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COMMUTING HYPONORMAL OPERATORS

JAMES GUYKER

A hyponormal operator is normal if it commutes with a
contraction 7 of a Hilbert space, whose powers go to zero
strongly, such that 1— 7 *T has finite-dimensional range and
the coefficients of the characteristic function of 7 lie in a
commutative C *-algebra. The hyponormal operator is a con-
stant multiple of the identity transformation if the rank of
1—-T*T is one.

Introduction. Let T be a completely nonunitary contraction
on Hilbert space such that 1 — T*T has closed range. There exists
a power series B(z) = ¥B,z" with operator coefficients which con-
verges and is bounded by one in the unit disk such that T is uni-
tarily equivalent to the difference-quotient transformation in the de
Branges-Rovnyak space Z(B) [1, Theorem 4]. The characteristic
function B(z) is said to be of scalar type if {B,: n = 0} is a commut-
ing family of normal operators. Inner functions of scalar type were
introduced and characterized in [10]. In this paper, it is shown that
if {B,,n =20, ---, N} is a commuting family of normal operators,
then polynomials »(T) in T of degree at most N (weak limits of
polynomials in T if B(z) is of scalar type) which satisfy ||o(T)f]| =
[lp(T)Y*f]| for every f in the range of 1 — T*T are restrictions of
operators which commute with some completely nonunitary, partially
isometric extension of T and which satisfy a corresponding property.
The construction is made in the space < (2”B) for a given positive
integer M, and is a modification of an extension procedure of de
Branges [1, Theorem 9].

An operator X on Hilbert space is called hyponormal if || Xf|] =
[|IX*f!] for every vector f. It is well-known [8] that if X is a hy-
ponormal contraction with no isometric part such that the rank of
1 — X*X is finite, then X must be a normal operator acting on a
finite-dimensional space. To ensure normality, the finite-rank hypo-
thesis may not be replaced by a trace-class condition: for 0 < p < oo,
the weighted shift with weights {(1 — \,)"%: % =0} where {\,} is a
p-summable sequence of real numbers with the property that 0 <
Ny =Ny 2 1(w =1, 2, ---) is a hyponormal, nonnormal contraction X
with no isometric part such that 1 — X*X is in the Schatten-von
Neumann class &,.

A consequence of the above result in conjunction with the lift-
ing theorems of Sarason [9] and Sz.-Nagy-Foias [11] is that if T is
a finite direct sum of K contractions T;, whose powers tend strongly
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to zero, such that the rank of 1 — T}7T; is one, and if X is any
operator which commutes with 7 and satisfies || Xf|| = || X*f]| for
all f in the range of 1 — T*T, then X is normal with spectrum con-
sisting of at most K points. In particular, the only hyponormal
operators commuting with the restriction of the backward shift to
an invariant subspace are scalar multiples of the identity.

I am grateful to Professor Louis de Branges for several invalu-
able suggestions concerning this paper.

1. Preliminaries. For a fixed Hilbert space &, the space &1(z)
is the Hilbert space of power series f(z) = Ya,z" with coefficients in
& such that ||f(z)||* = 2|a,|* is finite. Let B(z) = ¥B,z" be a power
series whose coefficients are operators on &, and suppose that for
each fixed z in the unit disk the series converges, in the strong
operator topology, to an operator which is bounded by one. For
f(z) = Za,z" in €(z), the Cauchy product B(2)f(z) = Xt Bitt,—1)2"
is in €%(z) and defines an operator bounded by one, which will be
denoted by T3, on &%(z). The series B(z) is an inner function if T,
is a partial isometry.

The de Branges-Rovnyak space 7 (B) is the Hilbert space of
series f(z) in &(z) such that

IIf @[z = sup{||f(2) + B)g@)I|* — llg(2)II}

is finite, where the supremum is taken over all elements g(z) of
&(2) (1], [2], [3]). The space S#(B) is continuously embedded in
&(z), and is isometrically embedded in Z°(z) if and only if B(z) is
inner, in which case & (2) = 2 (B) D (range T3). If f(z) is inS#~(B),
then (f(z)—5(0))/z is in ZZ(B) and ||(f(2)—f(0)/zl[3 < || £ (2)[[5—[F(0)[".

The difference-quotient transformation

R(0): f(z) f(z) ; £(0)

defined on S5#°(B) is a canonical model for contractions T on Hilbert
space with no isometric part (i.e., there is no nonzero vector f such
that ||T"f]| = ||f]l for every » =1,2, ---).

The operator R(0)* on S#(B) is related to R(0) on 5 (B*) where
B*(z) = 3B,z" if B(z) = XB,z” and B, is the adjoint of B, on &.
The space =7 (B) is the Hilbert space of pairs (f(z), g(z)) with f(2)
in S#Z(B) and ¢g(z) in S#(B*) such that if g(z) = Ya,2z" then

2"f(z) — B(2)(aee" '+ - - +a,-)

belongs to 5~ (B) for every n =1, 2, ---, and
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1(f (@), g%
=sup{||z"f(z) — B()(@2" "+ - +a,-Dll3 + |ao*+ - +la,— [ n =1}

is finite. If (f(2), g(2)) is in =Z(B), then (R(0)f(2), 29(z) — B*(2)f(0))
is in &2(B) and

I(R(0)f (2), zg(2) — B*@)fO)llzw = [I(f(2), g% m — [FO)[*.

The difference-quotient transformation
D: (f(z), 9(2)) — (B(0)f(2), z9(2) — B*(2)f(0))

defined on &7(B) is a canonical model for completely nonunitary
contractions T' on Hilbert space (i.e., there is no nonzero vector f
such that ||[T"f||=||f|l=||T*"f|| for every n=1,2 ---). The
adjoint of D is given by

D*: (f(2), 9(2)) — (2f(2) — B(2)9(0), R(0)g())

and satisfies ||[D*(f(2), 9()|[em = [[(f(2), 9o — 19(0) for every
(f(z), 9(z) in 2(B). If D on &/(B) has no isometric part, then D
is unitarily equivalent to R(0) on SZ(B).

The space 2 (B) is a Hilbert space with a reproducing kernel
funection: for every ¢ in & and w in the unit disk, the pairs

< [1 — B(z)Bw)lc  [B*(z) — Bw)]e )
1 —zw ’ 2 —

and

( [B(z) — B(w)le =~ [1— B*(z)B(%T;)]c)

2 — W 1 —zw

belong to =7 (B), where B(w) is the adjoint of B(w) on %, and.if
(f(2), 9(z)) is an element of & (B), then

(@, gy, (E=B@Bwlk [B@-Bwle)) _ (fw) e

1 —zw 2 — W
and
[B(z) — B@)le [1 — B*2)B@)]e
(@, g, ( SRk Lo ..
= (g(w), ¢) .

Suppose that 2(4), Z2(B) and <=2 (C) are spaces such that
B(z) = A(z)C(z). If (f(z), 9(z) is in Z(A) and if (h(z), k(z)) is in
2(C), then

(w(z), v(2)) = (f(2) + A(2)h(z), C*(2)9(2) + k(2)) ,
is in &2(B), and
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(@), v@)Izwm = (f(2), 9@IZw + [[(B(2), k@)@ -

Moreover, every element (u(z), »(z)) in &(B) has a unique minimal
decomposition in terms of &2’(A4) and = (C) such that equality holds
in the above inequality. Factorizations of B(z) correspond to invari-
ant subspaces of D.

2. The lifting theorem. In the following, B(z) = 3B,2" is a
power series which converges and is bounded by one in the unit
disk, where the coefficients are operators on a fixed Hilbert space & .

LemmA 1. If B(z) = ¥B,z", and if A is an operator on %
which commutes with both B, and B, for every m, then multiplica-
tion by A is an operator on Z(B), bounded by ||A||, whose adjoint

1s multiplication by A.

Proof. By [2, Theorem 4], the set of elements of the form
1 = TpT%f(2), for f(z) in 2#(B), is dense in 5 (B), and moreover

AL — TRTHf (@Il = | — TxT3)AS(2)]]s
= |1 — TRTH"Af @)
= |lAQ — T:T5)"f(2)|
= AT = TaTE) f(2)|
= Al [|X — TsTHfR)l5 -

Multiplication by A is therefore defined on a dense subspace of
S7Z(B) and has a continuous extension to all of 2#°(B). Further-
more, since 5#°(B) is continuously embedded in Z’(z), the extension
coincides with the restriction of T, to &#°(B). Similarly, multiplica-
tion by A is an operator on S#(B), and is the adjoint of multipli-
cation by A since for every f(z) and g(z) in S#(B),

(AQ — TRTHf(?), 9(2)ys = K1 — TTHASL(2), 9(2))5
= (Af(2), 9(=))
= {f(2), Ag(2)
=1 — T:T)f (), Ag(2)) 5 .

The lemma now follows from the definition of the norm in <& (B)
and the polarization identity.

The following result generalizes a direct consequence of Lemma
1. The convention >:(-) = 0 when s < r is observed.

LeEMMA 2. Let B(z) = ¥B,z" and let A be an operator on &
which commutes with both B, and B, for every m =0, ---, N. If
X and Y (or X* and Y*) are polynomials in the difference-quotient
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transformation D in Z(B) of degrees at most N whose coefficients
and their adjoints commute with A and B, for every n, then

<X([1 — B@BO)]e, 1B® = B(0)]e ),

Y([l _ B@)BO)jAd, B'® — BO)]Ad >>
¥4 2(B)

= (x(11 - B BOA, @ = BOlAc),

¥(1t - B@BO, (LA =BOW )

for every ¢ and d in .

Proof. Let X =3FA,D" and Y = >\7C,D". Let the nth coef-
ficient of the power series for 1 — B(2)B(0) be denoted by B,, and let
K(0, 2)e = ([1L — B(z)B(0)]e, ([B*(z) — B(0)]¢)/z) for every ¢ in &°. By
Lemma 1, multiplication by A4, and by C, are operators on <7 (B)
for every n, and by the difference-quotient and polarization identities
we have the following:

(Api, D" K(0, 2)c, C,D"K(0, 2)Ad) - 5

= <DnAm+anK(0, Z)C, D%K(O, z)CnAd>.:?(B)_7(B)
= (A D"K(0, 2)c, K(0, 2)C, Ad). 5

n—1

- Z <Am+n§m+icy BzCnAd>

n—

= (AuiiBuc, C.AD) = 3y (A By Ao, BC,d)

= <Am+nﬁmAC; Cnd> - nz:‘: <Am+n§m+iAc’ ﬁzcnd>
= <Am+an+nK(O’ Z>AC’ CnDnK(Oy z)d>:Z(B) .

The identity now follows for X and Y by linearity and conjugation
of inner products.

Similarly, the identity holds for X* and Y* polynomials in D
since

(D" A1, K(0, 2)c, D*"C,K(0, 2)Ad) . o)
= <D*mle-m+nK<O: z)e, CnK<O! 2)A) 2 s

— 3 (ApraBurie, CB.AD
= <Zm+nK(0’ z)C, CanK(O’ z)Ad>9(B)
- Zn <A‘m+n-§m+igcy C—’nEzd>
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= <‘zm+nK(O, Z)ch éanK(O, z)d>9(B)
- zill <A—m+nEm+iA.c’ C"ngmd>
— (D*"™" A, K(0, 2)Ac, D*"C,K(0, 2)d> o5 -

LEMMA 8. If B(z) = 3B,2" where B,B; = B;B, for every i, j =
0, ---, N, and if X is a polynomial of scalar type in the difference-
quotient transformation D in Z(B) of degree at most N whose coef-
fictents commute with B, for every m, then the following identity
holds for every ¢ in % :

2

px (It - B@BO), lﬁ’f@)-—gﬂ’)]_g)
<

Z(B)

2

+ ”X*([l — B(2)B(0)IB0)B(O)c, LB~@ — E(?]B(O)B(O)c)

Z(B)

2

= [px*(11 - B@BO1BO)., BE = B(O)]E(")")
z

2(B)

2

+|1x(11 - B BO)BO)., B2 = E(O)]B(O)c)
VA

Z(B) *

Proof. Let X = 37 A,D", and let B, and K(0, z)c be defined as
in Lemma 2. Let & be the family of transformations T in &7 (B)
which satisfy

IIDTK(O, 2)¢ll% @ + I T*K(0, 2)BuBl|%m
= [|DT*K(0, Z)Eocni’@w) + [|TK(0, 2)Bycl|% s

for every ¢ in &.

By Fuglede’s theorem [4], A, commutes with B, for every m,
and hence by Lemma 1, multiplication by A, is a normal operator
on Z(B). Moreover, A,D" is in .# for every =0, ---, N, since

|D(A,D")K(0, 2)ell% s + [|D*"A,K(0, 2)B,Bicl[%
=[IKO, D4l — 5 B, |
+ (IO, 9BBAclbw — 35 BB Al ]
= (Al = |BAcl) = (Aucl — 2 Boelt + | BBoA,cl)
+ (BBAol — | BiBAucl) — 35 (1BAsol + [BBAcl)

= |BA,el — | Bidel — 3 (BA el + BB A |2
i=1
and similarly

|| D(D*"A,)K(0, 2)Bic||%m + || A.D"K(0, 2)Biel|l%
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= [ID*"K(©, B,Acllom — |B.Bod,cl]
+[11K©, 9BAclawm — 5 1BBAl |

= (1Bl — Bid,el — 31[BAscl) + (Bl — [BBoAyel)
~ (BAsel — 2|BBoAcl + | BBBAc) — 3 |BBAcl
= | Bd,el — | BiAucl — X (1 BAel + |BBAel) .

Next, observe that if S and T belong to .#, then S + T belongs
to # if and only if
Re[{TK(0, 2)Bye, SK(0, 2)Byc) oz
— (DTK(0, z)c, DSK(0, 2)¢) 2]
= Re[(T*K(0, 2)B,B,c, S*K(0, 2) B,ByC) o5
— (DT*K(0, 2)B,e, DS*K(0, 2)Byc) - ]

(2.1)

forevery ¢in%. For m=1, let S=A,D"and T = A,+,D™*". By
the difference-quotient identity and polarization,

(TK(0, 2)Byc, SK(0, 2)By¢) 55 — (DTK(0, z)c, DSK(0, 2)¢) =5
= {(D"D™A,.+,K(0, 2)B,c, D"K(0, 2)A,BsC) 2z
—<(D"D™+'A,,.,K(0, z)c, D"DA,K(0, 2)¢) 5

= (D" 401, KO, 2)Bic, KO, )A,Bi0) oz — 5, (AmsnBusiBic, BABO)]
— [(DD" A1, K(0, 2)e, DK, D40 55 — 3, (AmiaBurc, Bidy)]
= [<Am+'nﬁmB00; AnBOC> - <Am+'nB'mcy A,,,,C> + <Am+w§mcy EOA'»C>]
+ _Zj: <Am+n§m+ic; Anﬁic> - §<Am+n§m+iBocy AnEiBDc>

2

= i <Am+ﬂgn§m+i‘§icy 0> - _1<(Am+nAan+iBi)Bocy Boc> .
i=1

=0

I

Similarly,
(T*K(0, z)EoBoC; S*K(0, Z)BoBoc>9(B)
— (DT*K(0, Z)Eoc, DS*K(0, 2By o
= (D*"D*"A4,,.,K(0, Z)EOBOC: D*"K(0, 2)A,B,Byc).
— <D*”D*mf_l-m+,,K(0, z)ﬁoc, D*"K(0, z)Z,,Ew}WB)
+ (ApinBurnBoc, A,B,B)
= [(D*mﬁer,,K(O, Z)EOBOC, K(0, 2)A,B,Byc)

- 2”: <Zm+n Am+iB-Oc, A—nﬁi -—06>]

=

-
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_ [< D*"4,..K(0, 9B, KO, DAB>am — 3, AnsnBusie, A‘,ﬁ@}

+ <A—m+%'§m+nB-Oc “I § Eoc> _
= [(A,+,B.B,Bs, A,B,Bic) — (A, B, B, A,Bc)]
m+

+ Zﬂ| <Zm+n§m+icy Anﬁic> - 2 <Am+n iE@C, ‘L_lnéigoc>

Taking real parts, we have that .&# contains A,D" + A,..,D™", and
hence by the linearity of the inner products in (2.1), # contains X.

LeEmMMA 4. If B(z) is of scalar type, then the identity in Lemma
3 holds for weak limits X of sequences of polynomials in the dif-
ference-quotient transformation D whose coefficients lie in a (fized)
commutative C*-algebra containing the coefficients of B(z).

Proof. As in the proof of Lemma 3, the identity (2.1) holds
whenever S and T are polynomials of scalar type in D whose coef-
ficients commute with the coefficients of B(2). It follows that (2.1)
holds for S an arbitrary such polynomial in D and T = X, and sub-
sequently for S = T = X. Therefore X satisfies the identity of
Lemma 3.

REMARK 1. By Lemma 4 and Sarason’s theorem [9], if the coef-
ficient space & is one-dimensional and B(z) is inner, then the identity
in Lemma 3 holds for arbitrary operators X commuting with D. This
is false for spaces & of higher dimension, as the following example
shows.

EXAMPLE. Let B(z) = (b(g) b‘()z)) where b(z) = 3b,2" is a scalar

inner function, and let X = (1) 8) D. Then the identity in Lemma

3 holds for ¢ = (5) only if either b, = 0 or |b,| = 1 — |b, [

THEOREM 1. Let D be the difference-quotient transformation in
a space Z'(B), and suppose that 1 — D*D has closed range. Let X
be an operator on = (B) which satisfies

1 X(f(®), 9C)lowm = || X*(f(2), 9w

Sfor every (f(z), 9(2) in the range of 1 — D*D. If B(z) = YB,2"
where either B,B; = B;B, for every i,5 =0, ---, N and X is a poly-
nomial of scalar type in D of degree at most N whose coefficients
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commute with B, for every m, or, B(z) is of scalar type and X s
the limit, in the weak operator topology, of a sequence of poly-
nomials in D whose coefficients lie in a commutative C*-algebra
containing B, for every m, them X is unitarily equivalent to the
restriction to an invariant subspace of an operator Y =Y, on
FR"B) (M =1, 2, ---) which commutes with the partially isometric
difference-quotient tramsformation V=V, in Z(2"B) and which
satisfies

1 Y(uw(2), v(@)||o s = | Y *(u(z), v(@)]]. s

For every (uw(z), v(2)) in the kernel of V. Moreover, V = (3" @ S5 @V
where S; 1s a truncated shift of index j and the first M powers
of V are partial isometries such that the kernel of V* has trivial
intersection with the subspace S @ V™' ker V. If the dimension
of & 1is finite, then Y = (Z;“’@Yj)@? where Y; and Y commute
with S} and V, respectively, and Y, is normal for every j. In
this case, ¥ = O\ P Z;) @ Z where Z; is a normal operator on the
space V< 'kerV, and p(Y © Z) = 0 for some nonzero (scalar) poly-
nomial p(z) of degree not exceeding the dimension of % .

Proof. Since [[(1 — DD*)"*D(f(2), 9(2)|l=m = |B0)f(0)| for every
(f(2), g() in Z(B)and (1 — DD*)"*D = D(1 — D*D)"?, with analogous
identities for 1 — D*D, it follows that the restriction of 1 — D*D
to the closure of its range is unitarily equivalent to the restriction
of 1 — B,B, to the closure of its range. Therefore, since 1 — D*D
has closed range, so does 1 — B,B,.

Let K(0, 2)c = ([1 — B(2)B(0)le, [B*(z) — B(0)]¢c/z) for every ¢ in
% . Define a transformation X on % as follows: if ¢ = (1 — B,B))d
for some (uniquely determined) vector d in the range of 1 — BB,
then \¢ is the unique vector which satisfies

(Xe, a) = (XK(0, 2)Bd, K(0, 2)a)s

for every a in &; if (1 — B,B,)¢c = 0, define X¢ to be the zero vector.
Since 1 — B,B, has closed range, it follows that X is continuous.

To compute N*, observe that the range of 1 — B,B, reduces i:
let b be in the kernel of 1 — B,B,. Since B, is normal, |Bpb| = |b] =
|Bb|, and hence ([B*(z) — B(0)]b)z = ([B(z) — B(0)]b)z = 0. Moreover,
the kernel of 1 — B,B, reduces B,, so that K(0, )b = (0, 0). It fol-
lows that b is orthogonal to X\(1 — B,B)d for every vector d, and
thus, since b was arbitrary, the range of 1 — B,B, reduces X. The-
refore, if ¢ = (1 — B,B,)d for some vector d in the range of 1 — B,B,,
then by Lemmas 1 and 2, N*¢ is the unique vector which satisfies

(N*e, ay = (X*K(0, 2)Bd, K(0, 2)a)o,
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for every a if &; in (1 — B,B,)c = 0, then clearly \*¢ = 0.
By the definitions of the norms in S#(B) and =2(B), it follows
that the transformation

W: (f(2), 9(2)) — (2" f(2), 9(2))

takes = (B) isometrically into =7 (2”B).
Let (u(z), »(z)) be in & (2¥B). The minimal decomposition of
(u(z), v(z)) with respect to = (B) and =& (z") is of the form

@), @) = (£@) + BE)(3 02'), #9() + 3 eumseid’ )

with (f(2), 9(2)) in D(B) and (S ¢;2, S "ey-s2) in D(z") for
some vectors ¢; in €. Define a transformation Y in Z(2”B) as
follows:

Y(u(2), v(2)) = V*WX(f(2), 9(2))
€ A:Z_l Viwx < [B(z) — Bz(O)]CM—rj , [1— B*(Z)B(O)]CM_1-5>

M—-1 A~ ) M—-1 ~ .
+ (3 Gepe, B*@) (3 Rewmr)??)) -
Since V, W, X, N\, and minimal decompositions are linear, it

follows that Y is linear. Moreover, Y is continuous since V, W,
X, and ) are continuous and

(@), v@)ls erm = 1(F@), 9@ + 3 lesl -

By a straightforward computation,

VY(u(z), v(2)) = V¥*WDX(f(2), 9(2))
+ Mzo_‘l Vit WX( [B(z) — B;O)]CM—I—E (1 — B*(Z)B(O)]CM~1_J->

+ (3 Gese, BO(E Qeware®))

Also by [1, Theorem 5(D)], the minimal decomposition of V(u(z), v(z))
in &2 (z*B) is obtained with

(fi@), 9:2) = DU @), g(@) + (1BA=BOe 11 _ pr)B0)]ar)

2

in 2/(B) and

(@), k@) = (3 008, S eus )
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in Z7(z"). Therefore Y V(uz), v(z)) = VY(u(z), v(z)) since X commutes
with D.
Since

(f(2), 2"9(2)) = (f(2) + B(2)-0, 2"¢(z) + 0)

is minimal in Z'(z”B) with (f(2), g(z)) in 2 (B) and (0, 0) in =Z(2"),
we have that X is unitarily equivalent to the restriction of Y to
the subspace V*W<Z'(B).

The kernel of V consists of all elements of the form (¢, 2¥'B*(2)¢)
for ¢ in . The minimal decomposition of (¢, 2”*B*(z)¢c) in &' (2¥B)
is obtained with K(0, 2)c in =2(B) and (B(0)c, z"'B(0)c) in = (z).
Therefore, since VY(e, 2" 'B*(z)c) = Y V(e 2 *B*(z)c) = (0, 0), it fol-
lows that Y(e, 2" 'B*(2)c) = (d, 2" 'B*(2)d) where d is the unique
vector which satisfies

(2.2) {d, a) = (XK(0, 2)e, K0, 2)adowm + \B(0)e, a)

for every a in &.
To compute the action of Y* on (e, 2¥B*(2)c), let (u(z), v(2)) be
in &Z(z”B) and write

@), 9 = (@ + BO (S ), 29 + 3 e’ )
minimally with (f(2), 9(2)) in Z(B) and (3" ¢;27, 2" €y—y—;27) in
Z(z"). Then

(Y*(e, 2" B*(2)c), (u(2), v(2)))o01p
= (K(0, 2)e, X(f(2), 9(2))awm + {c, Nepy
= {(fi#) + B)\*¢, 2%g,(z) + 2"7'N*¢), (U(2), v(2))> s

where (f,(2), 9,(7)) = X*K(0, z)c. Since (u(z), v(z)) was arbitrary, it
follows that

Y*(¢, 2 B*(2)e) = (fi(2) + B@)\*e, 2"9:(2) + 2""R7e) .
Since

1Y *(e, 22 B*@)e)| [ wim < || X*K(0, 2)el[bwm + [NEe]?
and
| ¥ (e, 2 B*@)0)[5wrm = |I(d, 2" B*@d)|[2 s = |d]*,

it is sufficient to show
| X*K(O, 2)ellom < |d] — | N*el

for all ¢ in &, where d = d(¢) is defined by (2.2).
Let ¢ be in &. Write ¢ =1 — B,B)a + b where « is in the
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range of 1 — BB, and (1 — B,B,)b = 0. As above, \*b = 0 = XB(0)b
and K(0, 2)b = (0, 0). Thus, we may assume b = 0, and ¢ = (1 — B,B))a.
In this case, by Lemmas 1 and 2, and the normality of B,

[| X*K(0, z)c||%
= (X*K(0, 2)1 — B,B)a, X*K(0, 2)(1 — B,B)a) »
= (X*K(0, 2)a, X*K(0, )1 — B,B)a)
— (X*K(0, z)Boan; X*K(0, z)ay.m + || X*K(O, z)BOEOa“Z(B)
= || X*K(0, )1 — B.B)""a|% s — | X*K(0, 2)Bia|%
+ [| X*K(0, 2)B.Ba ||’ (s -

Therefore by hypothesis and Lemmas 1 and 2,

| X*K(0, 2)e |
< [| XK(0, 2)(1 — B,B)"a % — || X*K(0, 2)Bua|[% 5
+ || X*K(0, Z)EoBoa”?@(B)
= || XK(0, 2)a|lzm — || XK(O, 2)Ba|om — || X*K(O, Z)an[[?fz(m
+ | X*K(0, )B,Ball% )
= [[| DXK(O0, 2)a|L @ + [dF] — || XK(O0, 2) B |[% )
— [IIDX*K(0, 2)Biallsw + [3*e['] + || X*K (0, 2)BBoall2m

since @ = ¢ + B,B,a. Hence by Lemmas 3 and 4,
HX*K(O: z)c“?zus) = [dl2 - [X*CP

and therefore
[ Y(u(z), v(2)lzwrm = | Y *(u(z), v(2))||zwrs

for every (u(z), v(z)) in the kernel of V.

By [6, Lemma 2.2], V, ---, V¥ are partial isometries and hence
so are their adjoints. The form of V then follows from a slight
modification of [5, Theorem 4.1]. In particular, S; is the restriction
of V* to the space 5% =v (span) {V&;: 1 =0, ---, § — 1} where
&G, =ker VnV* 'kerV(j =1, ---, M).

Suppose that & is finite-dimensional. Since YV = VY, the
kernel of V is invariant under Y, and since it is finite-dimensional,
the restriction Z, of Y to the kernel of V has an eigenvector, say
(e.(2), e5(?)). Since

[[ Y(ei(2), ex(2))llzwrm = || Y *(e(2), €x(2))]lzwrs

it follows that (e,(2), e,(?)) is a reducing eigenvector for Y. By con-
sidering the restriction of Y to ker VO {(e,(2), ex(z))} and proceeding
by induction, we have that the kernel of V reduces Y, and Z, is
normal. If A, --:, Ay are the eigenvalues of Z, repeated according
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to multiplicity, then p(Z,) = 0 where p(z) = [I{(z — r;). Also note
that ©# = ker V*Nker V is a finite-dimensional invariant subspace
of the normal operator Z = Y *|.., and hence .27 reduces Y, and
the restriction Y, of Y to .77 is normal.

For the induction step, assume that <7, .77, and V* 'ker V
(j=1,---,J —1; 2<J < M) reduce Y, and the restriction of Y to
each of these subspaces is normal. Since the range of V* reduces
Y, if (r(z),s(z)) is in the range of V*, then Y(»(z),s(®)) =
V*VY(r2), s(z) = V*YV(r(z), s(z) and Y*(»(2), s(z)) = V*Y*V(r(z),
s(z)).

Let (u(z), »(2)) be in V* 'ker V. Since Y*Y = YY* on the
space V*' ker V, VY = YV, and V(u(z), v(z) is in V* ’kerV, it
follows that

Il

Y*Y(u(z), v(z)) = V¥Y*(VV*YV(uz), v(z))
V*Y*YV(u(z), v(z))
V*YY*V(u(z), v(z))
=V*Y[QA — VV*) + VV*]Y*V(u®), v(z)) .
Now (1 — VV*) Y *V(u(z), v(z)) belongs to (1 — VV*)V*' *ker Vwhich
in turn is contained in ker V* N V* “ker V = %,_,. By the indue-
tion hypothesis, &”,_, reduces Y. Therefore,
Y*Y(u(z), v(z)) = V*YVV*Y*V(u(z), v(z))
= YY*(u(z), v(2)) .

Il

Il

Il

It follows that
” Y(u(z); v(z))H:/ (zvb‘) = H Y*(u(z>y U(Z)N}Lc(z I’B)

for all (w(z), v(z)) in V*' 'ker V, and, since V*''ker V is a finite-
dimensional invariant subspace for Y *, we have that V*'  'ker V
reduces Y as above, and the restriction Z, of Y to V*' 'ker V is
normal.  Clearly, »/ @ Z,)=0 since pY*NV* ' ker V) =
V*7'5(Z#)ker V = {0} for every j =1, ---, J.

Next, &, reduces Y and Y|, is normal since &, = ker V*n
V*''ker V is a finite-dimensional invariant subspace of Y *, and the
restriction of Y* to V*' 'ker V is normal.

Finally, 5#; reduces Y and Y|, , is normal since V'&,(i =0, -- -,
J — 1) is a finite-dimensional invariant subspace of Y which is con-
tained in V*' 7" “'ker V, and the restriction of Y to V* "'ker V is
normal.

COROLLARY 1. Let D be the difference-quotient transformation
in a space Z(B) with a finite-dimensional coefficient space &, and
suppose that D has no isometric part. Let X be an operator on
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2 (B) which satisfies
| X(f(2), 9)lom = | X*(f(2), 9(2)=wm

Jor every (f(z), g(z)) in the range of 1 — D*D. If B(z) = >, B,z"
where B,B; = B,B, for everyi, j =0, ---, N, and X is a polynomial
of scalar type in D of degree at most N whose coefficients commute
with B, for every m, then either X is multiplication by an operator
on % or the dimension of Z(B) is finite [SNX(dim &)°]. More-
over, if B(z) is of scalar type, and X is the limit, in the weak
operator topology, of a sequence of polynomials im D whose coeffici-
ents lie im a commutative C*-algebra containing B, for every n,
then p(X) = 0 for some monzero (scalar) polynomial p(z) of degree
not exceeding the dimension of & .

Proof. Since D has no isometric part, B(z)c is in 2#(B) for
some vector ¢ only if ¢ =0, and by [2, Lemma 4], 5#(B) contains
no nonzero element of the form B(z)c. Therefore by the minimal
decomposition of an element of & (zB) in terms of &(B) and = (),
it follows that the difference-quotient transformation V on <(zB)
has no isometric part. Moreover, as in the proof of Theorem 1,
since 1 — B,B, has closed range, so does 1 — D*D.

By Theorem 1, X is unitarily equivalent to a part of an operator
Y on &2 (zB) which commutes with V and satisfies

1Y (u(2), v(@)llzem 2 (1Y *(u(2), v(2))l|zun

for all (u(z), v(z)) in the kernel of V. Moreover, the kernel of V
reduces Y and p(Y)ker V = {0} for some nonzero polynomial p(z) of
degree at most the dimension of Z°. Since V has no isometric part,
Z(zB) is the closed span of the subspaces V*'ker V n=0,1, ---).
Therefore, since 7(Y*) commutes with V*", p(Y) =0 and hence
P(X)=0.

Suppose that X is a nonconstant, scalar type polynomial in D of
degree at most N. By the above, ¢(D) = 0 for some scalar type
polynomial ¢(z) of degree at most Nxdim &. Since D has no iso-
metric part, D is unitarily equivalent to R(0) on 5#(B). Since any
countable family of commuting normal operators on a finite-dimen-
sional space has a common eigenvector, ¢(R(0))(=0) is the restric-
tion of an operator on Z(z) of the form >\ ¢ @ ¢,(R(0),) where
q:(2) is a scalar polynomial of degree at most Nxdim & and R(0),
is the difference-quotient transformation on &,(z) where &, is one-
dimensional. Since the eigenspace corresponding to an eigenvalue of
R(0), is one-dimensional, and since the dimension of the kernel of a
finite product of operators does not exceed the sum of the dimen-
sions of the kernels of the factors, it follows that the dimension of



COMMUTING HYPONORMAL OPERATORS 321
o7 (B) (and hence of &(B)) does not exceed Nx (dim &)

3. Applications. The following result extends [3, Problem 110]
and [7, Corollary 1].

THEOREM 2. Let T be a contraction on Hilbert space such that
rank 1 — TT*) = rank (1 — T*T) =1, and suppose that T has mo
isometric part. If X is the weak limit of a sequence of polynomials
wn T, and ©f f 1s a nonzero wvector in the range of 1 — T*T, then
NXFI £ | X*F]| with equality holding only if X s a scalar multiple
of the identity.

Proof. By [2, Theorem 1] and [3, Theorem 15], T' is unitarily
equivalent to the difference-quotient transformation in a space <(B)
where the coefficient space is one-dimensional. The theorem now
follows by applying Corollary 1.

THEOREM 3. Let T be a contraction on Hilbert space such that
T mn =12, ---) tends strongly to zero, and suppose that T =
S T; where the rank of 1 — TFT; is one for every j. If X is
an operator which commutes with T and satisfies || Xf|| = || X*fl|
for every vector f in the range of 1 — T*T, then X is normal with
spectrum comsisting of at most K points.

Proof. By [3, Theorem 12], there exist scalar inner functions
b;(z) (4 =1, ---, K) such that T is unitarily equivalent to the dif-
ference-quotient transformation R(0) in 5#°(B) where

b.(2) 0
B(z) = T
0 bx(2)

is an inner function of scalar type. The proof proceeds by induction
on K.

If K =1, then by Sarason’s theorem [9], X is the weak limit
of a sequence of polynomials in R(0); and hence by [3, Theorem 13]
and Theorem 2, X is a scalar multiple of the identity.

Assume that the theorem is true for the difference-quotient
transformations in spaces S#°(B) of the form S2Z(B) = 3\ ) S#°(b;)
for all integers L, 1 < L < K, where the b;’s are scalar inner funec-
tions. Let X commute with R(0) on S£(B) = 2.1 2~ (b;) and
satisfy || Xf(®)||=||X*f(?)]| for every jf(z) in the range of
1 — R(0)*R(0), where b;(2) is a scalar inner function for every j.
By the Sz.-Nagy-Foias lifting theorem [11], X is the restriction of
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an operator on Z°(2) = >, @ &;(2) of the form (TF,)x«x Where &
is the space of complex numbers and ¢,;(z) is a bounded analytic
(scalar) funection on the unit disk for all 4 and j. Moreover, since
S# (B) is invariant under (T'§,)x«x, the range of T, is invariant
under (T, )e«x, and hence for each k, 1 <k < K, 9;(2)b,(z) is con-
tained in the range of T, for every j=1, ---, K.

For a fixed integer j, (1 = j, < K), consider an element of 57 (B)
of the form f(z) = ;¥ P[1 — b;(2)b;(0)]x; where x; =1 and x; = 0
for all 5 # j,. Since f(z) is in the range of 1 — R(0)*R(0), we have
that

(3.1) IXF@IF = SYIT# 41 — by (@b, O
= | X @I
= S IPT, 1 = by @b, O

S Ps@)I

where P, is the (orthogonal) projection of &,(z) onto 5#°(b,). More-
over, by the case K =1,

”Pjo%jo(z)n = || P ?’uo[l bfo(Z)l?jo(O)]H
= | T*;,.,-Ou ROROI

for every 1 =1, ---, K. Therefore,

S IP@u@lF 2 3 11Tk, (1 — b5, O

i=1
1#3g ”4‘-70

z 3 IP@s @l

i35,

which holds for all j,=1, ---, K.
Combining the above inequalities, by induction we have the
following:

S PRI
> ﬁ I T%,[1 — by(2)b,(0)]]]*

lIV

Il P, (2|

(] 17501 = 8B — % (| Pesall)

PES] FE]

|I\/
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= 3 (S 1P2u@IF — X I Pea@ll )

= 31 Ppa@IF -

The above inequalities are therefore equalities and in particular

S IPT L — b5 O] = 315,01 — b
_ Jzi; | P,y [1 — b,(2)b,(0)] 1
< ﬁ; 1T,,[1 — b.(2)b,O)]|

JFT

1
2

for every 9 =1, ---, K. Hence by the case K =1, it follows that
the restriction of T%, to =2°(b,) is a scalar \;, times the identity
for all j # ¢, and

K K
(8.2) g [Njl* = g [N [?
J#i G#i

for every 1 =1, ---, K. Therefore by (3.1) and the case K = 1, the
restriction of T%, to 227(b,) is a scalar )\, times the identity for
every i =1, ---, K, and consequently X = (\;;)xxx-

Suppose first that 527(b,) = 2#°(b;) for all ¢ and j. In this case,
the range of 1 — R(0)*R(0) reduces X, and since it is finite-dimen-
sional and the restriction of X to it is hyponormal, it follows that
XX* = X*X on the range of 1 — R(0)*R(0).

Let h(z) be an arbitrary element of 5#(B). Then h(z) is the
limit of a sequence of vectors of the form 37 R(0)*'f;(z) where f3(2)
is in the range of 1 — R(0)*R(0) for every j. Since XX* and X*X
commute with R(0)*’, we have that XX*h(z) = X*Xh(z). Hence X
is normal.

Let \,, -+, Ax be the eigenvalues of the restriction of X to the
range of 1 — R(0)*R(0), listed according to multiplicity, and let 7; =
V{f(z)e 2Z(B): Xf(z) = \;f(2)}. Since X is normal, if A\, # \;, then
7, is orthogonal to 7;. Moreover, since R(0) has no isometric part
and XR(0)* = R(0)*X, it follows that 22 (B) = V{»,:5=1, ---, K}.
Therefore, X is diagonalizable with sp(X) = {\;: =1, ---, K}.

Finally, suppose that Z£°(b,) # 5£°(b;) for at least one pair (7, j).
There exists a space &£ (b,) which is minimal in the sense that for
every ¢ either 52°(b,) = S£(b,) or 5£(b;) is not contained in S£(b, ).
Let 2 be the set of indices ¢ such that 52°(b,) = 2£°(b,). Then
Q2 +{1, ---, K} by assumption, and for every 7 in 2 and j not in 2,
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A; = 0. By (3.2),

%IMIZ éi%g(l)"w’lz - |7\'jil2) =0.

jeQR

Therefore, \,; = 0 = \;; for every ¢ in 2 and j notin 2. It follows
that the space >),., D &£°(b,) reduces X, that the restriction of X
to this space satisfies the induction hypothesis and hence is normal
with spectrum consisting of at most card £ points. Similarly, the
restriction of X to 3., P 57(b,) is normal with spectrum at most
K — card 2 points, and consequently X is normal with spectrum at
most K points.

COROLLARY 2. Let X commute with the difference-quotient
transformation D in a space Z(B) where B(z) is an inner function
of scalar type and the coefficient space & is finite-dimensional. If

1 X(f (@), 9@ lzm 2 | X*(f (@), 9@)l|=w)

for every (f(z), 9(z)) in the range of 1 — D*D, then X is a normal
operator whose spectrum consists of a finite number (Z<dim &) of
DPOINLS.

Proof. Since any countable family of commuting normal oper-
ators on a finite-dimensional space has a common eigenvector, it fol-
lows that Z/(B) = > {"™“ P 2 (b;) where b;(z) is a scalar inner func-
tion for all 5. Corollary 2 is therefore an immediate consequence
of Theorem 3.

REMARK 2. The analytic Toeplitz operator T, on &’ (z) with &
one-dimensional, for the symbol @(z2) an inner function, is a uni-
versal model for unilateral shifts. Therefore, the restriction of T
to an arbitrary invariant subspace is a canonical model for contrac-
tions whose powers tend strongly to zero. A consequence of Corol-
lary 2 is that the restriction of TF to an arbitrary invariant sub-
space of the backward shift T is never hyponormal (i.e., only if it
is a scalar times the identity).
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