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AN M-IDEAL CHARACTERIZATION OF G-SPACES
NiNA M. Roy

It is shown that a separable real Lindenstrauss space is
a G-space if and only if the intersection of any family of M-
ideals is an M-ideal. This result extends work of A. Gleit
and U. Uttersrud.

1. Introduction. A closed subspace of a Banach space V is
said to be an M-ideal if its annihilator is the range of an L-projection
on the dual space V*. A real Banach space V is a (Grothendieck)
G-space if there is a compact Hausdorff space K and a set {(k., k%, N\o):
a € A} of triples, where k,, k. € K and \, real, such that V is isometric
to the space of all continuous functions f on K which satisfy f(k,) =
NS (L) for all ae A.

Ulf Uttersrud proved in [12] that in a G-space, the intersection
of any family of M-ideals is an M-ideal; and he raised the question:
Does this property characterize G-spaces among those real Banach
spaces V in which ker(p) is an M-ideal for each extreme point p
of the unit ball in V*? In this paper we give a partial answer
by showing that this property characterizes G-spaces among sepa-
rable real Lindenstrauss spaces (L,-preduals). This generalizes Alan
Gleit’s result that a separable simplex space is an M-space if and
only if the intersection of any family of M-ideals is an M-ideal [5,
Theorem 2.3]. Our general approach will follow that of [5]; what
makes this possible is a theorem of J. B. Bendnar and H. E. Lacey
which describes a real Lindenstrauss space in terms of a barycentric
mapping [7, §21, Theorem 8]. Part of their theorem is stated below
at the end of §2. The main results in this paper are Theorems
4.1 and 5.2. The former, an existence theorem, is the analog for
Lindenstrauss spaces of [5, Theorem 1.4], and the latter is the M-
ideal characterization of G-spaces mentioned above.

2. Conventions. Throughout, V will denote a real Lindens-
trauss space and K the closed unit ball of V* with the weak* topology.
E is the set of extreme points of K, and Z is the weak* closure of
E. The homeomorphism o: Z — Z is defined by o(z) = —z. We denote
by C the space C(Z) of all real continuous functions on Z with the
uniform norm. For feC, the functions of and odd f are defined
on Z by of(z) = f(oz) and odd f = (f — 0f)/2. The space C, = C,(Z)
consists of the odd functions in C, that is, those fe€C for which
f =oddf. We shall frequently regard V as a subspace of C, and
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write f(p) in place of p(f), for peZ and f € V. The term measure
will denote an element of C*, that is, a regular Borel signed measure
on Z. For peC*, the measures oy and odd u are defined by ou(B) =
#(oB) and odd ¢ = (¢ — o¢)/2. An odd measure is a measure g for
which ¢ =odd g¢. The space C, is the range of the contractive
projection P defined on C by Pf =oddf. The adjoint P* is an
isometry of C¥ onto the space of odd measures. Thus we may regard
C# as the weak* closed subspace of C* consisting of all odd measures.
For a subset T of C* T denotes the weak* closure of T (relative
to C). Thus if T £ C#, then T < C*. For a subspace X of C,, X*
is the annihilator of X in C}. For z€ Z, d, denotes point mass at z,
and we define v, = o0ddd,. We shall use terminology and results
from [11] concerning the Choquet ordering and maximal measures.
If zeZ and p is any maximal probability measure on K representing
z, we define 7, = odd g£. (This is well-defined by Lazar’s theorem
[7, §21, Theorem 7].) For feC, the function f. is defined on Z by
J=(2) = S fdz, for each zeZ. Since 7, is supported by Z, we may
denote f:(z) by 7.(f). It is shown in the proof of the Bednar-Lacey
theorem [7, §21, Theorem 8] that for each feC, the function f.
(denoted there by f,) is integrable with respect to every peC*.
Their theorem includes the following characterization of V, which
first appeared as [4, Corollary 3.3]:

V={feC: f(z) = f(2) for all zeZ}.
3. Preliminary lemmas.

LemMmA 3.1. Q) ||zl = || f] for each feC.

(2) The map f — f. of C into the bounded functions on Z 1is
linear.

(8) If p is a positive measure and v is a maximal measure

which dominates tt in the Choquet ordering, then S fdp = S (odd f)dy
z z

Jor all feC.
(4) If feC, and z<€ E, then f.(z) = f(z).
(5) V={feC, f() = fu(z) for all ze Z ~ E}.

Proof. (1) and (2) are easily verified. In (8), the conclusion
holds for f the restriction to Z of a continuous convex function on
K [7, p. 217] and these functions are uniformly dense in C. Using
(1) and (2) as well, one may routinely verify that the conclusion
holds for every feC. To prove (4), let ze E and let ¢ be any
maximal probability measure representing z. Then z = 9, [11, p. 8].

Thus for feC,, f:(2) = 7.(f) = (odd p)(f) = pt(0dd f) = p(f) = £ (2).
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The statement in (5) follows from (4) and the Effros-Bednar-Lacey
characterization of V quoted at the end of §2.

LEMMA 8.2. Assume E 1s a Borel set. Then

Vi={peCh ) =| (/= fadp for all feCl}.

Proof. The inclusion 2 is clear by Lemma 3.1(5). The reverse

inclusion follows from Lemma 3.1(4) and the fact that the annihilator

of V in C* consists of those e C* such that S f:dp =0 for all feC.
zZ

(See proof of [7, §21, Theorem 8].)

LemMA 3.8. Let X be a Borel subset of Z such that cX = X,
and suppose p,veC} are related by v(f) = S fap for all feC,.
X
Then v(B) = (BN X) for every Borel subset B of Z.

Proof. If two odd measures agree on C,, then they are identical.
The conclusion now follows from [5, Lemma 1.1].

LEMMA 3.4. Assume V is separable. Let v, w € C} be related by
a)(f)=g (f — f)dge for all feC, Then w(B) = pu(B) for every
Z~E
Borel BC Z ~ E.

Proof. Let g, and g, be maximal measures which dominate g+
and g, respectively, in the Choquet ordering. Let f€C,. Then by
Lemma 3.1, parts (4) and (3), we have

o) = | = faap = sap - sap+| i
— SZ fdp — SZ Fd(odd 1) + Sz Fd(odd 1) .

Let Borel BC Z ~ E. Then w(B) = p(B) — odd p,(B) + odd z,(B) by
Lemma 8.3. But odd z4(B) = 0 = odd (B) because 6B S Z ~ E and
M, U, are supported by E. (K is metrizable.) Thus w(B) = u(B).

4. An existence theorem. In the following theorem, C}{Z;
(Z ~E)UY} denotes the space of all odd measures whose total
variation on (Z ~ E)UY is zero, and E, is the set of those points
p in Z such that evaluation at p» is an extreme point of the unit
in the dual A* of A.

THEOREM 4.1. Let V be a separable Lindenstrauss space, and
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let qe Z ~ E. Suppose Y is a closed set in Z satisfying

1. Yn(Z~FE)=1{q}.

2. YN-Y=0.

3. E~(YU-=-Y)=0.

4. 7,(Y) < 1/2.
Then A ={feV: f(y) =n,(f) for all ye Y} is a nontrivial Linden-
strauss space, A* is isometric to CHZ;(Z~E)UY}, and E,2FE ~
(YUu-Y).

The proof will be preceded by several lemmas following, to some
extent, the general pattern of Gleit’s proof of [5, Theorem 1.4]. Our
main objective is to show that C}/A* is isometric to C}{Z; (Z~E)U Y}.
In Lemmas 4.2-4.4 below, we preserve the notation and hypotheses
of Theorem 4.1. In particular, the separability of V implies that 7,
is supported by E.

Let S={v,;yeY}. (Recall that v, = oddJ,.)

LEMMA 4.2. Let preco(S). Then pis an odd measure on YU —Y
and (YY) = 1/2.

Proof. Clearly p is odd. Let {¢,} S co(S) be a sequence which
converges weak™ to ¢#. Then suppu, S YU —Y for each 7, hence
suppp S Y U —Y [2, III, §8, Proposition 6]. By Urysohn’s lemma,
there are g¢,, 9,€C with g, =1onY,9,=00on —Y, g9, =0 on Y, and
g.=—1on —Y. Let f =o0dd(g, + g,). Then feC,, f =1lonY, and
f=—1lon —Y. We have ,(f) = 1 for all », hence #(f) = 1. Thus

1= rap=w¥) - m-1) = 2(v),
The following notation will be used in Lemmas 4.3 and 4.4 and
in the proof of Theorem 4.1. We also preserve the definition of S
preceding Lemma 4.2. Let D = {feC,: f(y) = w,(f) for all ye Y}.
Let F = {/x € C¥: there exists an odd measure A on Y U — Y such that
(f) = SYU_Y fdn — 2z, (FMY) for each f eCu}. Leta =1 — 2z,(Y),
and let T'={v, — nrg2ye Y}

LEmMmA 4.3. (1) F = span(co(T)).
(2) D+=F.

Proof. To prove (1), we first show that co(T) S F. Let ve
co(T') and let A=y +x,. Then clearly » €co(S). Hence by Lemma 4.2,
L is an odd measure on YU —Y and A(Y) = 1/2. Therefore ve F.
Thus span(co(T)) < F because F is a linear subspace of C*. For the
reverse inclusion, let ¢ € F' and assume ¢ = 0. Then there is a nonzero
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odd measure A on YU —Y such that u(f) = S f an — 27, (FINMY)
YU-—

for all feC,. Since ) is odd, we have ont =A™, hence A = odd(2\n7F)
[4, p. 443]. Also, |[2\F]] = ||N]] because ||2)0*F]] = 20T (Z) = [N (Z) +
MZ) = IM(Z) = ||nf]l. Let \, and A, be defined by M(B) = 2x+(BN'Y)
and \(B) = 2A1(BN—Y) for all Borel B< Z. Then A\, + A\, = 2\,
hence oddn, 4+ odd», = A. Thus A, and A, cannot both be zero. We
consider first the case where one of A, is zero. Suppose A, = 0. Then
Ay = 2\T is a positive measure on — Y, and ||\;]|/|[|n]|=1. We then have
MoflIn]| € eo(fo_,: y € Y}) [11, p. 8], hence odd \/|[M[[€co({y_,:y € Y} =
co(—S8) = —co(S). Thus —n/||xn]|€co(S). Then (—)N/||\|]) — 7, € co(T),
and also 20(Y) = —||n»|| by Lemma 4.2. Hence gt =) — 2MY)7, =
—[IN(=M|IN) — =), and so pespan(co(T)). A similar argument
will show that if A, = 0, then )\/||\]|| € €o(S), and £ = [N (VN —7)
is in span(co(T)). We now consider the case A, # 0 and A, # 0. Then
M/l e eo({d,: y € Y)) and Myf([N.]| € €0({0_,: y € Y}). Hence odd \y/|[ N[l €
co(S) and —odd \,/|[x:]|€co(S). Then ||\ || = 20ddN\,(Y) and ||\,]| =
—20dd 2\,(Y) by Lemma 4.2. Hence ||\ — [[X:]l = 20(Y). Thus
A= [N (edd M/ M) — ) — (e[ ((—0dd Mo/ [[Na) — 7)) + 20 (Y )7y,
and so ¢ =\ — 2\M(Y)w,cspan(co(T)). Hence F' = span(co(T)). We
now prove (2). Clearly T < D+, hence F < D* by (1). Thus D* =
F. To show that F is weak* closed, it suffices to show it is norm
closed [3, V. 5.9]. We proceed as in Part A of the proof of [5,
Theorem 1.4]. Consider a g€ F. Then there is an odd measure \

on YU —Y such that p(f) = SY fdr — 2m(fIMY) for each f&C,.

By Lemma 3.8, for each Borel set B S Z, B =MBNYU-Y)) —
2w (B)MY). In particular, #(Y) = MY)A — 27,(Y)) = ax(Y). Thus
for each Borel set BC YU —Y, we have MB) = #(B) + 27, (B)i(Y)/ax.
Hence ¢ uniquely determines \. Further, since |M| =g+ CuY)/a)x,|
on YUY, we get [M(Y) = |p[(Y) +2|p[(Y)|7 (Ve < |lpll +
2| ¢#]| =, |l/ee. Henee [[N]] = IN(Y U —Y) = 2|\ [(Y) = [ ¢](2 + 4/a).
It can now be easily verified that F is norm closed. Hence F = D*.

LEMMA 44. (1) D*+Vi={u+rvipeD,veV* and ¢t =0o0n
Z ~ E}.
(2) A*=D++V-

Proof. To prove (1), let peD*. We will show g =g + p,
where u¢, € D, e V*, and g4(B) = 0 for every Borel BC Z ~ E. By
Lemma 4.3(2), we have u(f) = Mf) — 27,(F)MY) for all f €C,, where
A is an odd measure on YU —Y. Let N\, =X — 20({g})7, and let
t=xN— 2, (Y)m,. Then ), is an odd measure on YU —Y and
Mm{e)) = 0. Thus g, €D by Lemma 4.3(2), and g (f) = p(f) —
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2({ah (v (f) — = (f)) for all feC,. Letting g, = 2x({gh(v, — 7,), we
have g, V* by Lemma 3.1(5). Let Borel BC Z ~ E. Then \(B) =
0 = 7 (B), hence ,(B) = 0. This establishes (1). To prove (2), note
that A=DNYV, hence A' is the weak* closure of D + V*. To
show D' + V* is weak™ closed, we may use sequences (by the Krein-
Smulian theorem) because C is separable and D' + V* is convex [3,
V. 7.16]. Let {w,} & D* +V* converge weak* to w. Then the
sequence {||®,||} is bounded [3, V. 4.8]. Further, by (1) we have
for each #,w, = ¢, + v,, where pg,eD*, v, eV, and @, = v, on
Z~FE. Let feC, with ||f||£1. Then by Lemma 3.2, @,(f) =

m(f) + | _(f = f)do,. Hence

) = || sdo, | = soao,

- HEfdw" + Sz~Eftdw”
= |0.[(B) + w0,|(Z ~ E) = |0,[(2) = ||o.]] .

Thus ||#,|| £ ||®,||, hence the sequence {||,||} is bounded. Then the
weak* closure of {g,} is compact and metrizable, hence some subse-
quence of {z,} converges weak* to an element of D*. Assume, for
simplicity of notation, that {g,} cnnverges weak* to pgeD‘. The
sequence {||v,||} is bounded because ||v,|| < ||®,|| + ||#%.|] for each n.
-Hence some subsequence of {v,} converges weak* to an element
veV*. Then w = pu +veD* 4+ V-,

Proof of Theorem 4.1. We first show that A* is isometric to
CHZ; (Z ~ E)UY}. Since A* is isometric to C¥/A*, it will suffice
to construct an isometry of C¥Z; (Z~E)UY} onto C}/A*=
C¥/(D*+ + V*) (Lemma 4.4(2)). Let 6:C*Z; (Z ~E)UY}— C¥/A* be
defined by 6(y) = ¢t + A+ for each peC*Z; (Z ~ E)UY}. Clearly
0 is linear, and we claim that 6 is a bijection. For, suppose () = 0.
Then

peD +V)NCUZ; (Z~E)UY).

By Lemmas 4.4(1) and 3.2, there is g, € D* such that u(f) = w1 (f) +
g (f — f)dp for all feC, But |g|(Z~ E)=0, hence #= .
Z~E

Then by Lemma 4.3(2), ¢t =\ — 2\(Y)x,, where \ is an odd measure
on YU —Y. Then #(Y) =axY). Hence MY) =0 since (YY) =0.
Therefore ¢t = . But |g¢|/(YU —Y) =0, hence » =0, and so ¢« = 0.
Hence 6 is one-to-one. To show that 6 is onto, let yeC} and let

v, € C¥ be defined by v.(f) = g f-dv for all f €C, Define a measure
Z~E
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N on YU —Y by
nAah) = mn({—ah) =0, and A(B) = v(B) + v(B) + 2, (B)\(Y)

for each Borel subset B of (YU —Y) ~ {q, —q}, where )\, (Y) =
MY ~ {q}) is found by consistency. Let w,eC* be defined by

wlf)=| (F—fitv+| _fin - 2mGmT)

for each fe€C,. Then w,€ V' + D* by Lemmas 3.1(5) and 4.3. Thus
y— @,y + AL, To show vy — w, € CHZ; (Z ~E)UY}, let B be any
Borel subset of (Z ~ E) UY and let B, = BN (Y ~ {q}). Then w,(B) =
w(BN(Z ~E)) +w,(B) =v(BN(Z~ E)) + w,(B) by Lemmas 3.3
and 3.4. And o,(B) = —v.(B) + M(B) — 2x,(B)M(Y) = v(B) by
Lemma 8.8 and the definition of A,. Hence w,(B) = v(BN (Z ~ E)) +
v(B,) =v(B). Thus v — 0,eCHZ; (Z~ E)UY}. Since v —®,) =
v + A, we have that 6 is onto.

To prove that 6 is an isometry, let pe CH{Z; (Z ~ E) UY}. Then
6] = [lge + A*]| = inf{|[v[[: vep + A*}. Thus [[6()]| = ||#]|. For
the reverse inequality, we show |[v|| = ||#]| for all vep + A*. Let
vep+ At. Then 6(v—w,) =v+ At =p+ A*, hence v—w, = . Let
X=YU-Y. Then |yl =|r—aol =r-o|(E~X)S|v|(E~X)+
|w,|(E ~ X). If Bis any Borel subset of £ ~ X, then by Lemma
3.3, o,(B) =v(BN(Z ~ E)) — v.(B) + ,(BNX) — 2x,(B)\(Y) =
—v.(B) — 27,(B)\(Y). Hence w, = —y, — 2\(Y)7, on E ~ X, conse-
quently, |®,] = |v. + 20,(Y)7,| on E ~ X. From the definition of X,
we have

MY) = 20Y ~ {q}) = (Y ~ {q}) + (Y ~ {g}))/x .
Thus

lo,|(B ~ X) = |v:[(E ~ X) +2[v(Y ~ {g})
+ 2(Y ~ {g) 7, | (B ~ X)/ex .

And |7,|(E ~ X) < a because

|7, | (B ~ X) + 27,(Y) = |7, [ (B ~ X) + 27, [(Y)
= |7, |(B ~ X) + |7, |(X) = |7, |(E) = ||z || = 1.

Hence

o, (B~ X) £ [v:[(E ~ X) 4+ 2[v:[(Y ~ {g}) + 2|»[(Y ~ {q})
= |V |(E ~ X) + [v[(X ~{q, —q}) + [V[(X ~ {g, —a})
=N (E)+ [P [(X ~{g, —a}) S |[v: | + (X ~ {q, —q)) .
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Also ||y ]| < [¥](Z ~ B) because for || S 1, |»(n)=| fdvs
/(% ~ E). Therefore |o,|(E ~ X) < |»|(Z ~ E) + ||(X ~ {g, —a}),
and so || ¢#]| = [V|(B ~ X) + [v[(Z ~ E) + [»[(X ~ {q, —q}) = [|(Z) =
[lv]], thus completing the proof that ¢ is an isometry.

Continuing to denote YU — Y by X, let C*{Z; (Z ~ E) U X} be
the space of all measures whose total variation on (Z ~ E)U X is
zero. Gleit has shown that this is an L-space [6, Proposition 1.1].
The space CHZ; (Z ~ E)UY} is the range of the contractive pro-
jeetion P on C*{Z;(Z ~ E)U X} defined by P(¢) =odd g Thus
C¥{Z;,(Z ~ E)UY} is isometric to an L,-space [7, §17], hence A is
a Lindenstrauss space.

For each peZ ~ {0}, the evaluation functional (measure) 7, is
an extreme point of the unit ball in CF [7, §10, Lemma 3]. Let
peE ~ X. Then v,eCHZ; (Z~ E)UY}, hence v, is an extreme
point of the unit ball in C¥Z; (Z ~ E) UY}. Further, v, is mapped
onto v,]A = p|A by the composition of isometries

0:CHZ, (Z ~E)UY}——C}/A+ and C}/A+— A*.

Thus pe E,. Hence K, 2 F ~ X.
Finally, A is nontrivial because E ~ X = ¢; and this concludes
the proof of Theorem 4.1.

5. The characterization. In thissection, @, denotes the measure
defined by w, = 2n] for each z€Z. Properties of w, were studied
and used effectively in [4]. In the proof of Lemma 5.1 below, I}
and I° denote the annihilators of I, and I, respectively, in V*. This
lemma is the analog for Lindenstrauss spaces of [5, Lemma 2.2].

LeEMMA 5.1. Let V be a Lindenstrauss space. Let qeZ ~ H,
q # 0. Suppose there exist pesuppw, N E and a net {g;} S E ~
{p, —p} which converges weak* to q. Suppose, further, there is an
element feV such that p(f) =0 and qi(f) =0 for all B. Then
there exists a family of M-ideals I, such that N I, is not an M-ideal.
If the net is a sequence, then the family of M-ideals is countable.

Proof. Let Iy ={ge V:qig) =0}. Then Ij = span(g;), hence I,
is an M-ideal [9, Theorem 5.8]. Let I = N I;, and suppose I were
an M-ideal. Then I° would be a weak* closed L-summand in V*
containing ¢q. Let L, be the intersection of all weak* closed L-
summands containing ¢, and let H, = L, K. Then L, is a weak*
closed L-summand [1, Proposition 1.13] and H, is the smallest weak*
closed biface containing ¢ [1, pp. 168, 169]. We have supp o, S H,
[4, Lemma 5.6], hence p € L,. Then, since L,  I° and f € I, it follows
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that p(f) = 0. But this contradicts the hypothesis p(f) # 0, so we
conclude that I is not an M-ideal.

THEOREM 5.2. Let V be a Lindenstrauss space, and consider
the statements:

(1) V is a G-space.

(2) The intersection of any family of M-ideals is an M-ideal.

(8) The intersection of any countable family of M-ideals is an
M-ideal.
One has that (1) = (2)=(3). If V 1is separable, then (3) = (1).

Proof. (1)= (2) was proved by Uttersrud [12, Theorem 10].

(2) = (3) is obvious.

Not (1) =not (8) (V separable). Suppose V is not a G-space.
Then there exists ge Z ~ [0, 1]E [4, Theorem 6.3]. Since ¢ %= 0,
o,/l|,|| is a maximal probability measure [4, p. 444], hence is sup-
ported by E. Thus suppw, N E # @. Then since ¢¢[0, 1]E and
@,(f) = f(g) for all feV, there must be two linearly independent
points, say p, and p,, in supp @, E. Since g€ Z ~ E, there is a
sequence {q,} & E ~ {£p,, +p,} which converges weak* to ¢q. Let
Y=[g:n=12---}U{q}. Wemayassume YN —Y = @. Wealso
have 7, (Y) < 1/2. To see this, let ¢ be any maximal probability
measure representing q. Then @, < ¢ [4, p. 443], hence supp @, &
supp . Since Y is closed and p, p,¢ Y, it follows that (YY) < 1.
Then, since 7, = odd g, we have 7,(Y) < 1/2. Let A ={feV: f(y) =
7, (f) for all ye Y}. Then by Theorem 4.1, A is a nontrivial subspace
of V and p,, p,€ E,. We note that p,|A # £p,| A because 7, # *7,,.
(See the end of the proof of Theorem 4.1.) Hence there are f;, f,€ A
with fi(p,) =1 = fi(p,) and fi(p,) = 0 = fy(p,). We consider the two
cases f,(q) =0, fi(q) #+ 0. Suppose fi(q) =0. Let f =f,. Then feV
because f e A, and f(g,) =0 for all n because f(g) =0 and feA.
Taking p, = p in Lemma 5.1, we see that Lemma 5.1 implies that
(8) is not true. Now suppose fi(q@) # 0. Let f = fi — (fl@)/fol@)f5
Then feV and f(q9) =0. Hence f(g,) =0 for all n because f ¢ A.
Also, f(p) = filp)) # 0. Thus with p = p,, Lemma 5.1 implies that
(8) is not true.

REMARK. In [10, p. 78], there is an example of a Lindenstrauss
space which is not a G-space and which illustrates well the above
proof.

COROLLARY 5.8 [5, Theorem 2.3]. A separable simplex space is
an M-space if and only if the intersection of any family of M-
ideals 1s an M-ideals.
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Proof. This follows from Theorem 5.2 above and the diagram
of classes of Lindenstrauss spaces in [8, p. 181].
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