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THE SYMPLECTIC GROUP OVER A RING
WITH ONE IN ITS STABLE RANGE

B. KIRK WOOD AND B. R. MCDONALD

In this paper we determine the transitivity properties,
generators and commutator subgroups of the symplectic group
and its congruence subgroups over a commutative ring having
one in its stable range and 2 a unit.

1* Introduction* Much of the classical theory of the symplectic
group over a field has been generalized to symplectic groups where
the scalar ring is local. The papers [6], [8], [11], [12], [17], [18]
and [19] contain much of this literature and an introduction is
provided in the monograph [13].

When using the local ring the technique is often to either "lift"
results from the symplectic group over the residue class field or to
utilize the abundance of units in local ring and mimic the arguments
over a field.

However, the key to much of this theory is the ability to
write units in the ring in a linear or polynomial fashion. This idea
was exploited in [14] and several subsequent papers on the orthogonal
group. In this paper, we show that the basic theory of the
symplectic group over a commutative ring is available if the ring
has "one in its stable range". This stable range condition is defined
and discussed in (II). Examples of rings with one in their stable
range include local rings, semilocal rings, von Neumann regular rings
and zero dimensional rings.

The approach which allows this generalization is the extensive
use of the "Eichler-Siegel-Dickson transvections" rather than the
more traditional "symplectic transvections". In a sense, this
"linearizes" the theory, allowing arguments which resemble the
general linear group and elementary transvections. If R has one
in its stable range, then utilizing repeatedly the formulas (*) and
(**) we create units in desired locations. Once these units are
available, the standard results easily follow. It should be emphasized
that the theory we present is a consequence of formulas (*) and (**).

2* The symplectic group* Let R denote a commutative ring.
We let V be a free J?-module of j?-dimension n where n ^ 2. We
assume V has a nonsingular symplectic form β: Vx V-+R. That

in
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is, β is iϋ-bilinear, β(x, x) = 0 for all x in 7 and the iϋ-module
morphism from V to F* = Homβ(F, R) given by x-+ β( , x) is an
isomorphism. We call the pair (V, β) a symplectic space. When the
context is clear, (F, β) will be denoted by F.

Recall that an element x in V is unimodular if there is an /
in F* with f(x) = 1; equivalently, if x = αΛ + + αΛδΛ where
{&i, * , &J is a basis for F, then a? is unimodular if (au -••, an) = R.
If a; is unimodular then j?# is a free ϋJ-direct summand of dimension
one. We call Rx a line. If a? is unimodular and F = Rx 0 TF, we
call the protective module TΓ a hyper plane. Locally, W will have
dimension n — 1, but TF need not be free.

A hyperbolic pair {x, y) is a pair of unimodular vectors in F
with the property that β{x, y) = 1. The module H=Rx(&Ry is
called a hyperbolic plane and it is easy to see (for example, see [13],
pp. 150-151) that F splits as an orthogonal direct sum F = H _L HL

where H1 denotes the orthogonal complement of H.

Any unimodular vector u may be complemented to a hyperbolic
pair as follows: By the above comments, there is an / in F* with
f(u) = 1. Since β is nonsingular, there is a v in F with 1 = /(%) =
β(u, v). Then {%, v) is a hyperbolic pair.

A ring R is stably free if whenever F = VΊ® P where F and
Fi are free ϋ?-modules, then P is a free iϋ-module. Combining this
with the above remarks on hyperbolic pairs, we have the following
proposition.

PROPOSITION 2.1. Let R be a stably free commutative ring and
V be a symplectic space over R. Then V is an orthogonal direct
sum V = Hλ 1 H2 J- -L Hm of hyperbolic planes Hl9 H2, , Hm.
In particular, the dimension of V is even.

Let (F, β) and (F, β) be symplectic spaces of the same dimension.
An JS-module isomorphism σ: 7-^ 7 is an isometry if for all x and
y in F, we have β(σ(x), σ(y)) = /3(x, y). In this case we say F and
F are isometric, denoted V ~ V. The group of isometries σ: (F, /3) —>
(F, /5) is called the symplectic group of V and denoted by Sp(F).

Suppose V — H 1_W where H = Ru0Rv is a hyperbolic plane
in F. We next define several standard isometries with respect
to H.
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(a) If x is in V with β(x, u) = 0, then the Eichler-Siegel-Dίckson
transvection (denoted ESD-transvection) σu>x is given by

σ»,x(v) = V + β(u, y)x + β{x, y)u .

If β(x, v) = 0, then σVtX is defined in a similar fashion.

(b) If ε is a unit in R, then define the isometry Φε by

φε(u) — εu , Φε(v) = ε"1!; ,

and Φ£(w) = w for all w in PΓ.

(c) Define the isometry Δ by Δ(u) = v, A(v) = — u and J(w) — w
for all ti; in W.

It is straightforward to check that the above are isometries.
(Note that β(σ(x), σ{y)) = β(x9 y) may be checked locally since each
of the above localize nicely at prime ideals of R and here one may
use ([13], pp. 159-161).)

A symplectic transvection τ is an isometry satisfying any of
the following equivalent statements:

(a) There is a unimodular vector a in V and a scalar λ in R
such that for all x in V,

τ(x) = x + λ/S(α, #)α

(b) There is a line L = Ra satisfying τ(x) — x is in L for all
x in F.

(c) There is a hyperplane P with τ | P = identity. (See Theorem
4.1, p. 191 of [13].)

The above symplectic transvection is denoted by τatλ and we call
L = Ra the line of τa>z and P the hyperplane of τa>χ.

The basic calculational properties of the above isometries are
summarized in the next lemma.

LEMMA 2.2. Let R be a commutative ring. Let V be a symplectic
space over R with V = H _]_ W where H = Ru 0 Rv is a hyperbolic
plane. Then

(a) σu>xσUty = σu>x+y, (σUjX)-1 = σUt_xf and σU)0 = /.
(b) If θ is in Sp(F) then θσuj~

ι = σθiu))θ{x).

(c) A-'ΦJ = Φε-i = Φ7\ ΦJΦε = Δ, Δ4 = /, ami Φ Λ Λ 1 = ̂ ....
/̂z-ê  a? is m TF.

(d) If x = au + x and y = δu + ηv + y where a, §, η are in
R and x, y are in W, then
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*•..(») = [3 + Zoo) + β(x, y)]u + ηv + (y + ηx) .

If x — av + x and y = δu + ηv + y with the same hypothesis as
above, then

σv,M = δu + [η- 2aδ + β{x, y)]v + (y - δx) .

(e) τ~\ = τ α ,_ ; , τa,λτatμ = τα>λ+JU a n d , more generally, τa>λτbfμ(x) =
« 4- [λ/3(a, x)a + ^/3(δ, x)b] + λ^/3(a, δ)/S(δ, a?)a.

(f) If Θ is in Sp(V), then θτΛtXθ~ι = rβ(β)>i.
(g) Γfce a&ove isometries may be written as symplectic trans-

vections and ΈSD-transvections as follows:

@ε — ?'u,ε(ε-D^v ,ε- ι(ε-i)T u+ v ,i_ε

Thus, each of the above isometries may be written as products
of ESD-transvections if 2 is a unit in R. Also, an argument
analogous to the discussion in ([13], pp. 193-197) shows that each
ESD-transvection may be written as a product of symplectic trans-
vections.

THEOREM 2.3. Let R be a commutative ring having 2 a unit.
Let V be a symplectic space over R with V = H ± W where H =
RuφRv is a hyperbolic plane. Suppose σ is in Sp(F). // σ(v) =
au + δv + t {t in W) and δ is a unit, then σ may be written as

o = σUiXσViyΦεσ

where σ is in Sp(W). Further, x is in (Ru)1, y is in (Rv)L, and
x, y, ε and σ are uniquely determined by σ.

(Note: We identify Sp(TΓ) as a subgroup of Sp(F) by σ^
I ± σ.)

Proof. Suppose σ(v) = au + δv + t where δ is a unit. Then

Ouj-H+t-hamuiy) = v + δ~H + δ-'au

= δ~ι[au + δv + t]

Thus, set

and we have 5(v) = v. Suppose σ(u) = γ(^) + j«v + s (s in TΓ). Since
β(u, v) = 1, we have σ(%) = % + ^v + s. Then
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σV){μ/2)υ+s(σ(v)) = v .

That is,

where σ\H = identity, i.e., <? is in Sp(W). Thus, using 2.2, σ =
Gu,χβv,yΦβ for suitable #, ?/ and ε.

It remains to check uniqueness. Assume

σu,xσv,yΦεσ = σu,Xχσv,yiΦtχσγ .

Apply both sides of the above equality to v. We obtain

s~~ιβ(xf v)u + ε"1^ + ε~xx = erιβ(xl9 v)u + εfV + εΓ1^

which implies ε = sle If x = α^ + ^ and α?x == αxu + xλ as in 2.2 (d),
then

an + v + (an + x) — aλu + v -\- (axu + xλ) .

Then, since 2 is a unit we have a = αL and subsequently x = α̂ . A
similar argument utilizing u will show y — yx.

Suppose that V splits as a direct sum of hyperbolic planes V =
H, ± H2 ± _L fίTO where iϊ, = i2u, 0 iZ^ for 1 ^ i ^ m. The
basis {uly vl9 u2, v2, ••, %», m̂} is called a hyperbolic basis of F.

Suppose we have the above hyperbolic basis for V. For x and
z in F, let

= Σ <w + Σ Tit;*,

and

« = Σ ^ + Σ ViVt
i=l i=l

If /3(a;, wj = 0, i.e., y1 — 0, then

If ^(a;, Vi) = 0, i.e., ^ = 0, then
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Σ
i

+ Σ \(δ; — δ1α7•)̂ 6,• + (j). — δ{il)vλ .
i=2

A commutative ring R is said to fcαve one in its stable range or
have stable range one if whenever a and /3 are in R with (α, β) = R
then there is a δ in J? with α + δβ = unit. Stable range one rings
(both commutative and noncommutative) have been examined from
a ring theoretic viewpoint in [3], [4], [5], and [20]. The role that
stable range one rings play in linear algebra and the general linear
group is discussed in [1], [4], [7], [15], [21], [22], [23], and [24]. This
definition was extended in [9], [10], [14], and [16] to examine the
structure theory of quadratic forms, Witt rings and the orthogonal
group. In particular, in ([14], 3.1) it was noted that a ring having
stable range one was stably free and, hence, for our purposes their
symplectic spaces are direct sums of hyperbolic planes. Examples
of rings with one in their stable range are local rings, semilocal
rings, von Neumann regular rings, and zero dimensional rings.

Suppose R has 2 a unit and stable range one. It is straight-
forward to show that if {x, ylf y2, , yJ = R then there are alf

a2y , an in R with

x + aλyλ + - + θίnyn = unit .

Returning to the above calcutation (*) (or (**)) suppose that
z = Σ t δiUt + Σ< Vivί is unimodular. Since 2 is a unit, we then have

(δl9 2ηlf —δ2, Ύ]2y , — δm9 τjm) = R .

Thus, there exist al9 a2, , αw, 72, 73, , Ίm with

δx + 20^! + Σ (aiVi — yβi) = unit .
i

That is, if x = aλuλ + + amum + y2v2 + + ymvm then

where δ is a unit.

We will now develop a number of consequences of the above ob-
servation. First, is a sharpening of 2.3.

THEOREM 2.4. Let R be a commutative ring with stable range
one and 2 a unit. Let V = H 1 W be a symplectic space over R
where H=Ruξ£)Rv is a hyperbolic plane. Let σ be in Sp(F).
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Then there is a z in V such that

o = σU)Zσu,xσv,yΦεσ

where x is in (Ru)1, y is in (Rv)L, ε is a unit, and σ is in Sp(TΓ)
and each is uniquely determined by σ and z.

Proof. Consider the unimodular vector σ(v). By the discussion
before 2.4, there is an ESD-transvection σu>z with

(σu,zσ)(v) = σu,z(σ(v)) = au + δv + t (t in W)

where 8 is a unit. The result now follows from 2.3.

Let H = Ru φ Rv be a hyperbolic plane. Let i?O, v) denote the
subgroup of Sp(F) generated by the isometries of the form σUtX

and συ>y for suitable x and y. Let P(u, v) denote the group generated
by the Φε for ε a unit. Finally, let E(H) denote the subgroup
generated by all ESD-transvections σa,x and σbfV where H = i2α φ Rb
and /3(α, 6) = 1.

COROLLARY 2.5 (under the hypothesis of 2.4).
(a) Sp (F) =
(b) S

Proof. Part (a) follows immediately from 2.4. Part (b) follows
from 2.4 and part (g) of 2.2 which shows each Φε may be written
as a product of elements in E(H).

COROLLARY 2.6 (under the hypothesis of 2.4). The group E(H)
is a normal subgroup of Sp(V).

Proof. Let τ = σUiZ be in E(H). Let p be in Sp(F). By 2.5,
p = σp where σ is in JE?(JEΓ) and p is in Sp (IF). Then

= σσ^jωσ-1 (by 2.2(b))

and this final product is in E(H).

Under the hypothesis of 2.4, the symplectic space V splits as an
orthogonal sum V = i?x JL J_ i/» where the fl, are hyperbolic
planes. On the other hand V = H± _L W. Since orthogonal comple-
ments are unique, W = H2 ± _L Hm. An induction argument will
now give the first part of the following corollary.
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COROLLARY 2.7 (under the hypothesis of 2.4). Suppose V = Hx _L
H2 l 1 Hm is a decomposition of V into hyperbolic planes. Then

(a) Sp (V) = E(HύE{Hύ E(Hm). Thus, the symplectic group
Sp(F) is generated by ΈSΌ-transvections.

(b) Each element in Sp(F) is a product of ^6m ΈSD-transvec-
tions where m = (dim V)/2.

Proof Part (a) is immediate. Part (b) follows from 2.4, 2.2(g)
and induction.

We next develop some transitivity results related to the calcula-
tions (*) and (**).

Let R have stable range one and V = H ± W where H — Ru 0 Rv
is a hyperbolic plane. If z is a unimodular vector in V then, by
using (*) and the calculation prior to 2.4, there is an ESD-transvec-
tion σU}X with

ou,x{z) = δu + ηv + z (z in W)

where δ is a unit. Let y = δ~ιz. Then

σv,yσU)X(z) = σv>y[δu + ηv + z]

= δu + ηv + (z - δi/)

= δu + ^v .

That is, σv>yσUtX(z) is in the hyperbolic plane H.

THEOREM 2.8. Let R be a commutative ring with stable range
one and 2 a unit. Let V be a symplectic space over R. Then,

(a) Sp(F) is transitive on unimodular vectors.
(b) Sp(F) is transitive on hyperbolic planes.

Proof (a) Suppose z and z are unimodular vectors in V. By
the above discussion, there are products σλ and σ2 of isometries in
Sp(F) such that

σλ(z) = δu + ηv

σ2(z) = δu + ηv

where δ, δ are units and H = RuφRv is a hyperbolic plane. Consider
the vector σ^z) — δu + ηv. Then Φs-^σ^z)) = u + μv where μ = δη.
Then, using transvection τ = τv+u+μV)lf we have

= -v .

Similarly, a product of two isometries will carry δu + ηv to —v.
That is, there are products Σ i and Σ2 of isometries with
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i.e., Σϊ^ΣiOs) = 2. This completes part (a). To show (b), let {u, v}
and {x, y} be hyperbolic pairs. Since u and x are unimodular, there
is a suitable product σ of isometries so that σ(u) = as. Thus, with-
out loss of generality, assume u = x. We need to carry v to y
while fixing u. Let y = an + dv + w where w is in (RuφRv)1.
Since 1 = β(x, y) = β(u, y) = δ, we have y = an + v + w. Then

K y) • {w, «^ + ̂ } ^ {̂ , v} ,

and we are done.

COROLLARY 2.9 (cancellation). Let R be a commutative ring
having stable range one and 2 a unit. If U, V and Y are
symplectic spaces with U L V — U _L F, then F ^ 7.

Proof. By an induction argument, it suffices to prove the result
when U = H is a hyperbolic plane. Let σ: H JL F—> i ϊ J_ 7 b e an
isometry. Let 1^ = α (£Γ) and Vλ = σ(V). There is a product τ of
elements in Sp (Hi Y) with τiϊ, = H. Then τίfr = H\ i.e., τ F ^ Γ .
Thus F ^ Γ.

If F is a symplectic space of dimension 2 over a commutative
ring with stable range one, then Sp (V) is precisely the special linear
group SL(F) of V. In this case, the structure of SL(F) is given
in [15].

PROPOSITION 2.10 (under the hypothesis of 2.4). The center of
Sp (V) is precisely

{al\a is in R and a2 = 1} .

Proof. If dim(F) = 2, this is given in [15]. If dim(F) ^ 3,
the proof is analogous to ([13], Thm. 3.22).

Let A be an ideal of R. The natural ring morphism πA: R —>
R/A induces a surjective morphism πΛ: V—> V/AV of symplectic
spaces where if F = (V, β) then (V/A V, β) is given by

β(πAx, πAy) = πAβ(x, y) .

It is easy to see that R/A has stable range one if R has stable
range one, e.g., see (Prop. 2.6(a) of [14]). In turn, πA induces a
group morphism πA: Sp (F) —• Sp (V/AV) by

) = πA(σ(x)) .
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A splitting V = Hx _L ± Hm of V into hyperbolic planes
induces a splitting of V/A V — Hx j_ J_ ϊfm into hyperbolic planes
where πAHt — Hi9 1 <. i <ί m. Each generator, i.e., ESD-transvec-
tion, in E(Bt) has a preimage under πA in E(H?). By 2.7 these
elements generate Sp (7/47). Thus, we have the following proposi-
tion.

PROPOSITION 2.11 {under the hypothesis of 2.4). The group mor-
phίsm πA: Sp (V) —> Sp (V/AV), where A is an ideal, is surjective.

We now study the commutator subgroup of Sp(F). To achieve
the expected results we will see that we need units ε and η in R such
that ε - η = 1. If 3 is a unit in R, then 3 - 2 = 1 and 3 and 2 will
do. More generally, we can always assure this will happen if R has
"2-fold" stable range one. Precisely, R has 2-fold stable range one
if whenever (alf δj = R and (α2, δ2) = ϋ? then there is an a with
a1 + αδi = unit and a2 + α&2 = unit. The concept of "Axfold stable
range one" rings was introduced in [7]. Suppose R has 2-fold stable
range one. Then, using (1, 1) = R and (0, 1) = R we can find rj with
1 + η = ε (unit) and η = unit. Thus, we have units ε and ΎJ with
ε — η = 1.

If G is a group, denote the commutator subgroup of G by [G, G].

THEOREM 2.12 (under the hypothesis of 2.4). Suppose there
exists units ε and η in R with ε — Ύ] = 1. T%e%

S p ( F ) - [ S p ( F ) , S p ( F ) ] .

Proof. It suffices to show that each generator σU)X or σVfX of
Sp(V) can be written as a commutator. Consider σUlX. Select units
ε and η in R with ε — η = 1. Let α = 37-1. Then

(by 2.2)

(by 2.2)

The isometry σr,x is handled similarly.

3* The congruence subgroups* Let A be an ideal of the ring
R. As noted in the previous section, the ring morphism πA: R —> R/A
induces a group morphism πA: Sp (V) -*Sp (V/AV). The group
morphism is in general not surjective; however, if R has stable
range one and 2 a unit then it is surjective by 2.11.
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The general congruence subgroup of level A is

GSp (V,A) = πj1 (center (Sp (V/AV)))

where 0 gi A §Ξ R. The special cases are

GSp (V, R) = Sp (F) , GSp (7, 0) = Center (Sp (F)) .

If 0 g A §Ξ i?, then the special congruence subgroup of level A is

= {α in

The special cases are

SSp (V, R) = Sp (F) , SSp (F, 0) - {/} .

If a is in iϋ, then the order of α, denoted O(a), is the ideal
generated by α. If x is in V, then the order O(x) of x is the
smallest ideal A of R satisfying πAx = 0. Note that if x = Σ î&i
relative to a basis {6̂  δ2, , δ j , then O(a?) = (α1? α2, , α j . If σ
is in Sp(F), then the order O(σ) of σ is the smallest ideal A satisfy-
ing πAσ is in Center (Sp(V/AF)). That is, O(α ) is the smallest ideal
A with σ in GSp(F, A)1. If G is a subgroup of Sp(F), then the
order O(G) of G is the smallest ideal A with G ^ GSp(F, A).

LEMMA 3.1. For the ίsometries in (2),

(1) 0 ( 0 = 0(s), 0 ( 0 - 0(s).
(2) 0(τα,,) = 0(λ).
(3) O(J) = Λ.
(4) O(Φ.) = (e- l ) .

THEOREM 3.2. Le^ R be a commutative ring and A be an ideal
of R. Let V = H JL W be a symplectic space where H = Ru 0 Rv
is a hyperbolic plane. Suppose

X = §u + 7]V + X

y = δu + Ύ}V + y

(x, y in W) where x = y modulo AV. If δ and δ are units, then
there is an isometry σ in SSp(F, A) with σ{x) = y.

Proof. Let z = δ~ιy. Then

°v,M = δ + 7}v

where ^ = η — β{δ~ιy, x). Set q = x — δδ~ιy. Since x Ξ y modulo
1 This ideal exists due to 2.10.
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A V, we have δ = δ modulo A and x = y modulo A V, and consequent-
ly O(q) c A. Let σλ = συ>δ-iq. Then Ofo) c A, i.e., aλ is in SSp (V, A),
and

0v,z(y) = δu + ηv

where δ and δ are units. Since δ = δ modulo A, we have δδ~x = 1
modulo A. Then

Φjισ1σv>z{x) = u + λv

where 1 + α is a unit and α is in A. Then, Φr+α is in SSp(F, A)
and

ΦϊlaΦ^σvΛy) = u + μv

where λ = μ modulo A, Let λ = μ — α where α is in A. Then

= u + λv

where σVtaυ has order cA. That is, if σ = σ~%ΦbΦ1^aσ~\vΦ^1σ1σVyZ then
0 (α?) = ?/. Further, σ = I modulo A and thus (7 is in SSp(F, A).
This completes the proof.

We note that, using the calculations in 2.2, the above expression
for σ may be rewritten as a product of ESD-transvections of orders
cA.

Suppose R is a commutative ring with 2 a unit and 2-fold stable
range one (see discussion before 2.12): Let V = Hx _L _L ϋΓm be
a decomposition into hyperbolic planes where Ht = Rut 0 Rvt for
1 <Ξ: ΐ <; m. Let

u — uλ , v = Vi ,

x = Σ δlι)ut + Σ ί̂1}v< , and
i i

y = Σ ί{»W( + Σ #Bt>«

be unimodular vectors in V with a? = y modulo AV. Since 2 is a
unit and x and y are unimodular,

for i = 1, 2. Since i? has 2-fold stable range one, it is straightfor-
ward to produce alf a2, , αTO, τ2, , 7» with
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δί« + 2αtfί« + Σ [aflf - Ίβf] = μt
j

where μ4 is a unit for i = 1, 2. Thus, if w = α ^ + .. - + αwum +
72̂ 2 + + Tm̂m then (in the notation of 3.2).

<*uΛv) = δu + ηv + y

where σUίW(x) = σu,w(y) modulo A and 3 and δ are units. Combining
this discussion with Theorem 3.2, we have the next result.

THEOREM 3.3. Let R be commutative ring which has 2-fold
stable range one and 2 a unit. Let A Φ R be an ideal in R. Let
V be a symplectic space over R and E = {x in V\x is unimodular}.
Then SSp (V, A) acts as a transformation group on E and the
SSp (V, A)-orbits of E are precisely the congruence classes of E
modulo AV.

Thus, under the hypothesis of 3.3, then for x and y in E we
have x = y modulo A V if and only if there is a a in SSp (V, A) with
σx = y.

COROLLARY 3.4 {under the hypothesis of 3.3). The group
SSp (V, A) acts as a transformation group on the family Sίf of
hyperbolic planes of V. Two hyperbolic planes H and H are in the
same SSp (V, A)-orbit if and only if πAH = πAH.

Proof The proof is similar to the proof of 2.8(b) or the proof
in the local ring case given in ([13], Theorem 3.24).

COROLLARY 3.5 (under the hypothesis of 3.3). The group
SSp(F, A) is generated by ESΌ-transvections of order contained in A.

Proof The proof is analogous to the proof where R is a local
ring given in ([13], Theorem 4.9). The key idea is that if x = y
modulo AV then the σ in SSp(F, A) with σ(x) — y may be written
as a product of ESD-transvections as was noted after Theorem 3.2

COROLLARY 3.6 (under the hypothesis of 3.3).

SSp (V, A) = [Sp (V), GSp (V, A)] = [Sp (V), SSp (V, A)]

where A is an ideal of R.

Proof. The case A = R is given in the previous section. We
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may assume A Φ R. By reducing modulo A, it is easy to see that

[Sp (F), SSp (F, A)] c [Sp (F), GSp (F, A)] c SSp (F, A) .

So it suffices to show that each generator of SSp (V, A) is in
[Sp (F), SSp (F, A)]. Consider σu>z where the O(x) c A. Select units
ε and a as in the proof of 2.12. Then O(σu>aX) = O(σ%,JcA and, as
in 2.12,

σU}X = [Φε, tfw,αa;]

thus, a.,, is in [Sp(F), SSp(F, A)].
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