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THE RADIUS OF STARLIKENESS FOR A CLASS
OF REGULAR FUNCTIONS DEFINED
BY AN INTEGRAL

V. KARUNAKARAN AND M. R. ZIEGLER

Let F(z), f(z), and g¢g(z) be regular in the unit disc
E=1{z2:2<1}, be normalized by F(0) = f(0) =¢g(0) =0 and
F’(0) = f'(0) = ¢’(0) =1, and satisfy the equation z°‘(c +
1)f(z) = [F(2)9(®)), ¢=0. This paper is concerned with
studying relationships between the mapping properties of
these functions. The principle result is the determination
of the radius of S-starlikeness of f(z) when F'(z) and g(2) are
restricted to certain classes of univalent starlike functions.
Conversely, a lower bound for the radius of j-starlikeness
of F'(z) is obtained when f(z) and g¢g(z) satisfy similar con-
ditions.

Problems of this nature were first studied by Libera [9], where
he showed that if f(z) is a convex, starlike, or close-to-convex uni-
valent function and F(z) is defined by

(1) Fe) = 2| ot ,

then F(z) is also convex, starlike, or close-to-convex, respectively.
Livingston then considered the converse of this problem and deter-
mined that if F(z) satisfies one of these geometric conditions in E
and f(z) = (F(z) + 2F’(2))/2, then f(z) satisfies the same condition in
{z: 2] < 1/2} [11]. Refinements of Livingston’s results can be found
in [1], [2], [10], [12], and [13], while results dealing with generali-
zations of (1) appear in [3], [4], [5], [6], [7], and [8]. Most recently,
Lewandowski et al have shown that if f(z) is starlike in E and F(z)
is the solution of

(2) cF) +2zF'(z) =1 + ofz),

then F'(z) is starlike whenever Rec = 0 [8].

Before proceeding any further, it will be convenient to introduce
the following notation. Let S*(a) denote the collection of funections
f(z) which are regular in K, are normalized by f(0) = 0 and f’(0) = 1,
and satisfy Re[zf'(2)/f(?)] = a for z in E. Such functions are said
to be starlike of order a. Normally one only considers a in the
interval [0, 1), however, in order to relate the results presented here
to earlier works, it is advantageous to allow a =1, with the under-
standing that S*(1) consists only of the funection f(z) = z.
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In this paper we continue the investigation of a generalization
of (1) which was introduced by the first author in [7]. Let
Za, v, ¢) denote the family of functions F(z) which satisfy

1 z
(3) F(a) = 2X 2\ tfwat
[o(2)) So
where f(z) is in S*(a), g(z) is in S*(y) and ¢ = 0. Let Fa,,c)
denote the family of functions f(z) which satisfy

(4) (¢ + Df(z) = clg(2)/z]"g'(2)F(z) + [9(2)/z]'2F"(2)

for F(z) in S*(a), g(z) in S*(v) and ¢ = 0. Theorem 1 provides a
lower bound for the radius of g-starlikeness of .#i(a, 7, ¢) and Theo-
rem 3 gives the radius of g-starlikeness of .Fy(a, 7, ¢).

We begin by stating a slight generalization of the result obtained
by Lewandowski et al mentioned above. Since our result follows
directly from the techniques used in [8], the proof will be omitted.

LEMMA 1. If F(2) and f(z) satisfy (2), f(z) is in S*(a) and ¢ = 0,
then F(z) is in S*(«).

This lemma now enables us to determine a lower bound for the
radius of g-starlikeness of .# (e, 7, ¢).

THEOREM 1. If F(z) is in Fi(a,,c), then F(z) is B-starlike
for |z| <o =o0(a, B,7,c), where o is the least positive root of the
equation

(5) 1 -8 —7r21 —a) + 21 — V)]
— 20 —1 -8+ 21 —7)]=0.

Proof. If h(z) =[(c + 1)/z°] Szt““lf(t)dt then F(z) = [2/9(2)]°h(z)
and Lemma 1 implies i(z) is in S*(a). Differentiating logarithmically
and applying the usual inequalities we obtain

Re {zF'(z)} > 1+ Q2a —1)r 4 2¢(1 — V)r )
F(z) 1+ 1—7

Thus Re {zF"(z)/F(z)} = 3 whenever |z| < ¢ where ¢ is the least posi-
tive root of (5).

Before turning our attention to the principal result of this paper,
we state without proof two lemmas which appear in [7] and are
fundamental to what follows.

LEMMA 2. If w(z) is analytic and satisfies |w(z)| < |z| in K and
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if p(z) =10 + Dw(z))/1 + Bw(z)), —1=<D< B<1, then for |z|=
r <1 we have
e{ 2w'(2) }
1 + Dw(z))(1 + Bw(z))
-1 T D
=B-DrLte {p(z) + Bo(a)]
7 Bp() — D! — |p(z) — 1|2:I 4 B+D
1 —79)|p(z)| (B — Dy

LemMMA 3. If p(z) and w(z) satisfy the conditions of Lemma 2,
then for any K = B we have on |z| = r

. D _[7Bpk) — D — |1 — p()]
Re {Kp(2) ‘m@} | T —)p@)] ]
P(r) for R, =R,
{Pz("') Jor R, =R,

>

where

1+D’r+D1+B’r"
1+ Br 1+ Dr

-P1<Ir) = Pl(ry K} B’ D) = K
Pyr) = Pyr, K, B, D)

- (T_%ﬁ[(l + D)1+ K — (B + K+ D1 + K)»?

+ D(B* + K)rY)]/* — L]_l_____B?lg_)L?)_ ,
R:=[1 + D)1 — D[ + K) — (K + B,
and

R, = (1 + D»)/(1 + Br).

The above estimates are sharp.

THEOREM 2.
’ Q(r), R, =R,
i min Re (& ®) _ i
nﬁﬁmﬁﬁe{ﬁw} Q) , R =R
whetre
(6) Q) = Ltrd +2D —K) + r'DE ~K)

1+ @A + Dr)

{(1 + D)(11+—Kr)2(1 — Dr?)}“2 . 11——11)::'2]

(1) @y =21

_K—1+2D
1-D

’
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(8) R =[1 + D)1 — Dr)]IA + K)A — )],
(9) R=Q0+Dn/d+7),
o=(@+ev)/1l+e¢)y, D=20—1, and K=1+ (¢ + 1)A — D).
Proof. Let s(z) = z[F(2)/2]"“*"[g(z)/z]7*“*" where in each multi-

valued expression we choose the branch which has value 1 at z = 0.
Combining this with (4) yields

(10) fz) = [s(z)[z]2s(s) .

Since
2s'(z) _ 1 [2F'(z) c 29'(2)
s (1 +ol F) 9z 1’

s(z) is in S*(8) for & = (a + ¢7)/(1 + ¢), p(2) = 2s'(z)/s(z) is analytic
in B, p(0) =1 and Re[p(?)] =4, z in E. Consequently, there exists
a function w(z) analytic in E and satisfying |0(2)| < |2|, z€ E, such
that

(11) p@=%%%%,p=%—L

Now differentiating (10) and making use of (11), we have

O _ (4 Hpe) + Z2E
oy TR TG T
_ 20'(2)(D — 1) —
(¢ + Dp(z) + 1+ Do)1 + @@) =

and Lemma 2 now yields

2f'(2) 1T D
m{ﬂ@}zampﬂmﬁ@@+p@}

_ 7lp() — DI* = |p() — 1l2} _e_1+D

1 —7)[p(2)| 1-D

where B=1and K=1+ (¢ + 1)(1 — D). An application of Lemma
3 now completes the proof. Sharpness follows directly from the
sharpness of Lemma 3.

In [7] the radius of g-starlikeness of Fy(a, 7, ¢) is determined
in the case ¢ =1 and a + v £ 1. The following result extends this
to include all permissible values of a, v and c.

’

THEOREM 3. Let r, = r.(a, v, ¢, B) be the radius of g-starlike-
ness of Fa,v,¢). Let D=2 —1,0=(a+e¢v)/l+¢),c=0, 0=
a<l, and 0 < v =<1. For each fixred ¢ in [0, ), let (D) be the
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unique solution in (0, 1] of the equation

(12) 2+¢)— @4 —2D—2D¢c + ¢)r — Db — D + 2¢ — De)r*
+ DA —D —De)r*=0.

If Q.(r) and Q) are defined by (8) and (7) and p(D) = Q,(r(D)),
then the equation (D) =0 has a unique solution D, in (—1, 1).
Furthermore, 1f D satisfies D, < D <1 and 0 =< 8 = p(D), then 74
s the unique root in (0, 1) of the equation Qy(r) = 8. For all other
values of D, r, is the unique root in (0, 1) of the equation Q,(r) = 3.

Proof. Let I(r) = miny. o, ming, ., Re {zf'(2)/f(z)} and let R,
and R, be defined by (8) and (9). A differentiation shows R, is a
decreasing function of » and R, is an increasing function of r, hence
the equation R, = R; has a unique solution (D, ¢) which is the unique
root in (0, 1] of (12). Thus

_ (@& 0=r < (D, c)}

) = oum r(D,e)<r <1

with the understanding that the second inequality holds vacuously
when #(D, ¢) =1. An examination of (12) shows this happens only
when D = —1, in which case 7, is the solution of Q,(r) = 8. Since
a < 1implies D < 1, we can now restrict our attention to De(—1, 1).

It follows from the minimum principle and the compactness of
F(a, v, ¢) that I(r) is a continuous, decreasing function of ». [In
fact one can show Qi(»(D, ¢)) = Qi(r(D, ¢)) so that I(r) is differentiable
and I'(#) < 0 on (0,1).] Since 7(D, ¢) <1 for D> —1, limI(r) (r —
1) =1lim@,(r) (r—>1")= —oco, and, since I(0) =1, the equation
I(r) = g will always have a unique solution 7, in (0, 1). Clearly 7,
is always the solution of either Q,(r) = 8 or Q,(») = B3, depending on
the relationship between the roots of these equations and »(D, ¢),
or equivalently, on the relationship between I(»(D, ¢)) and 8. The
remainder of this argument is concerned with determining this
relationship.

Let ¢€[0, «) be fixed, let »(D) = (D, ¢) and let /(D) = Q,(»(D)) =
Q.(r(D)). We will show (D) is a strictly increasing funetion of D
mapping (—1, 1) onto (—c, 1). Now

D)= _% o
#(D) = —=Qr(D) > 0

if and only if

13) (D)< TP+ (D) A+ + Dr(D)F + 1+ r(D)
1-D 1 + ¢)1 + Dr(D))* + 1 — Dr(D)* *
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Since the second factor in the right hand side of (13) is clearly greater
than 1, it is sufficient to show

(14) (D) < (D)1 + »(D))/1 — D) .
Differentiating (12) implicitly yields

15) (D) =[2(1 + e)r(D) + (2D — 5 — 2¢ + 2Dc)r(D)*
+ (1 — 2D — 2De)r(D)*)/[(4 — 2D — 2D¢ — ¢)
+2D(B — D + 2¢ — De)r(D) — 3D(1 — D — De)r(D)],

and, before substituting (15) in (14), we must determine the sign of
the denominator in (15). Let

p(r) = 1 + K)1 — )1 + )R — RI)
=@2+¢ —@~—2D —2Dc + o)r
— DG — D — 2¢ — De)r* + D1 — D — De)r®

so that p(»(D)) = 0 and the denominator in (15) is —»'(»(D)). Since
R, is decreasing and R, is increasing, p(») changes sign at »(D) and
must have a zero of order 1 or 3 at »(D). If (D) is a root of order
3 then " (»(D)) = 0 which implies

(D) =B+ 2c —D — Dc)/(31 — D — Deg)) .

However this last expression is not in (0, 1) for De(—1,1) and ce
[0, =), hence (D) is a root of order 1 and, since P(r) is decreasing
at »(D), p'(»(D)) < 0. Thus the denominator in (15) is positive and
substituting (15) in (14) then shows that (14) is equivalent to

(16) 2 —¢) + (9 + D + 3¢ — 2Dc)r(D)
+ (6Dc — D’ + 10D — 1 — D*)r(Dy*
—38D(1 — D — Deyr(D)* > 0 .

Using the fact that »(D) satisfies (12) to elminate »(D)® in (16), we
find that (16) is equivalent to

r(D)T — 5r(D)(D + 1) + (8 — 107(D) + 4r(D)*)
+ 2D*r(D)* + 2¢(1 + Dr(D))* >0,

which is obviously wvalid for »(D) in (0,1), D in (—1,1) and ¢ = 0.
Thus p(D) is inereasing on (—1, 1).

An examination of (12) shows »(D) —1 when D —1 or D — —1,
hence p#(D) — —oco as D— —1, p(D)—1 as D —1, and the equation
¢(D) = 0 has a unique solution D, in (—1,1). If —1 < D £ D,, then
¢(D) = Q,(r(D)) £ 0 and 7, is the root of Q(»)=48. If D,< D <1,
then », is the root of Q,(r) = 8 when #(D) < 3 and 7, is the root
of Q,(r) = 8 when 8 < #(D). This completes the proof.



THE RADIUS OF STARLIKENESS 151

If we take ¢ =~v =1 and o« = 3 = 0, then we obtain as a special
case Livingston’s result [11]. If we let v =1 and @ = 8 = 0, then
we obtain Theorem 1 in [4]. Letting ¢ = v = 1 yields results found
in [1], [2], [10], [13] and, as we have already noted, the case ¢ = 1
and o + v < 1 appears in [7].
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