
PACIFIC JOURNAL OF MATHEMATICS
Vol. 91, No. 2, 1980

ON BERRY-ESSEEN APPROXIMATION AND
A FUNCTIONAL LIL FOR A CLASS OF

DEPENDENT RANDOM FIELDS

CHANDRAKANT M. DEO AND H. SHIP-FAH WONG

In this paper we derive a Berry-Esseen type approximation
for a class of dependent random fields and use it to obtain
a functional law of the iterated logarithm.

1* Introduction* In recent years there has been considerable
interest in multiparameter stochastic collections or the so-called
random fields. In this note we deal with stationary, dependent dis-
crete-parameter random field. In [3] a concept of ^-mixing was in-
troduced for such random fields and a functional central limit
theorem was proved for them. Here we obtain a Berry-Esseen type
approximation for such random fields and use it to prove a func-
tional law of the iterated logarithm.

The set-up and the basic notation is as in [3]. Zq is the set of
all g-tuples of integers (g^l). We denote the points in Zq by t, n
etc. or sometimes explicitly by (ilf i2, , iq), (nl9 n2, , nq) etc.
Let {ξn: n e Zq] be a stationary, ^-mixing random field as defined in
[3]. We denote the partial sums of this random field by Sn or
SΛlin2,..,Wff i.e.,

n l

^>n1,n2,' ,na 2-1 2-Λ ' ' ' 2-1 ζi1,i2,
 m ,ia

where n^l. If some n,- are zero and others ^ 1 then it is conven-
ient to set SWl,Λ2,...,Λg = 0.

Let Tg = [0, l]q be the g-fold Cartesian product of the unit in-
terval, and let Dq be the Skorohod function space on Tq. We use
the uniform metric d on Dq i.e., if x, y e Dq then d(x, y) •=•
supt|x(ί) - y(t)\.

A block B in Tq is a product of half-closed intervals i.e., a set
of the form Π?=i(A, tt]. If a? is a function on Tq then x(B) denotes
increment of x around B.

We will assume throughout that:

(1) E(ξn) = 0 and E\ζn\
2+rί < co for some η > 0 .

We will also assume the following condition in [3] on the rate of
ό-mixing:

(2) j > * - y / 2 ( r ) < oo .
<] = 1
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It is proved in [3] that under these conditions: lim^^ n-gVar(Snt%t...n) =
<72(<oo) where

σ2 = Σ E(ξoζj) . (Here ξ0 = fo,o,.,o) .

To avoid trivial complications we will assume σ2 > 0.
We denote by Kσ the Strassen's set of continuous functions on

Tq'

( ChCh Πq
Kσ = ]x: x(tl9 t2, , tq) = \ \ I y(ul9 u2, - », n^dn^u^ - > du

K Jo Jo Jo

S i ri

• I y\ul9 u2, , uq)dux - - duq ^ σ
o Jo

q

Theorem 1 below is a Berry-Esseen type theorem dealing with
the speed of convergence of (normalized) Sn>nt...}n to normality.
Theorem 2 is a functional LIL for these partial sums.

Denote by (Hn: n^ΐ) the sequence of random functions in Dq

defined by

Hn(t) = (2nqloglogn)-ί/2Sίnh,ίnhh...,[ntq,

where t = (tl9 t2, -,tq)eTq and [•] is the usual greatest-integer
function.

2* Theorems and proofs*

THEOREM 1. Let Φ be the standard normal distribution func-
tion. Then under (1) and (2) there exists C > 0, a > 0 such that

sup|P{σ-%-9/2S.,%,..,. < t) - Φ{t)\ < Cn~a , for all n .
X

Proof. For simplicity suppose q — 2.
For given integers n, a = a{n) and 6 = b(n)9 let μ be the largest

integer such that μ(a + b) <L n. Then subdivide the square (0, n]x
(0, n] into blocks by taking the product of 2 copies of the partition
0 < α < α + &<2α + δ < <μ(α + δ)<w. If 1 ^ m <: μ9 denote
by Ima the interval ((m — l)(α + 6), (m — l)(α + 6) + α], by Jmδ the
interval ((m — l)(α + b) + α, m(α + 6)] and /(Aί+1)α = (μ(a + 6), w].
Set

= . Σ. J (1, 1) ^ m ^ ((JM + 1), /ι + 1)

βUn)= Σ fj (1, 1) ^ m ^ 0« + Λ)

fj (1, l)^m^(j« + lf /ί)Σ
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un = Σ am(n) v'H = Σ β'Λn) < = Σ β"(n) <" = Σ β'"(n) .
w^ = l ίλi^ = l in m

Then SΛtΛ = wn + < + v» + <".
Because of condition (2), by Proposition 1.1.20 of [6], we have

E(j2

m(n)) = #(τm)(α2 + ft(rm)) where γi stands for one of the am or
βZ, βZ', β£ and #(τ«) is the "size" of the block 7. and pUrm) -> 0 if

Furthermore, as in Theorem 1.1.22 of [6] we get:
( i ) -E^ 2 ^ [1 + 4:μ2φ1/2(a)][μ2b2(a2 + /96)]

( i i ) Ev"* ^ [1 + 4(^ + l)V1/2(&)][^2α6(ί72 + ^ J + ^ δ ( ^ - μ(a + &))

(iii) pai) + μb(n b))

i

For (1, 1) ^ m <; (j«, j«) define α'm(«.) to be independent random
variables having the same law as aa>ι)(n); then as in Theorem 1.1.22
of [6] we get:

(iv)
Σ a'J

(μ

For this computation, it is easy to show that the "end blocks"
αn(w)(with m, or m2 equal to μ + 1) become negligible for large n.

/»=i(v)

because by [4, Lemma 7]. j&(|α(lll)|
ι+') g

cs{μ

^ - ^ _ φ ( tσVn"

^- ^ Ac,(l + μ)'

(vi) Φ
V{μ p.)

•ίσ) - Φ(0

< maxίl, nΔoά

+ +

From (i)-(vi) and using a similar argument as in Theorem 1.1.22 of
[6], for r > 0

ψ(n)

TEv'n , j&v» , JB??;̂ "

"τV9" ^79" τ2/9
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If we choose a = [n'6] b = [rϊ*] τ = [n1-*] 0 < e < 1 then μ = O(n'4) and
n — μ{a + b) = O(n'6). Since condition (2) implies that rqψm(r) -» 0;
then

(μ + = ((μ + iYφ{b)){μ + I)"2 - O(n~'8) .

r2/9
(constant)^2&2(g2

= o(» 2 ε - 4 ) .

since μψ\a) > 0 .

= O(nu-t) .

Similarly

_ μ(a

r2/9

-W7 < 0 -

Then

if we set: ε = a = — whenever δ > — .
15 ~ 6

e = a = .48 whenever 0 < δ < — .
6

An analogous proof is valid for the q > 2, in that case take

S ~ a ~ Ϊ5 l ^Sq

ε = a = (.2g<5) if not .

REMARK. From the proof, it can be seen that a more general
theorem can be obtained if we replace S«f»,...,» by Sn where n' =

^ 2 , , nθq) 0 < ^ ^ 1. Then we have
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sup|P{ff-l»-"*(0, (?,)-1/2S»- < t) - Φ(t)\ < Cn-a Vn .
n

In fact it is in this stronger form that we will use it in the proof
of Theorem 2.

THEOREM 2. Let (1) and (2) be satisfied. Then

(a) P{limsup d(HΛ, Ka) = 0} = 1 ,

and

(b) P{Π [lim inf d(Hn, a?) = 0]} = 1 .

Proof. We will give only a very brief sketch of the proof since
the arguments used are fairly standard and can be found e.g., in
Chover (1967) and Wichura (1973). Take q = 2 for simplicity and
σ = 1 without loss of generality.

We begin by showing a kind of asymptotic equi-continuity in
the following form: Let B = ILfe, t<] be a block in Tg; write
m(B) = min^^^tί - sj . Then

LEMMA 1. Given ε > 0, 3δ > 0 such that if B is any block with
m(B) < δ then the event {\Hn(A)\ > ε} occurs only finitely often wp.l.

Proof. Standard arguments (using the triangle inequality) such
as those appearing on pp. 56-59 of Billingsley (1968) show that it
suffices to prove the following: Given ε > 0, 3δ > 0 such that

I Sttj I

+ P{max I Sttj \ > sVZn2 loglog n}] <

But this can be proved in a straightforward manner using the
maximal inequality developed on pp. 713-714 of [3], Theorem 1 above
and the arguments in § 3 of Chover (1967). We omit the details.

Let now m be a positive integer. Consider a partition of the
unit square (ϊ72) into mxm squares with corners (i/m, j/m), 0 <̂  i,
j <>m. We enumerate these squares (blocks) arbitrarily as Bim,
1 <̂  i <; m2. Let y > 0 be a small positive number and denote by
B*m = Bfm(Ί) the square which is concentric with Bim (and is con-
tained in Bim) with each side being equal to (1 — 2y)/m.

If x is a function on T2 we denote by πmx the function on T2

defined by

S
ilΓ ί2 m 2

I Σ m2x(Bίw)IBim(uu u2)duxdu2
o Jo ί=i
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where IB stands for the indicator of the block B.
Lemmas 2 and 3 below follow easily from the arguments used

in proving Corollaries 1 and 2 in Chover (1967). Lemma 4 is im-
mediate from Lemma 1.

LEMMA 2. Given ε > 0, 3m such that

P{d(πmHn, HJ > ε only finitely often (in n)} = 1 .

LEMMA 3. Given ε > 0, 3c > 1 such that, wp. 1,
m&xcn<:m<:en+id(Hm, jHΓ[β»] > 6 for only finitely many n.

LEMMA 4. Given ε > 0, 3 7 > 0 such that for each m and i
(1 ^ i ^ m 2),

P{\Hn(Bίm) — Hn(Bfm)\ > ε for only finitely many n) = 1 .

We now proceed to prove (a) of the theorem. Let {θ^ 1 5g i <i m2}
be real numbers such that ΣΓ=\^ = 1. To prove (a) it suffices to
show that for each m,

< (1 + ε) for all large n\ = l .

In view of the preceding lemmas it thus suffices to prove (with
c > 1 sufficiently close to 1 and 7 > 0 sufficiently small)

Σ
n=l

But the proof of this is essentially the same as given in §4 of
Chover (1967). The only complication here is that the m2 random
variables {H[en](B*m): 1 ^ i ^ ^2} are not independent. But there is
enough separation among these and it suffices to apply Lemma 1.1.5
in Iosifescu and Theodorescu (1969).

To prove (b) take xeK witlΛΎid'x/dt^Ydt^ < 1. We need to
JoJo

show that Vε > 0, P(lim inf d(Hnf x) < ε) = 1. Again in view of the
preceding lemmas and the arguments in Sec.5 of Chover (1967) it is
enough to prove for sufficiently small δ > 0, 7 > 0

P(lim%_>oo sup Fn) = 1 where

F% = {\Hw(BL)-x(Bίm)\<3 , all ί, 1 ^ i ^ m2} .

[It might be noted here that (35) in [2] is insufficient; it should be
strengthened to Pilim^^ supf\Cvv)) = 1.] Now if the probability of
F% in computed on the assumption that the m2 random variables
{jEΓre»]CB& ): 1 ^ i ^ ^2} are independent then the error committed is
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at most m2φιven} which forms a term of a convergent series in n.
Hence using part (a) of the lemma on page 142 of [5] it is enough
to show Σ * P(FJ — °° Bu* given Theorem 1 this follows from
computations which are standard in the proof of Strassen's theorem.
This completes the proof of Theorem 2.
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var iance Principles for Mixing Random Fields" by I. Berkes and G.
Morrow. In this paper the authors prove a strong in variance prin-
ciple for some dependent random fields. It should be pointed out
however that our results do not follow from this strong invariance
principle of Berkes and Morrow because, for q > 1, the mixing con-
dition we use is not comparable to the mixing condition employed
by them.
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