MAPS ON SIMPLE ALGEBRAS PRESERVING ZERO PRODUCTS. II: LIE ALGEBRAS OF LINEAR TYPE

W. J. Wong

Abstract

The study of maps on an algebra which preserve zero products is suggested by recent studies on linear transformations of various types on the space of $n \times n$ matrices over a field, particularly Watkins' work on maps preserving commuting pairs of matrices. This article generalizes the result of Watkins by determining the bijective semilinear maps f on a Lie algebra L with the property that

$$
[x, y]=0 \Longrightarrow[f(x), f(y)]=0,
$$

where $x, y \in L$, for a class of Lie algebras constructed from finite-dimensional simple associative algebras.

Introduction. In [8] we began the study of the semilinear maps on an algebra over a field k which preserve zero products, a problem arising from recent investigations characterizing the linear transformations on the $n \times n$ matrix algebra $M_{n}(k)$ over k which preserve various properties, particularly the work of Watkins on maps preserving commuting pairs of matrices [7]. If L is a Lie algebra, this means that we are concerned with the bijective semilinear maps f on L such that $[f(x), f(y)]=0$ for all pairs of elements x, y of L such that $[x, y]=0$. We say that f preserves zero Lie products.

If L is finite-dimensional, these maps f form a group $G(L)$ [8]. Clearly $G(L)$ contains the group G_{1} of all semilinear automorphisms and anti-automorphisms (semilinear maps which are automorphisms or anti-automorphisms of the multiplicative structure of L), the group of units G_{2} of the centroid of L (the algebra of linear transformations which commute with left multiplications in L), and the group G_{3} of all bijective transformations f of the form $f(x)=x+g(x)$, where g is a linear map of L into its center $Z(L)$. Let $G_{0}(L)=$ $G_{1} G_{2} G_{3}$.

In this paper we determine $G(L)$, for a class of simple Lie algebras L. These are obtained by taking finite-dimensional simple associative algebras A over a field k and forming the Lie algebra $L=[A, A] /[A, A] \cap Z(A)$, where $[A, A]$ is the subspace spanned by all the commutators $[x, y]=x y-y x$, and $Z(A)$ is the center of A. If A is noncommutative, then L is a simple Lie algebra, except when A has characteristic 2 and is 4 -dimensional over $Z(A)$ [1, p. 17]. Except for cases of "small length," we show that $G(L)=G_{0}(L)$ for such a Lie algebra L. In fact, we can deal with a wider class of

Lie algebras, including the case $L=A$ (Theorem II and Corollary 9). We say that these are Lie algebras of linear type, since A is isomorphic with the algebra of all linear transformations on a vector space over a division algebra. Our result includes that of Watkins [7], and its extension to nonalgebraically closed ground fields by Pierce and Watkins [6].

The proof of Theorem II uses a result about maps between tensor products of vector spaces, preserving rank 1 elements, modulo a certain subspace (Theorem I), and a knowledge of the structure of linear transformations on a finite-dimensional vector space over a finite-dimensional division algebra, generalizing the usual elementary divisor theory for fields (§ 2).

It would be interesting to find $G(L)$ for the cases not covered by Theorem II. A particularly intriguing case occurs with the simple Lie algebra L obtained from a simple associative algebra of characteristic 2 having dimension 16 over its center, where it may be possible that not all elements of $G(L)$ come from the generalized rank 1 preservers classified in Theorem I.

1. Generalized rank 1 preservers. In [8] we studied maps

$$
f: U \otimes V \longrightarrow U_{1} \otimes V_{1}
$$

of tensor products of vector spaces over an associative division algebra D, preserving elements of rank 1. Here we shall need to consider the case when V and U form a pair of dual vector spaces, f may not be defined on the whole of $U \otimes V$, and the image of a rank 1 element under f is only assumed to be of rank 1 modulo a certain subspace S of $U_{1} \otimes V_{1}$.

We assume familiarity with the notations and facts concerning tensor products contained in [8]. If U and V are a right and a left vector space over a division ring D, then $U \otimes V$ is an additive abelian group, which is a k-vector space if D is a division algebra over a field k. In particular, $U \otimes V$ is a vector space over the center $Z(D)$. The rank of an element x of $U \otimes V$ is the least number r such that x has an expression in the form

$$
x=\sum_{i=1}^{r} u_{i} \otimes v_{i}, \quad\left(u_{i} \in U, v_{i} \in V\right)
$$

In this case, the sets $\left\{u_{1}, \cdots, u_{r}\right\}$ and $\left\{v_{1}, \cdots, v_{r}\right\}$ are linearly independent, and span subspaces $U(x)$ and $V(x)$ of U and V, which are uniquely determined by x [2, Lemma 3.1].

If also U_{1}, V_{1} are a right and a left vector space over a division ring D_{1}, we can speak of semilinear maps

$$
g: U \longrightarrow U_{1}, \quad h: V \longrightarrow V_{1},
$$

with respect to an isomorphism $\sigma: D \rightarrow D_{1}$. Such a pair of maps gives rise to a map

$$
g \otimes h: U \otimes V \longrightarrow U_{1} \otimes V_{1},
$$

such that $(g \otimes h)(u \otimes v)=g(u) \otimes h(v)$. Similarly, if $\sigma_{1}: D \rightarrow D_{1}$ is an anti-isomorphism, we can speak of semilinear maps

$$
g_{1}: V \longrightarrow U_{1}, \quad h_{1}: U \longrightarrow V_{1}
$$

with respect to σ_{1}, and these give rise to a map

$$
g_{1} \otimes h_{1}: U \otimes V \longrightarrow U_{1} \otimes V_{1}
$$

such that $\left(g_{1} \otimes h_{1}\right)(u \otimes v)=g_{1}(v) \otimes h_{1}(u)$.
If V, U form a pair of dual vector spaces over D with respect to a nondegenerate bilinear form \langle,$\rangle , and [D, D]$ denotes the additive subgroup generated by the commutators $\alpha \beta-\beta \alpha$, where $\alpha, \beta \in D$, then the map taking the pair u, v to the coset of $\langle v, u\rangle$ $(\bmod [D, D])$ is a balanced map of $U \times V$ into $D /[D, D]$, so that there is a homomorphism

$$
\operatorname{tr}: U \otimes V \longrightarrow D /[D, D]
$$

This is surjective, and is called the trace map. If D is a division algebra over a field k, then $[D, D]$ is a k-subspace of D, and tr is a k-linear map. If $U \otimes V$ is identified with the algebra A of finitevalued linear maps of V into itself which are continuous with respect to a certain topology defined by U (discrete if V is finite-dimensional), then the kernel of the trace map is the commutator $[A, A]$, so that the subspaces of A containing $[A, A]$ are in one-one correspondence with the subspaces of D containing $[D, D]$.

Because of the possibility of further applications, the result which we shall prove in this section is placed in a more general setting than that which is needed for the main purpose of this paper. The ingredients of the situation are as follows.

Hypotheses. (1) D and D_{1} are associative division algebras of finite dimension over a field k, with $\operatorname{dim}_{k} D \geqq \operatorname{dim}_{k} D_{1}$.
(2) (V, U) is a pair of dual vector spaces over D.
(3) C is a k-subspace of D containing $[D, D]$, and L is the k subspace of $U \otimes V$ consisting of all elements whose traces lie in $C /[D, D]$.
(4) U_{1}, V_{1} are a right and a left vector space over D_{1}, and S is a k-subspace of $U_{1} \otimes V_{1}$ containing no elements of rank 1 or 2.
(5) If S has an element of rank 3, then S is a 1-dimensional $Z\left(D_{1}\right)$-subspace of $U_{1} \otimes V_{1}$.
(6) $\operatorname{dim} V \geqq 3, C \neq 0$ if $\operatorname{dim} V=3$, and $\operatorname{dim}_{k} C>\operatorname{dim}_{k}\left[D_{1}, D_{1}\right]$ if $\operatorname{dim} V=3$ and S has an element of rank 3.

The technical conditions (5), (6) will be used in the proof of Theorem I. It is not clear to what extent they are really necessary. In Hypothesis (6), dim V indicates the D-dimension of V. We make the convention that the unqualified words dimension, linear, subspace, \cdots will always be taken to be with respect to D or D_{1}, as appropriate, and not with respect to k.

Theorem I. Assume Hypotheses (1)-(6), and suppose $f: L \rightarrow$ $U_{1} \otimes V_{1}$ is a semilinear map with respect to an automorphism μ of k, such that, whenever x is an element of rank 1 in $L, f(x)$ is the sum of an element of S and an element of rank 1 in $U_{1} \otimes V_{1}$. Then one of the following holds.
(i) There exists an element u_{1} of U_{1}, such that

$$
f(L) \subseteq S+\left(u_{1} \otimes V_{1}\right)
$$

(ii) There exists an element v_{1} of V_{1}, such that

$$
f(L) \cong S+\left(U_{1} \otimes v_{1}\right)
$$

(iii) μ can be extended to an isomorphism $\sigma: D \rightarrow D_{1}$, and there exist injective σ-semilinear maps $g: U \rightarrow U_{1}, h: V \rightarrow V_{1}$, such that

$$
f=(g \otimes h)_{L}+r,
$$

where $(g \otimes h)_{L}$ is the restriction of $g \otimes h$ to L, and $r: L \rightarrow S$ is a μ-semilinear map.
(iv) μ can be extended to an anti-isomorphism $\sigma: D \rightarrow D_{1}$, and there exist injective σ-semilinear maps $g: V \rightarrow U_{1}, h: U \rightarrow V_{1}$, such that

$$
f=(g \otimes h)_{L}+r
$$

where $(g \otimes h)_{L}$ is the restriction of $g \otimes h$ to L, and $r: L \rightarrow S$ is a μ-semilinear map.

The proof of this theorem resembles that of [8, Theorem A], except that we can use the fundamental theorem of projective geometry, because of Hypothesis (6).

We shall call a k-subspace of L a rank $1 k$-subspace if its nonzero elements all have rank 1. Such a k-subspace can be obtained by taking an element u of $U^{\#}=U-\{0\}$ and forming $u \otimes u^{0}$, where

$$
u^{0}=\{v \in V \mid\langle v, u\rangle \in C\},
$$

a k-subspace of V containing the annihilator u^{\perp} of u. If $d=\operatorname{dim}_{k} D$, $c=\operatorname{dim}_{k} C$, then $\operatorname{dim}_{k} V / u^{0}=d-c, \operatorname{dim}_{k} V / u^{\perp}=d . \quad$ Since $2 d+(d-c)<$ $\operatorname{dim}_{k} V$, by Hypothesis (6), we have

$$
u^{\perp} \cap\left(u^{\prime}\right)^{\perp} \cap\left(u^{\prime \prime}\right)^{0} \neq 0
$$

for all $u, u^{\prime}, u^{\prime \prime}$ in U. Similarly, if $v \in V^{\#}$, then $v^{0} \otimes v$ is a rank 1 k-subspace of L, where $v^{0}=\{u \in U \mid\langle v, u\rangle \in C\}$.

If an element w of $U_{1} \otimes V_{1}$ has the form

$$
w=s+t
$$

where $s \in S$ and t has rank 1 , then the rank 1 component t is uniquely determined by w, since $w=s+t=s^{\prime}+t^{\prime}$ gives $s-s^{\prime}=t^{\prime}-t$, and the only element of rank at most 2 in S is 0 . We shall write w_{0} for the rank 1 component t of an element w of this form. It will be convenient also to write $w_{0}=0$ for an element w of S. Clearly, if w_{0} is defined and $\alpha \in k$, then $(\alpha w)_{0}$ is defined, and is equal to αw_{0}.

Lemma 1. If $u \in U^{\sharp}$, then the $\operatorname{map} x \rightarrow f(x)_{0}$ is an injective μ semilinear map of $u \otimes u^{0}$ into $U_{1} \otimes V_{1}$.

Proof. Our assumption on f shows that $f(x)_{0}$ is defined and nonzero if x has rank 1 , and we have $f(\alpha x)_{0}=\left(\alpha^{\prime \prime} f(x)\right)_{0}=\alpha^{\mu} f(x)_{0}$, for $\alpha \in k$. Form $W=f\left(u \otimes u^{0}\right)$. It is enough to prove that if $w, w^{\prime} \in W$, $w+w^{\prime}=w^{\prime \prime}$, then $w_{0}+w_{0}^{\prime}=w_{0}^{\prime \prime}$. Suppose this is not so. Then $w_{0}+w_{0}^{\prime}-w_{0}^{\prime \prime}$ is an element s of S having rank 3, by Hypothesis (4). If $w_{0}=u_{1} \otimes v_{1}, w_{0}^{\prime}=u_{1}^{\prime} \otimes v_{1}^{\prime \prime}, w_{0}^{\prime \prime}=u_{1}^{\prime} \otimes v_{1}^{\prime \prime}$, then $\left\{u_{1}, u_{1}^{\prime}, u_{1}^{\prime \prime}\right\},\left\{v_{1}, v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}$ are linearly independent subsets of U_{1}, V_{1}, generating the subspaces $U_{1}(s), V_{1}(s)$.

If $\alpha \in Z\left(D_{1}\right)$, we see that $w_{0}-\alpha$ s has rank 1 or 3 unless $\alpha=1$. By Hypothesis (5), s is determined by w as the only element of S such that $w_{0}-s$ has rank 2 , and $U_{1}\left(w_{0}-s\right)=u_{1}^{\prime} D_{1}+u_{1}^{\prime \prime} D_{1}, V_{1}\left(w_{0}-s\right)=$ $D_{1} v_{1}^{\prime}+D_{1} v_{1}^{\prime \prime}$. If t is any element of W for which $(w+t)_{0} \neq w_{0}+t_{0}$, then the same argument with t in place of w^{\prime} shows that

$$
\begin{aligned}
& U_{1}\left(t_{0}\right) \subset U_{1}\left(w_{0}-s\right)=u_{1}^{\prime} D_{1}+u_{1}^{\prime \prime} D_{1} \\
& V_{1}\left(t_{0}\right) \subset V_{1}\left(w_{0}-s\right)=D_{1} v_{1}^{\prime}+D_{1} v_{1}^{\prime \prime}
\end{aligned}
$$

Similarly, if $\left(w^{\prime}+t\right)_{0} \neq w_{0}^{\prime}+t_{0}$, then $U_{1}\left(t_{0}\right) \subset u_{1} D_{1}+u_{1}^{\prime \prime} D_{1}, \quad V_{1}\left(t_{0}\right) \subset$ $D_{1} v_{1}+D_{1} v_{1}^{\prime \prime}$.

Now let Y be the set of all elements of $U_{1} \otimes V_{1}$ of the form $u_{1} \otimes \alpha v_{1}+u_{1}^{\prime} \otimes \beta v_{1}^{\prime}+u_{1}^{\prime \prime} \otimes \gamma v_{1}^{\prime \prime}$, where $\alpha, \beta, \gamma \in D_{1}$. Then Y is a k subspace of $U_{1} \otimes V_{1}$ containing S. Suppose that W is not contained in Y, and let $t \in W, t \notin Y$.

If $(w+t)_{0}=w_{0}+t_{0}$, then t_{0} has form $u_{1} \otimes v_{1}^{\prime \prime \prime}$ or $u_{1}^{\prime \prime \prime} \otimes v_{1}[8$,

Lemma 1]. If $(w+t)_{0} \neq w_{0}+t_{0}$, then $t_{0}=u_{1}^{\prime \prime \prime} \otimes v_{1}^{\prime \prime \prime}$, where $u_{1}^{\prime \prime \prime} \in$ $u_{1}^{\prime} D_{1}+u_{1}^{\prime \prime} D_{1}, v_{1}^{\prime \prime \prime} \in D_{1} v_{1}^{\prime}+D_{1} v_{1}^{\prime \prime}$. Considering $w^{\prime}+t$, we similarly have the possibilities that $t_{0}=u_{1}^{\prime} \otimes v_{1}^{\prime \prime \prime}, u_{1}^{\prime \prime \prime} \otimes v_{1}^{\prime}$, or $u_{1}^{\prime \prime \prime} \otimes v_{1}^{\prime \prime \prime}$, where in the last case $u_{1}^{\prime \prime \prime} \in u_{1} D_{1}+u_{1}^{\prime \prime} D_{1}, \quad v_{1}^{\prime \prime \prime} \in D_{1} v_{1}+D_{1} v_{1}^{\prime \prime}$. Combining these, and using the linear independence of $\left\{u_{1}, u_{1}^{\prime}, u_{1}^{\prime \prime}\right\}$ and $\left\{v_{1}, v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}$, we see that there are seven possibilities for t_{0} :
(i) $u_{1} \otimes \alpha v_{1}^{\prime}$,
(ii) $u_{1}^{\prime} \otimes \alpha v_{1}$,
(iii) $u_{1} \otimes\left(\alpha v_{1}+\beta v_{1}^{\prime \prime}\right)$,
(iv) $\left(u_{1} \alpha+u_{1}^{\prime \prime} \beta\right) \otimes v_{1}$,
(v) $u_{1}^{\prime} \otimes\left(\alpha v_{1}^{\prime}+\beta v_{1}^{\prime \prime}\right)$,
(vi) $\left(u_{1}^{\prime} \alpha+u_{1}^{\prime \prime} \beta\right) \otimes v_{1}^{\prime}$,
(vii) $u_{1}^{\prime \prime} \otimes \alpha v_{1}^{\prime \prime}$.

Suppose case (i) holds. Since $w+w^{\prime}+t$ lies in W, it is the sum of an element of S and an element of rank 1 or 0 . By Hypothesis (5), there exists $\gamma \in Z\left(D_{1}\right)$ such that $w_{0}+w_{0}^{\prime}+t_{0}+\gamma s$ has rank 1 or 0 . However, this element is equal to

$$
u_{1} \otimes\left((\gamma+1) v_{1}+\alpha v_{1}^{\prime}\right)+u_{1}^{\prime} \otimes(\gamma+1) v_{1}^{\prime}-u_{1}^{\prime \prime} \otimes \gamma v_{1}^{\prime \prime} .
$$

Since $\left\{u_{1}, u_{1}^{\prime}, u_{1}^{\prime \prime}\right\}$ is linearly independent, it follows that $\left\{(\gamma+1) v_{1}+\right.$ $\left.\alpha v_{1}^{\prime},(\gamma+1) v_{1}^{\prime}, \gamma v_{1}^{\prime \prime}\right\}$ must span a space of dimension 1 or 0 . Since $\alpha \neq 0$, it is easily seen that this is not so. Case (ii) may be eliminated in the same way.

Suppose case (iii) holds. Then $\beta \neq 0$, since $t \notin Y$. For $\gamma \in Z\left(D_{1}\right)$, we find that $w_{0}^{\prime}+t_{0}+\gamma s$ is equal to

$$
u_{1} \otimes\left((\alpha+\gamma) v_{1}+\beta v_{1}^{\prime \prime}\right)+u_{1}^{\prime} \otimes(\gamma+1) v_{1}^{\prime}-u_{1}^{\prime \prime} \otimes \gamma v_{1}^{\prime \prime}
$$

For this to have rank 1 or 0 , we must have $\gamma=-1, \alpha=1$. Now, for $\delta \in Z\left(D_{1}\right)$, we find that $w_{0}+w_{0}^{\prime}+t_{0}+\delta s$ is equal to

$$
u_{1} \otimes\left((\delta+2) v_{1}+\beta v_{1}^{\prime \prime}\right)+u_{1}^{\prime} \otimes(\delta+1) v_{1}^{\prime}-u_{1}^{\prime \prime} \otimes \delta v_{1}^{\prime \prime}
$$

which cannot have rank 1 or 0 . Cases (iv), (v), (vi) may be eliminated in a similar way.

Case (vii) cannot hold, since $t \notin Y$. Thus, W must be contained in Y.

Since $\operatorname{dim}_{k} Y=3 \operatorname{dim}_{k} D_{1}, W \cap S=0$ by our hypothesis on f, and $\operatorname{dim}_{k} S=\operatorname{dim}_{k} Z\left(D_{1}\right)$, we have

$$
\operatorname{dim}_{k} W \leqq 3 \operatorname{dim}_{k c} D_{1}-\operatorname{dim}_{k} Z\left(D_{1}\right)
$$

Since W and u^{0} are isomorphic k-vector spaces, and $\operatorname{dim}_{k} V / u^{0}=$ $\operatorname{dim}_{k} D-\operatorname{dim}_{k} C$, we see that V has finite dimension n, and

$$
\operatorname{dim}_{k} W=(n-1) \operatorname{dim}_{k} D+\operatorname{dim}_{k} C \geqq(n-1) \operatorname{dim}_{k} D_{1}+\operatorname{dim}_{k} C
$$

by Hypothesis (1). Since $n \geqq 3$, we must have $n=3$, and $\operatorname{dim}_{k} C \leqq$ $\operatorname{dim}_{k} D_{1}-\operatorname{dim}_{k} Z\left(D_{1}\right)$. This is a contradiction to Hypothesis (6), and completes the proof of Lemma 1, because of the following result.

Lemma 2. If B is a finite-dimensional simple associative algebra over a field k, then

$$
\operatorname{dim}_{k} B=\operatorname{dim}_{k} Z(B)+\operatorname{dim}_{k}[B, B]
$$

Proof. Replacement of k by $Z(B)$ divides all three dimensions by $\operatorname{dim}_{k} Z(B)$. Thus we may suppose $k=Z(B)$. If K is an algebraic closure of k, then $B_{K}=B \otimes_{k} K$ is a full matrix algebra over K, and

$$
\operatorname{dim}_{K} B_{K}=1+\operatorname{dim}_{K}\left[B_{K}, B_{K}\right]
$$

since $\left[B_{K}, B_{K}\right]$ is just the subspace of matrices of trace 0 . Since $\left[B_{K}, B_{K}\right]=[B, B] \otimes_{k} K$, we have $\operatorname{dim}_{K}\left[B_{K}, B_{K}\right]=\operatorname{dim}_{k}[B, B], \operatorname{dim}_{K} B_{K}=$ $\operatorname{dim}_{k} B$, and the result follows.

Lemma 3. If $u \in U^{*}$, then $f\left(u \otimes u^{0}\right) \subseteq S+\left(u_{1} \otimes V_{1}\right)$, for some $u_{1} \in U_{1}^{\sharp}$, or $f\left(u \otimes u^{0}\right) \subseteq S+\left(U_{1} \otimes v_{1}\right)$, for some $v_{1} \in V_{1}^{\ddagger}$.

Proof. By Lemma 1, $\left\{f(x)_{0} \mid x \in u \otimes u^{0}\right\}$ is a rank 1 subgroup of $U_{1} \otimes V_{1}$, and so is contained in $u_{1} \otimes V_{1}$ for some u_{1}, or in $U_{1} \otimes v_{1}$ for some v_{1} [8, Lemma 2].

Lemma 4. It is impossible to have

$$
\begin{array}{r}
f\left(u \otimes u^{0}\right) \subseteq S+\left(u_{1} \otimes V_{1}\right), \\
f\left(u^{\prime} \otimes u^{\prime 0}\right) \cong S+\left(U_{1} \otimes v_{1}\right),
\end{array}
$$

where $u, u^{\prime} \in U^{\#}, u_{1} \in U_{1}^{*}, v_{1} \in V_{1}^{\#}$.
Proof. We use two injective semilinear maps of k-vector spaces, $u^{0} \cap u^{\prime 0} \rightarrow u_{1} \otimes V_{1}, \quad u^{0} \cap u^{\prime 0} \rightarrow U_{1} \otimes v_{1}$, given by $v \rightarrow f(u \otimes v)_{0}, \quad v \rightarrow$ $f\left(u^{\prime} \otimes v\right)_{0}$ respectively. The inverse images A, A^{\prime} of $u_{1} \otimes D_{1} v_{1}$ under these two maps are k-subspaces of $u^{0} \cap u^{\prime 0}$, each having k-dimension $\operatorname{dim}_{k} D_{1}$. If $d=\operatorname{dim}_{k} D, c=\operatorname{dim}_{k} C$, then $\operatorname{dim}_{k} V>3 d-2 c$, by Hypothesis (6), while $\operatorname{dim}_{k} V / u^{0}=\operatorname{dim}_{k} V / u^{\prime 0}=d-c$. Hence $\operatorname{dim}_{k} u^{0} \cap u^{\prime 0}>$ $d \geqq \operatorname{dim}_{k} D_{1}$, by Hypothesis (1), and so A, A^{\prime} are proper k-subspaces of $u^{0} \cap u^{\prime}$.

If $0 \neq v \in u^{0} \cap u^{\prime 0}$, then, by symmetry, Lemma 1 applies to $v^{0} \otimes v$ in place of $u \otimes u^{0}$, and we see that the sum of the rank 1 elements $f(u \otimes v)_{0}$ and $f\left(u^{\prime} \otimes v\right)_{0}$ has rank 1 or 0 . It follows [8, Lemma 1] that either $U_{1}\left(f\left(u^{\prime} \otimes v\right)_{0}\right)=U_{1}\left(f(u \otimes v)_{0}\right)=u_{1} D_{1}$, or $V_{1}\left(f(u \otimes v)_{0}\right)=$ $V_{1}\left(f\left(u^{\prime} \otimes v\right)_{0}\right)=D_{1} v_{1}$, so that $v \in A^{\prime}$ or $v \in A$. Since a vector space cannot be the union of two proper subspaces, this is a contradiction.

Lemma 5. Every element of L is a sum of elements of rank 1 in L.

Proof. Let $x=\sum_{i=1}^{m} u_{i} \otimes v_{i}\left(u_{i} \in U, v_{i} \in V\right)$ be an element of L. Since the result is trivial when $m=1$, we assume $m>1$ and use induction. If $\left\langle v_{1}, u_{1}\right\rangle=0$, then $u_{1} \otimes v_{1} \in L$, and we apply induction to the remaining $m-1$ terms. If $\left\langle v_{\jmath}, u_{i}\right\rangle \neq 0$, for some $j \neq i$, say $\left\langle v_{2}, u_{1}\right\rangle \neq 0$, then $u_{1} \otimes\left(v_{1}-\alpha v_{2}\right) \in L$, where $\alpha=\left\langle v_{1}, u_{1}\right\rangle\left\langle v_{2}, u_{1}\right\rangle^{-1}$,

$$
x=u_{1} \otimes\left(v_{1}-\alpha v_{2}\right)+\left(u_{2}+u_{1} \alpha\right) \otimes v_{2}+\sum_{i=3}^{m} u_{i} \otimes v_{i}
$$

and induction can be applied. Finally, if $\left\langle v_{1}, u_{1}\right\rangle \neq 0$, and $\left\langle v_{j}, u_{i}\right\rangle=0$ for all $j \neq i$, then $\left(u_{1}+u_{2}\right) \otimes\left(\beta v_{1}+v_{2}\right), u_{2} \otimes \beta v_{1}$ and $u_{1} \otimes v_{2}$ all lie in L, where $\beta=-\left\langle v_{2}, u_{2}\right\rangle\left\langle v_{1}, u_{1}\right\rangle^{-1}$; since $x-\left(u_{1}+u_{2}\right) \otimes\left(\beta v_{1}+v_{2}\right)+$ $\left(u_{2} \otimes \beta v_{1}\right)+u_{1} \otimes v_{2}$ is equal to

$$
u_{1} \otimes(1-\beta) v_{1}+\sum_{i=3}^{m} u_{i} \otimes v_{\imath}
$$

induction can again be applied.
Proceeding with the proof of Theorem I, we have two possibilities, by Lemmas 3 and 4:
(A) For every $u \in U$, there exists $u_{1} \in U_{1}$, such that

$$
f\left(u \otimes u^{0}\right) \leqq S+\left(u_{1} \otimes V_{1}\right) .
$$

(B) For every $u \in U$, there exists $v_{1} \in V_{1}$, such that

$$
f\left(u \otimes u^{0}\right) \subseteq S+\left(U_{1} \otimes v_{1}\right)
$$

Similarly, we also have two possibilities for the $f\left(v^{0} \otimes v\right)$:
(a) For every $v \in V$, there exists $v_{1} \in V_{1}$, such that

$$
f\left(v^{0} \otimes v\right) \subseteq S+\left(U_{1} \otimes v_{1}\right)
$$

(b) For every $v \in V$, there exists $u_{1} \in U_{1}$, such that

$$
f\left(v^{0} \otimes v\right) \cong S+\left(u_{1} \otimes V_{1}\right)
$$

In all we have four cases, (Aa), $(\mathrm{Ab}),(\mathrm{Ba}),(\mathrm{Bb})$, where (Aa) means that (A) and (a) hold, etc. We consider these one at a time.

Case (Ab). Suppose $u, u^{\prime} \in U^{\sharp}$. Since $\operatorname{dim} V \geqq 3$, we can choose a nonzero element v of $u^{0} \cap u^{\prime 0}$. We have

$$
\begin{aligned}
f\left(u \otimes u^{0}\right) & \cong S+\left(u_{1} \otimes V_{1}\right), \\
f\left(u^{\prime} \otimes u^{\prime}\right) & \cong S+\left(u_{1}^{\prime} \otimes V_{1}\right), \\
f\left(v^{0} \otimes v\right) & \cong S+\left(u_{2} \otimes V_{1}\right),
\end{aligned}
$$

where $u_{1}, u_{1}^{\prime}, u_{2} \in U_{1}$. Since $f(u \otimes v)$ lies in both $f\left(u \otimes u^{0}\right)$ and $f\left(v^{0} \otimes v\right)$, we have

$$
u_{1} D_{1}=U_{1}(f(u \otimes v))=u_{2} D_{1}
$$

Similarly, $u_{1}^{\prime} D_{1}=u_{2} D_{1}$, so that $u_{1} D_{1}=u_{1}^{\prime} D_{1}$. Thus the same u_{1} may be used in (A), for every $u \in U$. From Lemma 5, it follows that $f(L) \subseteq S+\left(u_{1} \otimes V_{1}\right)$, and case (i) of Theorem I holds.

Case (Ba). An exactly similar argument shows that case (ii) of Theorem I holds.

Case (Aa). Let $P(U), P\left(U_{1}\right), P\left(V_{1}\right)$ denote the sets of one-dimensional subspaces of U, U_{1}, V_{1}, respectively. We have maps $L: U^{\sharp} \rightarrow$ $P\left(U_{1}\right), R: V^{\sharp} \rightarrow P\left(V_{1}\right)$, such that

$$
\begin{gathered}
f\left(u \otimes u^{0}\right) \subseteq S+\left(L(u) \otimes V_{3}\right), \\
f\left(v^{0} \otimes v\right) \subseteq S+\left(U_{1} \otimes R(v)\right)
\end{gathered}
$$

where $u \in U^{\#}, v \in V^{\ddagger}$. If α is a nonzero element of D, and $u^{\prime}=u \alpha$, let v be a nonzero element of u^{\perp}. Then

$$
L(u)=U_{1}(f(u \otimes \alpha v))=U_{1}\left(f\left(u^{\prime} \otimes v\right)\right)=L\left(u^{\prime}\right)
$$

Thus, $u D \rightarrow L(u)$ is a well-defined map of $P(U)$ into $P\left(U_{1}\right)$.
If $u \in U^{\#}, v \in V^{*}$, and $\langle v, u\rangle=0$, then, for $\alpha \in D^{*}, f(u \alpha \otimes v)_{0} \in$ $L(u \alpha) \otimes R(v)=L(u) \otimes R(v)$. Since $\alpha \rightarrow f(u \alpha \otimes v)_{0}$ is an injective semilinear map of D into $L(u) \otimes R(v)$, which is isomorphic to D_{1} as a k-vector space, it follows from Hypothesis (1) that

$$
L(u) \otimes R(v)=\left\{f(u \alpha \otimes v)_{o} \mid \alpha \in D\right\}
$$

If $u, u^{\prime} \in U^{\sharp}$, and $L(u)=L\left(u^{\prime}\right)$, choose a nonzero element v of $u^{\perp} \cap u^{\prime \perp}$. Then $f\left(u^{\prime} \otimes v\right)_{0} \in L\left(u^{\prime}\right) \otimes R(v)=L(u) \otimes R(v)$. Thus, $f\left(u^{\prime} \otimes v\right)_{0}=$ $f(u \alpha \otimes v)_{0}$, for some $\alpha \in D$, so that $f\left(\left(u^{\prime}-u \alpha\right) \otimes v\right)_{0}=0$. Hence, $u^{\prime}=u \alpha$. Thus, $u D \rightarrow L(u)$ is an injective map of $P(U)$ into $P\left(U_{1}\right)$.

Next, suppose $u D, u^{\prime} D, u^{\prime \prime} D$ are three coplanar elements of $P(U)$, that is, $u^{\prime \prime}=u \alpha+u^{\prime} \beta$, where $\alpha, \beta \in D$. Let v be a nonzero element of $u^{\perp} \cap u^{\perp}$. Then,

$$
\begin{aligned}
L\left(u^{\prime \prime}\right) \otimes R(v) & =\left\{f\left(u^{\prime \prime} \gamma \otimes v\right)_{0} \mid \gamma \in D\right\} \\
& =\left\{f(u \alpha \gamma \otimes v)_{0}+f\left(u^{\prime} \beta \gamma \otimes v\right)_{0} \mid \gamma \in D\right\} \\
& \leqq L(u) \otimes R(v)+L\left(u^{\prime}\right) \otimes R(v)
\end{aligned}
$$

Since $R(v)$ is one-dimensional, it follows that $L\left(u^{\prime \prime}\right) \subseteq L(u)+L\left(u^{\prime}\right)$, so that $L(u), L\left(u^{\prime}\right), L\left(u^{\prime \prime}\right)$ are coplanar.

If, conversely, $L\left(u^{\prime \prime}\right) \subseteq L(u)+L\left(u^{\prime}\right)$, choose a nonzero element v of $u^{\perp} \cap u^{\prime \perp} \cap u^{\prime \prime_{0}}$. Then,

$$
f\left(u^{\prime \prime} \otimes v\right)_{0} \in L\left(u^{\prime \prime}\right) \otimes R(v) \subseteq L(u) \otimes R(v)+L\left(u^{\prime}\right) \otimes R(v)
$$

so that there exist $\alpha, \beta \in D$, such that

$$
f\left(u^{\prime \prime} \otimes v\right)_{0}=f(u \alpha \otimes v)_{0}+f\left(u^{\prime} \beta \otimes v\right)_{0} .
$$

Since the map $x \rightarrow f(x)_{0}$ is an injective semilinear map on $v^{0} \otimes v$, it follows that $u^{\prime \prime}=u \alpha+u^{\prime} \beta$.

Finally, suppose $u, u^{\prime} \in U^{\ddagger}, u_{1} \in L(u), u_{1}^{\prime} \in L\left(u^{\prime}\right)$. Again let v be a nonzero element of $u^{\perp} \cap u^{\perp}$, and take a nonzero element v_{1} of $R(v)$. There exist $\alpha, \beta \in D$, such that

$$
u_{1} \otimes v_{1}=f(u \alpha \otimes v)_{0}, \quad u_{1}^{\prime} \otimes v_{1}=f\left(u^{\prime} \beta \otimes v\right)_{0}
$$

and so $\left(u_{1}+u_{1}^{\prime}\right) \otimes v_{1}=f\left(\left(u \alpha+u^{\prime} \beta\right) \otimes v\right)_{0}$. If $u \alpha+u^{\prime} \beta=0$, then $u_{1}+u_{1}^{\prime}=0$. If $u \alpha+u^{\prime} \beta \neq 0$, then $u_{1}+u_{1}^{\prime} \in L\left(u \alpha+u^{\prime} \beta\right)$. Thus the union of all the $L(u), u \in U^{\ddagger}$, is a subspace U_{2} of U_{1}.

We can now apply the fundamental theorem of projective geometry [4, p. 104]. There exist an isomorphism $\sigma: D \rightarrow D_{1}$ and an injective σ-semilinear map $g: U \rightarrow U_{1}$ (with image U_{2}), such that $L(u)=$ $g(u) D_{1}$, for all $u \in U^{\sharp}$. Similarly, there exist an isomorphism $\tau: D \rightarrow D_{1}$ and an injective τ-semilinear map $h: V \rightarrow V_{1}$, such that $R(v)=D_{1} h(v)$, for all $v \in V^{\ddagger}$. Thus, $u \in U, v \in V,\langle v, u\rangle \in C$, we have

$$
f(u \otimes v)_{0}=g(u) \alpha(u, v) \otimes h(v)
$$

where $\alpha(u, v) \in D_{1}$ (and $\alpha(u, v) \neq 0$ if $u \neq 0, v \neq 0$).
Suppose $v \in V^{\ddagger}$, and let u, u^{\prime} be nonzero elements of v^{p}. The equation $f\left(\left(u+u^{\prime}\right) \otimes v\right)_{0}=f(u \otimes v)_{0}+f\left(u^{\prime} \otimes v\right)_{0}$ gives

$$
g\left(u+u^{\prime}\right) \alpha\left(u+u^{\prime}, v\right)=g(u) \alpha(u, v)+g\left(u^{\prime}\right) \alpha\left(u^{\prime}, v\right)
$$

If u, u^{\prime} are linearly independent, then $g(u), g\left(u^{\prime}\right)$ are also linearly independent, since g is injective. Comparison of the above equation with the equation $g\left(u+u^{\prime}\right)=g(u)+g\left(u^{\prime}\right)$ shows that $\alpha(u, v)=\alpha\left(u^{\prime}, v\right)$. If u, u^{\prime} are linearly dependent, we choose $u^{\prime \prime} \in v^{\prime}$, such that $u, u^{\prime \prime}$ are linearly independent. Then we have $\alpha(u, v)=\alpha\left(u^{\prime \prime}, v\right)=\alpha\left(u^{\prime}, v\right)$. Thus, $\alpha(u, v)$ is the same for every nonzero $u \in v^{0}$. Similarly, if $u \in U^{\ddagger}$, then $\alpha(u, v)$ is the same for every nonzero $v \in u^{\circ}$.

If u, u^{\prime} are any elements of $U^{\#}, v, v^{\prime} \in V^{\#}$, and $\langle v, u\rangle,\left\langle v^{\prime}, u^{\prime}\right\rangle \in C$, we can choose a nonzero $u^{\prime \prime}$ in $v^{0} \cap v^{\prime 0}$. By what we have proved,

$$
\alpha(u, v)=\alpha\left(u^{\prime \prime}, v\right)=\alpha\left(u^{\prime \prime}, v^{\prime}\right)=\alpha\left(u^{\prime}, v^{\prime}\right)
$$

Thus, $\alpha(u, v)$ is the same for all pairs u, v of nonzero elements such that $\langle v, u\rangle \in C$, say $\alpha(u, v)=\alpha$. We can also set $\alpha(u, v)=\alpha$ when u or v is zero. Since $u \rightarrow g(u) \alpha$ is an injective semilinear map, we can change notation appropriately and write

$$
f(u \otimes v)_{0}=g(u) \otimes h(v)
$$

for all u, v such that $\langle v, u\rangle \in C$.
If $\langle v, u\rangle=0$, we see from the equation $f(u \beta \otimes v)=f(u \otimes \beta v)$ that the isomorphism $\sigma: D \rightarrow D_{1}$ related to g is the same as the isomorphism related to h. If $\beta \in k$, we see from the equation $f(u \beta \otimes v)=$ $\beta^{\mu} f(u \otimes v)$ that σ agrees with μ on elements of k.

The maps g, h give a map $g \otimes h: U \otimes V \rightarrow U_{1} \otimes V_{1}$, whose restriction to L is denoted $(g \otimes h)_{L}$. Clearly $f-(g \otimes h)_{L}$ is a μ-semilinear map of L into $U_{1} \otimes V_{1}$ which maps elements of rank 1 into elements of S. By Lemma 5 , the whole of L is mapped into S. Thus, case (iii) of Theorem I holds.

Case (Bb). Take a division algebra D_{2} anti-isomorphic to D_{1}, and make V_{1} into a right D_{2}-vector space U_{2}, U_{1} into a left D_{2}-vector space V_{2} in the obvious way. There is an isomorphism of k-vector spaces

$$
j: U_{1} \otimes V_{1} \longrightarrow U_{2} \otimes V_{2},
$$

given by $j\left(u_{1} \otimes v_{1}\right)=v_{1} \otimes u_{1}$. If $U_{1}, V_{1}, D_{1}, f, S$ are replaced by $U_{2}, V_{2}, D_{2}, j f, j(S)$, then Hypotheses (1)-(6) are still satisfied, and we are in Case (Aa). We can apply the result we have just proved for that case, and by the obvious translation obtain case (iv) of Theorem I. We omit the details.

This completes the proof of Theorem I.
2. Centralizer of a linear transformation. We need some facts concerning the structure of a linear transformation on a finite-dimensional vector space over a division algebra. These form a special case of a more general situation discussed by Jacobson [3].

Let D be a finite-dimensional associative division algebra over a field k, with center Z. We identify k with a subfield of Z. The polynomial ring $D[t]$ is defined in the usual way; in particular, the indeterminate t commutes with elements of D. If $a(t)$ is a nonzero element of $D[t]$, the right ideal $a(t) D[t]$ has finite codimension as a subspace of the right D-vector space $D[t]$. The codimension is still finite if $D[t]$ is regarded as a Z-vector space, since $\operatorname{dim}_{z} D$ is finite. Thus, $Z[t] \cap a(t) D[t]$ is a nonzero ideal of $Z[t]$, since it has finite codimension over Z. Thus there is a nonzero multiple of $a(t)$ lying in $Z[t]$. In the terminology of [3], every nonzero polynomial in $D[t]$ is bounded. Because of this, the usual elementary divisor theory for linear transformations over a field will hold over D, with only minor modifications.

If $a(t), a_{1}(t) \in D[t]$, then $a(t)$ and $a_{1}(t)$ are similar if there exist monic polynomials $b(t), b_{1}(t)$ in $D[t]$, such that $b(t) a(t)=a_{1}(t) b_{1}(t)$, where $b(t)$ and $a_{1}(t)$ have no nonconstant common left factor, and $a(t)$ and
$b_{1}(t)$ have no nonconstant common right factor. Similarity is an equivalence relation [5, p. 489], and similar polynomials have the same degree. In the case of degree $1, t-\alpha$ and $t-\beta$ are similar if and only if α and β are conjugate under the inner automorphism group of D.

Let V be a finite-dimensional left D-vector space, and x a linear transformation on V. (As in $\S 1$, the unqualified words linear, dimension, subspace will always be taken with respect to D.) If $a(t)=$ $\sum_{\imath} \alpha_{\imath} t^{i}$ is a polynomial in $D[t]$, and $v \in V$, define

$$
a(t) v=\sum_{i} \alpha_{i} x^{i}(v)
$$

Then V becomes a left $D[t]$-module, and a submodule is a subspace which is invariant under x. If W, X are submodules, the $D[t]-$ homomorphisms of W into X form a k-vector space $\operatorname{Hom}(W, X)$. In particular, the endomorphism algebra $\operatorname{Hom}(V, V)$ is the centralizer $C(x)$, consisting of all linear transformations on V which commute with x. The order of a vector v is the monic polynomial $a(t)$ of least degree for which $a(t) v=0$, and its degree is equal to the dimension of the submodule generated by v. The order of another vector generating the same cyclic submodule is similar to $a(t)$. Thus one can speak of the order of a cyclic submodule, defined to within similarity.

If V is indecomposable as a $D[t]$-module, then it has a unique composition series, and its composition factors are all isomorphic. The order of a composition factor of V is an irreducible polynomial $p(t)$ in $D[t]$, defined to within similarity, which we call the irreducible divisor of V. We call the length m of the composition series of V the length of V. To within isomorphism, V is determined by the similarity class of the irreducible divisor $p(t)$ and the length m. We note that $\operatorname{dim} V=m \operatorname{deg} p(t)$. Also, every submodule and every quotient module of V is indecomposable.

In general, V can be expressed as the direct sum of indecomposable $D[t]$-modules, each of which is as described above.

Proposition 6. Let D be a division algebra of finite dimension d over a field k, and x a linear transformation on an n-dimensional vector space V over D. Suppose that the corresponding structure of

$$
V=\sum_{i, j} V_{\imath j} \quad\left(j=1, \cdots, n_{i} ; i=1, \cdots, r\right),
$$

where each $V_{\imath j}$ is indecomposable, $V_{i j}$ has irreducible divisor $p_{\imath}(t)$ and length $m_{i j}$, and no two of the polynomials $p_{1}(t), \cdots, p_{r}(t)$ are
similar. Let $C(x)$ be the algebra of linear transformations on V which commute with x, and let $c(x)=\operatorname{dim}_{k} C(x)$.
(i) As a k-vector space, $C(x)$ is isomorphic with the direct sum

$$
\sum_{i, j, k} \operatorname{Hom}\left(V_{i j}, V_{i k}\right) \quad\left(j, k=1, \cdots, n_{i} ; i=1, \cdots, r\right) .
$$

(ii) For given i, j, k, if $m=\min \left\{m_{i j}, m_{i k}\right\}$, then $\operatorname{Hom}\left(V_{i j}, V_{i k}\right)$ is isomorphic (as a k-vector space) to the space of all polynomials $a(t)$ in $D[t]$ for which $\operatorname{deg} a(t)<m \operatorname{deg} p_{i}(t)$ and $p_{i m}(t) a(t)$ is a left multiple of $p_{i m}(t)$, where $p_{i m}(t)$ is the order of an indecomposable module with irreducible divisor $p_{i}(t)$ and length m.
(iii) $c(x) \leqq d \sum_{i=1}^{r}\left(\sum_{j, k=1}^{n_{i}} \min \left\{m_{i j}, m_{i k}\right\}\right) \operatorname{deg} p_{i}(t)$.
(iv) $\sum_{i, j} m_{i j} \operatorname{deg} p_{i}(t)=n$.

Proof. Since $C(x)=\operatorname{Hom}(V, V)$, and two $V_{i j}$ having different values of i do not have any irreducible constituents in common, assertion (i) is clear.

The image of any homomorphism h of $V_{i j}$ into $V_{i k}$ has length at most $m=\min \left\{m_{i j}, m_{i k}\right\}$. Thus h is essentially a homomorphism from the unique quotient module of $V_{i j}$ having length m to the unique submodule of $V_{i k}$ having length m. These modules are each isomorphic with the indecomposable module W with irreducible divisor $p_{i}(t)$ and length m, and so $\operatorname{Hom}\left(V_{i j}, V_{i k}\right)$ is isomorphic with $\operatorname{Hom}(W, W)$. Let w_{0} be a generator of W, with order $p_{i m}(t)$. Each endomorphism of W is determined by the image of w_{0}, which can be any element w for which $p_{i m}(t) w=0$. Every element of W can be uniquely expressed in the form $w=a(t) w_{0}$, where $a(t)$ is an element of $D[t]$ for which $\operatorname{deg} a(t)<\operatorname{deg} p_{i m}(t)=m \operatorname{deg} p_{i}(t)$. The condition that $p_{i m}(t) w=0$ is then equivalent with the condition that $p_{i m}(t) a(t)$ is a left multiple of $p_{i m}(t)$. This proves assertion (ii).

Assertion (iii) follows from (i) and (ii), since the space of all polynomials $a(t)$ in $D[t]$ for which $\operatorname{deg} a(t)<m \operatorname{deg} p_{i}(t)$ has k-dimension $d m \operatorname{deg} p_{i}(t)$, and assertion (iv) follows from the equation $\operatorname{dim} V_{i j}=$ $m_{i j} \operatorname{deg} p_{i}(t)$. This proves Proposition 6.

A special case of statement (ii) of the proposition is easily calculated. Suppose $p_{i}(t)=t-\alpha$ and $m=\min \left\{m_{i j}, m_{i k}\right\}=1$. Then we seek the elements β of D for which $(t-\alpha) \beta$ is a left multiple of $t-\alpha$. This means $(t-\alpha) \beta=\beta(t-\alpha)$, so that $\alpha \beta=\beta \alpha$. Thus, $\operatorname{Hom}\left(V_{i j}, V_{i k}\right)$ is isomorphic with $C_{D}(\alpha)$, the centralizer of α in D.

Corollary 7. In the situation of Proposition 6,

$$
c(x) \leqq d n \max \left\{n_{1}, n_{2}, \cdots, n_{r}\right\}
$$

If equality holds, then (a) $n_{1}=n_{2}=\cdots=n_{r}$, and (b) for each $i, m_{i j}$ is independent of j.

Proof. Let $n_{0}=\max \left\{n_{1}, n_{2}, \cdots, n_{r}\right\}$. By Proposition 6 (iii), since $\min \left\{m_{i j}, m_{i k}\right\} \leqq m_{i j}$,

$$
c(x) \leqq d \sum_{i=1}^{r} n_{i}\left(\sum_{j=1}^{n_{i}} m_{i j}\right) \operatorname{deg} p_{i}(t),
$$

and equality implies $m_{i j}=m_{i k}$, for all j, k. Since $n_{i} \leqq n_{0}$, this gives

$$
c(x) \leqq d n_{0} \sum_{i, j} m_{i j} \operatorname{deg} p_{i}(t)=d n_{0} n,
$$

by Proposition 6 (iv), and equality implies $n_{i}=n_{0}$, all i. This proves Corollary 7.

If $\alpha \in Z(D)$, then α defines a linear transformation $s_{\alpha}: v \rightarrow \alpha v$ on V, called a central homothety. This corresponds to the case where V has n indecomposable components, each with length 1 and irreducible divisor $t-\alpha$, and then $c\left(s_{\alpha}\right)=d n^{2}$. If y is a linear transformation of rank 1 on V, then $x=s_{\alpha}+y$ corresponds either to the case that V has $n-2$ indecomposable components of length 1 and one of length 2, all with irreducible divisor $t-\alpha$, and then $c(x)=$ $d\left(n^{2}-2 n+2\right)$, or to the case that V has $n-1$ indecomposable components of length 1 with irreducible divisor $t-\alpha$ and one of length 1 with irreducible divisor $t-\beta$, and then $c(x)=d(n-1)^{2}+\operatorname{dim}_{k} C_{D}(\beta)$. We show that these are essentially the only cases when $c(x) \geqq$ $d\left(n^{2}-2 n\right)$.

Proposition 8. In the situation of Proposition 6, assume that $n \geqq 3$ and $c(x) \geqq d\left(n^{2}-2 n\right)$. Then one of the following holds.
(1) x is a central homothety; $c(x)=d n^{2}$.
(2) x is the sum of a central homothety and a linear transformation of rank $1 ; c(x)=d(n-1)^{2}+\operatorname{dim}_{k} C_{D}(\beta)$, for some element β of D.
(3) $n=3$, and V has a basis for which x has matrix $\operatorname{diag}\{\alpha, \alpha, \alpha\}$, where $\operatorname{dim}_{k} C_{D}(\alpha)=(1 / 2) d ; c(x)=9 d / 2$.
(4) $n=3$ or $n=4$, and $c(x)=d\left(n^{2}-2 n\right)$.

Proof. We may suppose $n_{1} \geqq n_{i}$, all i. By Corollary $7, n_{1} \geqq$ $n-2$. Also, if $n_{1}=n-2$, then every n_{i} is $n-2, m_{i j}=m_{i 1}$ for all j, and $c(x)=d\left(n^{2}-2 n\right)$. In this case, Proposition 6 (iv) shows that $n-2$ divides n, so that $n=3$ or $n=4$, and case (4) holds. We may now suppose $n_{1} \geqq n-1$.

If $n_{1}=n$, then V has n indecomposable components, each of
length 1 , with the same irreducible divisor $t-\alpha$. By the remark following Proposition 6, $c(x)=n^{2} \operatorname{dim}_{k} C_{D}(\alpha)$. Since $C_{D}(\alpha)$ is a division subalgebra of $D, \operatorname{dim}_{k} C_{D}(\alpha)$ is a divisor of d. We must have $\operatorname{dim}_{k} C_{D}(\alpha) \geqq(1 / 3) d$, since $(1 / 4) d n^{2}<d\left(n^{2}-2 n\right)$ when $n \geqq 3$. If $\operatorname{dim}_{k} C_{D}(\alpha)=(1 / 3) d$, then the inequality (1/3) $d n^{2} \geqq d\left(n^{2}-2 n\right)$ gives $n=3$, so that $c(x)=3 d=d\left(n^{2}-2 n\right)$, and case (4) holds. If $\operatorname{dim}_{k} C_{D}(\alpha)=(1 / 2) d$, we similarly find that $n=3$ and case (3) holds, or $n=4$ and case (4) holds. If $\operatorname{dim}_{k} C_{D}(\alpha)=d$, then case (1) holds.

If $n_{1}=n-1$, then $r \leqq 2$. If $r=2$, then V has $n-1$ components of length 1 with irreducible divisor $t-\alpha$, and one of length 1 with irreducible divisor $t-\beta$, where β is not conjugate to α under the inner automorphism group of D. Now, $c(x)=(n-1)^{2} \operatorname{dim}_{k} C_{D}(\alpha)+$ $\operatorname{dim}_{k} C_{D}(\beta)$. We must have $\operatorname{dim}_{k} C_{D}(\alpha) \geqq(1 / 2) d$, since $(1 / 3) d(n-1)^{2}+$ $d<d\left(n^{2}-2 n\right)$ when $n \geqq 3$. If $\operatorname{dim}_{k} C_{D}(\alpha)=(1 / 2) d$, the inequality $c(x) \geqq d\left(n^{2}-2 n\right)$ gives $n=3, \beta \in Z(D)$, and $c(x)=3 d=d\left(n^{2}-2 n\right)$, so that case (4) holds. If $\operatorname{dim}_{k} C_{D}(\alpha)=d$, then case (2) holds.

If $r=1$, then V has $n-2$ components of length 1 and one of length 2, all with irreducible divisor $t-\alpha$. If W is the component of length 2 , we find that

$$
c(x)=\left(n^{2}-2 n\right) \operatorname{dim}_{k} C_{D}(\alpha)+\operatorname{dim}_{k} \operatorname{Hom}(W, W) .
$$

There is a submodule X of W such that X and W / X are each irreducible, with irreducible divisor $t-\alpha$. As in the remark following Proposition 6,

$$
\operatorname{Hom}(W, X) \simeq \operatorname{Hom}(W, W / X) \simeq C_{D}(\alpha)
$$

Now the exact sequence

$$
0 \longrightarrow \operatorname{Hom}(W, X) \longrightarrow \operatorname{Hom}(W, W) \longrightarrow \operatorname{Hom}(W, W / X)
$$

shows that $\operatorname{dim}_{k} \operatorname{Hom}(W, W) \leqq 2 \operatorname{dim}_{k} C_{D}(\alpha)$, so that $c(x) \leqq\left(n^{2}-\right.$ $2 n+2) \operatorname{dim}_{k} C_{D}(\alpha)$. We must have $\alpha \in Z(D)$, since $(1 / 2) d\left(n^{2}-2 n+2\right)<$ $d\left(n^{2}-2 n\right)$ when $n \geqq 3$. Thus, $c(x)=d\left(n^{2}-2 n+2\right)$, and case (2) holds.

This proves Proposition 8.
3. Lie algebras of linear type. If A is an associative algebra over a field k, then A becomes a Lie algebra under the operation $[x, y]=x y-y x$. If A is noncommutative and simple, with center $Z(A)$, then $[A, A] /[A, A] \cap Z(A)$ is a simple Lie algebra, except when k has characteristic 2 and A is 4-dimensional over $Z(A)$ [1, p. 17]. By Wedderburn's theorem, if A is finite-dimensional over k, then A is isomorphic with the complete algebra $L(V)$ of linear transformations on an n-dimensional vector space V over an associative division
algebra D of finite dimension over k. Here $Z(A)$ corresponds to the set of all central homotheties on V, and $[A, A]$ to the kernel of the trace map from $L(V)$ to $D /[D, D]$ mentioned in $\S 1$.

We shall find the bijective semilinear maps preserving zero Lie products in a general situation having as special cases both the simple Lie algebra associated with $L(V)$ and the complete algebra $L(V)$ itself. Let L be any k-subspace of A containing [A, A], where $A=$ $L(V)$, and let E be any k-subspace of $L \cap Z(A)$. Then L is a Lie subalgebra of $L(V), E$ is a central ideal of L, and we can form the Lie algebra $\bar{L}=L / E$. We are interested in the group $G(\bar{L})$ of all bijective semilinear maps on \bar{L} which preserve zero Lie products. Since every semilinear map on \bar{L} lifts to one on L, we need to find all the bijective semilinear maps f on L with the properties that $f(E)=E$, and $[f(x), f(y)] \in E$ whenever $[x, y] \in E$. We say that such a map preserves zero Lie products $(\bmod E)$.

Theorem II. Let D be a finite-dimensional associative division algebra over a field k, and V a left vector space of finite dimension n over D. Let A be the algebra $L(V)$ of all linear transformations on V, and S the set of all central homotheties on V. Suppose L is a k-subspace of A containing $[A, A]$, and E a k-subspace of $L \cap S$. Assume that $n \geqq 3$. If $n=4$ and D is commutative of characteristic 2 , assume that $E \neq S$ or $L \neq[A, A]$. If $n=3$, assume that $L \neq[A, A]$, and that D does not contain an element α such that $\operatorname{dim}_{k} C_{D}(\alpha)=$ $(1 / 2) \operatorname{dim}_{k} D$. If f is a bijective map on L which is semilinear with respect to an automorphism μ of k, such that f preserves zero Lie products $(\bmod E)$, then one of the following holds.
(1) μ can be extended to an automorphism σ of D, and there exist a bijective σ-semilinear transformation h on V, a nonzero element s of S, and a μ-semilinear map $r: L \rightarrow S$, such that

$$
f(x)=h x \operatorname{sh}^{-1}+r(x)
$$

for all $x \in L$.
(2) μ can be extended to an anti-automorphism σ of D, and there exist a bijective σ-semilinear map h of the dual space V^{\prime} onto V, a nonzero element s of S, and a μ-semilinear map $r: L \rightarrow S$, such that

$$
f(x)=h(x s)^{\prime} h^{-1}+r(x),
$$

for all $x \in L$, where $(x s)^{\prime}$ denotes the adjoint of $x s$.
Proof. Identifying A with $U \otimes V$, where U is the dual space V^{\prime}, we shall apply Theorem I. Since the trace map induces an isomorphism of $A /[A, A]$ with $D /[D, D]$, we have

$$
L=\{x \in A \mid \operatorname{tr} x \in C /[D, D]\},
$$

where C is a k-subspace of D containing $[D, D]$. We note that S is a 1-dimensional $Z(D)$-subspace of A containing no elements of rank 1 or 2 , and that S contains an element of rank 3 only when $n=3$, in which case C contains [D, D] properly, since $L \neq[A, A]$. We need to determine the structure of $f(x)$, where x has rank 1 .

For any element x of L, we let $C(x)$ denote the centralizer of x in A, and $c(x)=\operatorname{dim}_{k} C(x)$, as in §2. Also set

$$
\begin{gathered}
C_{L}(x)=C(x) \cap L, \quad c_{L}(x)=\operatorname{dim}_{k} C_{L}(x), \\
C^{*}(x)=\{y \in L \mid[x, y] \in E\}, \quad c^{*}(x)=\operatorname{dim}_{k} C^{*}(x) .
\end{gathered}
$$

Let $d=\operatorname{dim}_{k} D, \quad c=\operatorname{dim}_{k} C, \quad e=\operatorname{dim}_{k} E$. Then $c \leqq d$, and $e \leqq$ $\operatorname{dim}_{k} Z(D) \leqq d$. Since A / L is isomorphic with D / C (as k-vector spaces), we have

$$
c(x)-d+c \leqq c_{L}(x) \leqq c(x)
$$

The map $y \rightarrow[x, y]$ is a k-linear map of $C^{*}(x)$ into E, with kernel $C_{L}(x)$, so that

$$
c_{L}(x) \leqq c^{*}(x) \leqq c_{L}(x)+e .
$$

Thus, we have

$$
c(x)-d+c \leqq c^{*}(x) \leqq c(x)+e .
$$

The condition that f preserves zero Lie products $(\bmod E)$ implies that $f\left(C^{*}(x)\right) \subseteq C^{*}(f(x))$, so that $c^{*}(x) \leqq c^{*}(f(x))$. From the last inequalities we get

$$
c(x)-d+c \leqq c(f(x))+e
$$

Now suppose that $x \in L \cap S$, so that x is a central homothety, and $c(x)=d n^{2}$. Then,

$$
c(f(x)) \geqq d n^{2}-d+c-e \geqq d\left(n^{2}-2\right) .
$$

By Proposition 8, $f(x) \in L \cap S$. Since f is injective and $L \cap S$ is a k-subspace of $L, f(L \cap S)=L \cap S$.

Next suppose x has rank 1. By what we have just proved, $f(x)$ is not a central homothety. Now, $c(x)=d(n-1)^{2}+\operatorname{dim}_{k} C_{D}(\beta)$, for some element β of D. Note that $\operatorname{dim}_{k} C_{D}(\beta) \geqq \operatorname{dim}_{k} Z(D) \geqq e$. Then,

$$
c(f(x)) \geqq d\left(n^{2}-2 n\right)+c+\left(\operatorname{dim}_{k} C_{D}(\beta)-e\right)
$$

By Proposition 8, and our assumptions for the case $n=3, f(x)$ is the sum of a central homothety and a linear transformation of rank 1 , except possibly when $n=4, c=0$, and $\operatorname{dim}_{k} C_{D}(\beta)=e$. In the latter
case, D is commutative, since C contains $[D, D]$, and so $C_{D}(\beta)=D$. Then $e=d$, so that $E=S$. Also, $L=[A, A]$, since $C=[D, D]$. Since $S \subseteq L$, every homothety has trace 0 , so that the characteristic of k must be 2 . This case is ruled out by hypothesis.

We can now apply Theorem I, with $V=V_{1}$, and $U=U_{1}=V^{\prime}$, the dual space of V.

Cases (i) and (ii) of Theorem I do not hold, since f is assumed to be bijective. Suppose case (iii) of Theorem I holds. Then μ can be extended to an automorphism σ of D, and there exist a bijective σ-semilinear transformation h on V, a bijective σ^{-1}-semilinear transformation g on V, and a μ-semilinear map $r: L \rightarrow S$, such that

$$
f(x)=h x g+r(x),
$$

for all $x \in L$. (Here g is the adjoint of the map denoted g in Theorem I (iii).)

Let W be any 1-dimensional subspace of V, H any hyperplane of V containing W. Let X be a hyperplane of V containing both W and $g(h(W))$. Let x be a linear transformation on V with kernel X and image W, and y a linear transformation on V with kernel H and image W. Then x and y have rank 1 , and lie in L since they have zero trace. Since $x y=y x=0$, and f preserves zero Lie products $(\bmod E)$,

$$
[h x g, h y g]=[f(x), f(x)] \in E .
$$

Since $h x g$ and $h y g$ have rank 1, the left side has rank at most 2. Since E contains no nonzero elements of rank less than n, we have $[h x g, h y g]=0$. Since $g(h(W)) \subseteq X, h x g h y g=0$. Thus $h y g h x g=0$, so that $y g h x=0$, since g and h are bijective. Hence, $g(h(W)) \subseteq H$. Since W is the intersection of all hyperplanes H which contain it, $g(h(W))=W$. Since $g h$ is linear, this implies that $g h=s$, where s is a nonzero central homothety. Then $g=s h^{-1}$, so that case (1) of Theorem II holds.

Finally suppose case (iv) of Theorem I holds. Then μ can be extended to an anti-automorphism σ of D, and there exist a bijective σ-semilinear map h of the dual space V^{\prime} onto V, a bijective σ^{-1} semilinear map g of V onto V^{\prime}, and a μ-semilinear map $r: L \rightarrow S$ such that

$$
f(x)=h x^{\prime} g+r(x),
$$

for all $x \in L$, where x^{\prime} is the adjoint of x. (Here g is the adjoint of the map denoted g in Theorem I (iv).)

If x, y are elements of rank 1 in L such that $[x, y]=0$, then, as in the previous case, we see that

$$
\left[h x^{\prime} g, h y^{\prime} g\right]=[f(x), f(y)]=0
$$

Taking adjoints, we see that $\left[g^{\prime} x h^{\prime}, g^{\prime} y h^{\prime}\right]=0$. The same method as before shows that $h^{\prime} g^{\prime}=s$, where s is a nonzero central homothety. Then $g h=s^{\prime}, g=s^{\prime} h^{-1}$, so that case (2) of Theorem II holds.

This completes the proof of Theorem II.

We remark that Pierce and Watkins obtained the case of Theorem II when $k=D, f$ is linear, L is the whole algebra $L(V)$, and $E=0$ [6], extending the earlier paper [7] of Watkins, in which the additional assumptions that k is algebraically closed and $n \geqq 4$ were made. Watkins also pointed out that the conclusion of the theorem does not hold when $n=2$. When $n=3,4$, the cases not covered by the theorem remain open.

If s is a central homothety, then the map $x \rightarrow x s$ is an element of the centroid of the Lie algebra A. In case (1) of the theorem, the map $x \rightarrow h x h^{-1}$ is a semilinear automorphism of A; and in case (2), the map $x \rightarrow h x^{\prime} h^{-1}$ is a semilinear anti-automorphism of A. It is not clear that L is always invariant under these maps. However, this is so in the case $L=[A, A]$. We obtain the following result.

Corollary 9. Let A be a finite-dimensional simple associative algebra over a field k, such that A can be written as the direct sum of 4 nonzero right ideals. If k has characteristic 2, assume further that the dimension of A over its center $Z(A)$ is greater than 16. Let L be the simple Lie algebra $[A, A] /[A, A] \cap Z(A)$ associated with A. Then every bijective semilinear map on L which preserves zero Lie products is the product of an element of the unit group of the centroid of L with a semilinear automorphism or anti-automorphism of L.

References

1. I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.
2. H. G. Jacob, Coherence invariant mappings on Kronecker products, Amer. J. Math., 77 (1955), 177-189.
3. N. Jacobson, Pseudo-linear transformations, Ann. of Math., 38 (1937), 484-507.
4. O. T. O'Meara, A general isomorphism theory for linear groups, J. Algebra, 44 (1977), 93-142.
5. O. Ore, Theory of noncommutative polynomials, Ann. of Math., 34 (1933), 480-508.
6. S. Pierce and W. Watkins, Invariants of linear maps on matrix algebras, Linear and Multilinear Algebra, 6 (1978), 185-200.
7. W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra and Appl., 14 (1976), 29-35.
8. W. J. Wong, Maps on simple algebras preserving zero products. I: The associative case, Pacific J. Math., 89 (1980), 229-247.

Received April 13, 1977 and in revised form December 17, 1979. Research partially supported by National Science Foundation grant MCS 77-02057 A01 at the University of Notre Dame.

University of Notre Dame
Notre Dame, IN 46556

