-dimensional case. Spectral analysis does not
hold for LF(R) where H is infinite-dimensional. That is, there
exists a proper closed, translation invariant subspace of L#(R) which
is contained in no maximal, closed, invariant subspace of LZ(R).
We prove the following:

THEOREM 3. Let H be a separable, infinite-dimentional Hilbert
space. There exists a montrivial, w*-closed, invariant subspace of
LE(R) which does mot contain any ome-dimensional, invariant sub-
space.
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For the proof of Theorem 8 we will need the following lemma:

LEMMA 4. Let £, and f, be in L.(R) N L(R) such that f, is a
constant d in the interval [a, b].

If ¢, zel', is a net in L,(R) such that
w*
(fixp @) — ae™  (i=1,2)

where a < A < b, then we have

a1fA2(X) = a,d .

Proof. We may assume that Supp ¢. < [a, b] for every rel.
K

Hence f,*¢. = d¢. for any re€I'. Suppose that d = 0. Then ¢,w—>
(a,/d)e*® and

fox e —— ZFes .
If d = 0, then f*¢. = 0 for any €l" and we have a, = 0. This

completes the proof of the lemma.
For h =0, ¢ > p let T,,,,(x) be the function:

Sh (x —p) p§x<—2-p+—1—q
— P 3 3
2 1 1 2

h LZp+qg=sar<=p+ 2
Th,p,q(x):1 3p 3(]__ 3p 3q

3h (@ —q) —1—p+—2—q§x<q

»—4q 3 3

0 elsewhere .

The proof of Theorem 3. Let X.(x)= T,,,, .., (@) satisfy the
following conditions:

(1) h=1, p,=—1 and ¢q,=2.

and h,=1lgn n=238, - ---,).

(ii) Q= D =
nlgn

(iii) For each \, 0 < A < 1, there exists a sequence n, — oo, such
that lim,_, X, (\) = oo.

Let g* be the sequence defined by
gil@) =X,® (=12 ---,).
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Let g, = g% +4 where + € L,(R), [|4|l;, =1 and Supp 4 [0, 1].
By condition (ii) we have ||g,|l.. <2/n (n = 2,8, ---). Hence there
exists a function feLZ(R) such that (f(x),e,) = g.(x) for n =
1,2, ..., where {e,}y-, is a basis of H.

Suppose that the w*-closed, invariant subspace generated by f
contains an one-dimensional invariant subspace. That is, there exist

a net ¢, verl, ¢,€ L,(R) and a real number ¢ such that
(1) (0.56)@) > a6 (n=1,2, --,)

where {a,}o-,€l,. For every g, we have Sp(g,) [0, 1]. Hence, we
may assume that pe (0, 1). .

From (1) we have gs(y+¢,) — a6 (m=1,2, ---,).

By (iii) there exists a sequence n,— co such that lim,_.., X, (¢) = oo.
By Lemma 4 we deduce that a,=alX, () (n =12, ---,) which
implies that a, = 0 for each n. This completes the proof of the
theorem.,

5. Spectral analysis in subgroups of the motion group. In
[5] it was verified that the one-sided analogue of Wiener’s theorem
fails to hold for the motion group. However, we will prove that
the one-sided Wiener’s theorem holds for the subgroup My where

P o
MK_{(O 1).0——"1?,k—O,l,Z,---,K—l,ZGC.

(See also [3].)

By duality, this result is a consequence of the following:

THEOREM 4. Every w*-closed, right invariant, montrivial sub-
space of L. (Myg) contains an irreducible (minimal) right invariant,
nontrivial subspace.

Proof. Let feV, f+ 0, where Vis a w*-closed, right invariant
subspace of L.(Mz). The subspace V contains all functions g such
that g(e™*, z) = fle!*+™?, z — we'*?) where meZ and weC. For a
suitable 7 € Z the function

(2) Iilf(ei(kﬁ-m)ﬁ, z)e—irm0 — ei*rk() KZ_: f(eimﬁ, z)e-imo — eirkop(z)
m=0 m=0

is nonzero and belongs to V. Let P,(2) = P(e*z) for s =0,1, ---,
K —1. Then by Theorem 2 and Remark 2 (P, are looked upon as the
coordinates of a function in LZ(R* where H is K-dimensional), there
exist 4, €L(R) (n=1,2,---,), xeéCanda,ecC(s=0,1, ---, K—1)
where >, |a,| > 0, such that
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(3) Slﬂ P,(z — f)’l/fn(E) _ﬂ*..) a, et .

(Here, for 2,2, €C, (z,, 2,) = %,%,+Y,Y, Where 2z, = 2, +1Y,, 2, = T,+1%,.)
Let X.(&) = X5 yu(e™™%) n=1,2,.-.,. Obviously, X,(&) = X.(e"%)
for s=0,1, ---, K— 1. Then, by (3), we have

(4) 5 Pz — &%, (9)ds AN Kz—f 4,60
R =
Hence, by (2), the funetion

e\ P gL @ds = e | PG — 9L

belongs to V for each n. Finally, by (4), the function @ € L. (M)
where Q(¢'*, z) = ¢ 3K a6t "4 belongs to V. Arguing as in
[5], it can be verified that the w*-closed, right invariant subspace
generated by Q irreducible. This completes the proof.
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