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SUBBASES, CONVEX SETS, AND HYPERSPACES

JAN VAN MILL, MARCEL VAN DE VEL

We introduce a notion of topological convexity. Main
topics are: compactness of convexity structures, continuity
of convex closure operators, and characterization of convex
sets.

1* Closed subbases* It will be assumed that all spaces are 2\.
We agree to use the word "subbase" for "closed subbase".

A subbase £f of a space X is called a Tx subbase if for each
S e y and for each xeX - S there is an S' e 6^ with x e S' c X - S.
£S is called a normal subbase if for each pair of sets Sl9 S2 e <9*
with Sx D S2 = 0 there exist S[, S[e<9* such that

κ$ι d *bi •— &2I O2 CI O2 — ^ij &i U O2 ~ -**•

S[ and Sg are then said to separate (or: to screen) S± and S2. Finally,
Sf is called a binary subbase if each linked system S^f (zS^ (i.e.,
a subcollection S^' of ^ of which any two members meet) satisfies
ς\Sf'φ 0.

It is well-known that a binary subbase is TΊ (cf. van Mill [9,
Lemma 1]), that a space carrying a binary subbase is compact (use
Alexander's lemma), and that a space is completely regular iff it
admits a normal Tλ (sub)base (cf. Frink [6, Thm. 1]; de Groot and
Aarts [1, Thm. 2]).

2* Topological convexity structures* The analysis of convex
sets in Euclidean space has led to the introduction of axiomatic
convexity theory. One of the main purposes of this theory is to
investigate in an abstract setting the relationship between various
convexity invariants, modelled after famous theorems of Caratheodory,
Helly and Radon on convex sets of Rn.

In this paper we will study convexity structures compatible with
a topological structure. Our purpose is not to study the above
mentioned invariants, as we do not expect the introduction of a
topology to give rise to new relationships in general. Instead, we
are mainly concerned with the interaction between the two structures.
Some of the main results are summed up at the end of this section.
More results and applications can be found in [13], [14], [15], and [18].

In [7, p. 471], Kay and Womble define a convexity {structure)
as a pair (X, ^ ) , where & is a collection of subsets of X, such that
0 , l e ^ and n ^ ' e ^ for each nonempty family ^ ' c ΐ T . <g* is
also called a convexity structure for {on) X, and the members of ^
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are said to be the convex sets of the structure, or ^-convex sets.
For our purposes, it is more convenient to omit the empty set, and
consequently, to require Π ^ ' e ^ only when Π ^ ' ^ 0 .

If a convexity & is to be compatible with the topological struc-
ture of X then it is natural to require that the members of ^ be
closed, and in fact that ^ be a subbase, so that there are sufficiently
many convex sets. This leads to the following definition:

DEFINITION 2.1. A topological convexity structure (briefly: a
convexity) is a pair (X, <£*), where X is a topological space, and &
is both a convexity structure on the underlying set of X and a
subbase for the topology of X. As most spaces considered below
will be compact, the latter condition is not very restrictive.

This notion of "subbase convexity" arose from investigations
on the Lefschetz fixed point property of superextensions (van de
Vel [17]), and it yields an appropriate background for so-called interval
structures (van Mill and Schrijver [12]) and for subbasic closure
operations on supercompact spaces (van Douwen and van Mill [3]):

DEFINITION 2.2. Let (X, <g*) be a topological convexity structure,
and let A c X be a nonempty (closed) set. The convex closure of A
relative to W is defined to be the set

See [3, 2.4]. If no confusion can arise, we write / for Ie. In case
A — {xlf x2}, a two point set, we also write I(xlf x2) instead of I({xu x2}).
This set is called the interval between xλ and x2f see [12, §2].

EXAMPLES 2.3. The above definitions cover two well-known con-
cepts of convexity in topology.

( i ) Let X be a totally ordered space. A nonempty closed set
of X is order-convex iff it is convex relative to the subbase of all
closed segments. An interval in the above sense is an order-theoretic
interval.

(ii) Let X be a compact convex subset of a locally convex
linear space. Then the collection of all closed linearly convex sets
in X forms a subbase. Intervals are simply line-segments. This
convexity is normal, as can be seen from a Hahn-Banach theorem
(Rudin [16, p. 58]).

In the sequel we shall concentrate on compact spaces and on
convexities with an abundancy of convex sets. We make "abundancy"
precise by requiring the convexity to be normal. The normality
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condition can be compared with the separation of disjoint convex
closed sets by a hyperplane.

For normal binary convexities we shall prove a.o. the following
results.

THEOREM 2.4. Let & be a normal binary convexity structure
on the space X. Then a nonempty closed set CaX is ^-convex
iff I, (x, x') c C for each x, xf e X.

THEOREM 2.5. Let cέ? be a normal binary convexity structure
on X. Then each ^-convex set is a retract of X.

Many other convexity structures satisfy the characterization of
convex sets as in 2.4, e.g., linear convexity structures. Theorem
2.5 parallels a well-known retraction property of convex sets in
locally convex linear spaces (cf. Dugundji [4, Cor. 4.2]). Proofs are
given in §3, together with some other results.

If ^ is a topological convexity on X} then the collection <g* can
be topologized by considering ^ as a subspace of H(X), the hyper-
space of X. It is then natural to ask when & is closed in H(X),
and when the convex closure operator I^\ H(X) —> ^ is continuous.
Our main result is that these questions are equivalent for compact X:

THEOREM 2.6. If X is a compact spacef and if ^ is a normal
convexity on X, then the following assertions are equivalent:

( i ) & is compact;
(ii) I&\ H(X) -*&* is continuous;
(iii) & is a retract of H(X).

For other equivalent conditions, and for a proof of 2.6, see §4.

Each subbase y of a space X generates a topological convexity,
namely the family

S?~ = {n.-Q Î 0 ΦJ&CL&; f)<Sϊf Φ 0}Ό{X} .

This can be used to produce binary convexities, as follows from our
next observation, the simple proof of which is omitted:

FACT 2.7. // £f is a normal binary subbase of X, then so is
S^~. Unfortunately "binary" is essential in the following sense: it
need not be true that S^~ is normal if S^ is a normal subbase for
X, see 5.3 below.

3* Binary convexity structures* Binary subbases were intro-
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duced by De Groot as a part of (super)compactification theory.
They can be interpreted as topological convexity structures of Helly
number 2 on compact spaces (the Helly number of a set-theoretic
convexity (X, <£*) is the least natural number n with the property
that for each finite <£" c <g*, Π ̂ ' Φ 0 whenever each w-tuple of
members of <&' has a nonempty intersection).

As we shall show in §4, every topological convexity can be
"modelled" into a binary one, and this modelling will be used to
prove our Theorem 2.6.

We begin with two auxiliary results.

LEMMA 3.1. Let & be a normal binary convexity on X, let A c
X be nonempty and closed, and let x e X. Then

( i ) the set ΓLβ̂ /«*(&, a) Π I&(A) contains exactly one point]
(ii) if xel^(A), then {x} = Παeαe.4

Proof of (i). The collection

if' = {U(x, a) I a e A} U {U(A)} c i f

is obviously linked. Hence, as ^ is binary, Π &" ^ 0 . Assume
that # ^ tf are in Π ̂ ' . Using the fact that <& is a normal 2\
subbase and that I is a ^ space, we find Co, Cx in ^ such that

p 6 Co - d g 6 Cx - Co Co U Cx = X .

We may assume that xeCQ. If Af)CQ Φ 0, then I^(x,a)(zCQ for
s o m e α e i , contradicting that <?eCo. Hence, AcC1 9 and consequently

c d, contradicting that p g d

Proof of (iϊ). If a?6/y(A), then 4(a;,α)c4(A) for each α
whence

x e 0 /«-(«, α) = Π /*-(», α) Π /y(A) . Π
α e i ae A

The next result is a reformation of [12, Thm. 2.11]:

LEMMA 3.2. Let Sf be a subbase for the compact space X. Then
Sf is binary iff there is a function

I: XxX >&*(X) (the power set of X)

with the following properties:
( i ) for each u, u', x, x' e X: u, vl e I(x, x') iff I(u, u') c I(x, x');
(ii) for each xl9 x2, xz e X: I(xl9 x2) Π I(x2, xΛ) Π I(x9, xx) Φ 0 ;
(iii) for each S e ^ and x, x' eS, I(x, xf) c S . Π
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3*3* Proof of Theorem 2Λ. Necessity is obvious. To prove
sufficiency, let C o c l b e a nonempty closed set such that Iz(x, xf)a
Co for each χf x' e Co. Define

/: Co x Co

by I(x, xf) = I&(x, xr), and let

Then the subbase ^ | Co of Co and the map / satisfy the conditions
(i), (ii) and (iii) of Lemma 3.2, proving that ^ | Co is binary.

Let peI&(CQ), and let

&' = {ir(pf c) n Co ( e e Co} .

Then <g" c ^ I Co, and for each pair of points cu c2 e Co,

0 Φ LAP, CO n U(p, c2) n U(clf c2) c u(p, cj n LAP, C2) n c
0

by the binarity of ^ and by our assumption on Co. This shows
that ^ ' is a linked system, whence by the binarity of cέ? \ Co,
f W Φ 0 . However,

n <&' = Π Ufa o) n Co e n KP, c) = {p}
ceC ceC

by Lemma 3.1 (ii), proving that peCQ. It follows that Co =
^ D

Another characterization of (normal binary) convexity on super-
extensions, using partial orderings, can be found in [17, Lemma 2.2],

Our next result is a generalization of [19, III, 2.8], of [11, Thm.
2.2], and of [17, Thm. 2.3]. We need the following notation: Let
H{X) be the hyperspace of X. If Au , An are nonempty subsets
of X, then we write

(Al9 • ;An> = \c\CeH(X), C c \J At, C n A< Φ 0 for 1 £ i £ n\ .

The topology of H(X) is generated by the open base

{<<>!, , 0n) I n e N, 0u 02, , 0Λ nonempty and open} ,

or, equivalently, by the open subbase

{<0> I 0 nonempty open} U {<0, X) \ 0 nonempty open} .

3*4* Nearest point mapping theorem* Let ^ be a normal
binary convexity on X. Then for each xeX and Ce&*, the set
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P(X, C) = Π /*{*, C} Π C
eeC

contains exactly one point, and the function

p:Xx <& >X,

defined by {p(x, C)} = P(x, C), is continuous.

Proof. That P(x, C) is a singleton follows from Lemma 3.1(i)
and from C = /y(C). Let C6if, and assume (a?, ΰ ) e ( I x ^ ) - p-1(C).
Then p(#, JO) g C, and since ^ is normal I\, there exist CQ, Clf in ^
such that

p(x, D)eC0-C1; CaC, - Co Co U Cx = X .

In particular, DΠ (X - C,) ̂  0 since p(a, D)eD - Cλ. If D£X-Clf

then a;g Cx. Indeed, there is a point deD Π Clf and ̂ 6 ^ then implies
that

p(x, D) e U(x, d)aC19 •

contradicting our assumption. Define

V = Xx «X-Cχ>n^) , if ΰ c I - C , (1)

= (x-c 1 ) x ((x-c, , x>n<an, if D ζ ^ x - c , (2).

Then F is a neighborhood of (OJ, J9) in I x ^ which does not meet
p-\C). For take {x\ D') eV. If F is as in (1), then D ' c l - Clf

whence

If V is as in (2), then fix ά! e 2?' ΓΊ (X - Q . We find

whence p{x\ D') e /^(d', «') c Co c X - C. This shows that p-χ(C) is
closed. As & is a subbase for X, it follows that p is continuous. •

The mapping p is truly a "nearest point" map: see [17, 2.2, 2.3]
for the behavior of p with respect to certain orderings on superex-
tensions, and [13, Thm. 3.3] for the metric behavior of p.

This map has been discovered in various steps, each leading to
rather deep consequences. Van Mill used it to prove that a certain
subspace of the superextension of [0, 1] is homeomorphic to the pseudo-
boundary of the Hubert cube, [11, Thm. 3.4], and Van de Vel used
it to prove the Lef schetz fixed point property for spaces with binary
normal subbases, [17, Cor. 3.7].
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3*5* Proof of Theorem 2*5* Let ^ be a normal binary con-
vexity on X, and let Ce^ 7 . Then then the restriction

p(-,C):X >X

of the nearest map p obviously retracts X onto C. •

Let ^ be a topological convexity structure on the space X. We
let L(X, <£*) denote the subspace of the hyperspace H^), consisting
of all linked systems £? c ^ which are closed and nonempty.

THEOREM 3.6. Let & be, a normal binary convexity on X. Then
the intersection operator

L(X,<ίf) >&,

sending £f e L(X, <£*) to (Ί J*f, is continuous.

Proof. X is compact and completely regular (see §1), and hence
normal. Notice that Π £? Φ 0 for each £f e L(X, C) by binarity.
Fix a nonempty open set 0 c X, and let J^ e L(X, &*). We have to
consider two cases for a continuity proof:

( i ) Π c ^ c O . X being compact, there exist Ll9 , Lne&
such that Π?=i Li c 0. By the normality of X, there exist open sets
0lf , 0n such that Lt c 0,(1 ^ i ^ n) and fl?=i 0< c 0. Then

v = «Ol> n <&, , <o.> n c > nux, &)
is a neighborhood of £f which is easily seen to be mapped into

<o> n ̂ .
(ii) n=S^nO^0. Fix a point α?6 Π-S^ΠO. As ^ is a normal

TΊ subbase, closed under (nonempty) intersections, there exists a
f such that

& e int C c C c 0 .

Then the set

v - «c, x> n <ar> n

is a neighborhood of .Sf7, and V is mapped into <(0, X> Π ^ . Indeed,
if £f" e V then L' Γ)Cφ 0 for each L' 6 &>', whence ^f; U {C} is
a linked system. ^ being binary,

proving that n £?' e <0, X> Π r#. D

Continuity of A Π J5 in the variables A and J5 (or even in one
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variable at the time) seems to be fairly exceptional, as can be seen
from the next example using only "nice" sets:

Let X be the unit 2-cell, regarded as a subset of the complex
numbers. For each t e [0, π] we let Ft e H(X) denote the line-segment
joining 0 with eu. The resulting mapping F: [0, π] —> H(X), sending
t to Ft, is obviously continuous. The map

G:F([0fπ]) > H(X) ,

assigning to Ft the set Fπ Π Fu is not continuous, since the image of
GoF consists of the two points {0} and Fπ of H(X).

We shall now work towards the continuity of the convex closure
operator for normal binary convexities. A lemma is needed:

LEMMA 3.7. Let ^ be a normal binary convexity for X, and
let n ^ 2. For each in + l)-tuple (x9 xu , xn) eXn+1 the set

n

Fix, x19 , χn) = n U(χ, χt) n U(χu •••,»»)

contains exactly one point, and the function

f: Xn+1 > X ,

defined by {f(x, xlt , xn)} = F(x, xlf , xn), is continuous.

Proof. The first part of the statement follows from Lemma 3.1
(i). To prove continuity, let Ce^ and let (x, xl9 •• , a ; J e P + 1 -
f-\C). Then

ή U(χ, Xi) n U(χlf - - , χn) n c = 0 ,
i=l

and by the binarity of ^ we have either that I&(x, xt) Π C = 0 for
some i e {1, , n}f or that Iv{xu , xn) Π C = 0 . In the first case,
it follows from the normality of ^ that there is a CQ e ^ with

/ (x, xt) c int Co c Co c X - C .

Let πά\ Xn+1 —> X denote the projection onto the jth-coordinate (j =
0, '"9n). Then

0 - TΓίΓ̂ int Co) Π TΓΓ̂ int Co)

is a neighborhood of (x, xl9 - >, xn) which does not meet f~\C).
For if (y9 yl9 , yn) e 0, then {y9 yτ) c int Co c Co, whence

f(v, Vu- , Vn) € U(y, ^ c C o C l - C .

In the second case, one can proceed in the same way. First, choose
Co G i f such that
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U(xίf , xn) c int Co c Co c X - C .

Then put

0 = Π ^ ( i n t Co) .

This set is a neighborhood of (a?, xu , α?J not meeting f~\C). Π

THEOREM 3.8. Lei ^ be a normal binary convexity on X. Then
the convex closure map

U: H(X) > <&

is a retraction of H(X) onto ^ .

Proof. We use the open subbase of ^ c H{X), induced by the
sets of type <0> or <0, X), where 0 is open in X. Fix an open
set 0 c X, and assume that I&(A) c 0 for a given A e H(X). As X
is compact, and as & is a normal subbase which is closed under
intersection, there exist Cu , Cn e ^ such that

being normal, there exist Dif D[ 6 ^ with

Let i) = ΓlΓ=i A Then fle^ and

c int D c Z) C f\ (X - Ct) c 0 .

For each A'6 <inti)>, we then have U(A') c ΰ c O .
Assume next that I«.(A) Π 0 =£ 0 , and fix a point ί) 6 /V(A) Π 0.

By Lemma 3.1 (ii)

{p} = Π /^(α, p) c 0 .

As X is compact, and as 0 is open, there exist already finitely many
a* 6 A(l <̂  ΐ ^ n) such that

ή
1 = 1

Consequently, with the notation of Lemma 3.7,

{/(A * l f , O } = ή ^(αi, P) Π i^αx, , an) c 0 .
i = l
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By the continuity of / there exist open neighborhoods Vt of aif

1 ^ i ^ n, such that for each w-tuple (a[, , a'n) e Tl7=iVif

The set (Vlf •••, Vnf X) is a neighborhood of AeH(X), which we
now show to be mapped into <0, X). Let A' e < Vu , V%9 X) and
choose α e A' Π Vi9 1 ^ i ^ n.

Then

0 ^ n i « p) n IA< , o co n î (A'),

since {α{, , af

n) c A', and (a[, , αi) e Π?=i^ I n particular, 0 Π
J^(A') ^ 0 . This proves the continuity of I&. 1^ is then a retraction,
since I^(C) = C for each C e ^ 7 . •

Theorem 3.6 may suggest another way to prove the continuity
of convex closure: if ^ is a normal binary convexity on X, then
I& equals the composition

H(X) - ^ L(X,

where

F(A) = {C\AaCe<έ?} (AeH(X)) ,

= n £f (&> 6 L(X, if)) .

Difficulties arise when proving the continuity of F: there is no nice
open or closed subbase available for L(X,

4* Compact convexity structures* As a consequence of Theorem
3.8, a normal binary convexity ^ on a space X is a compact subspace
of H(X). The class of such "compact" convexities appears to be
considerably larger than the rather restrictive class of normal binary
convexities: it contains for instance the linear convexities on compact
convex sets in locally convex linear spaces (cf. §5).

We begin with modelling subbases (or convexities) into binary
ones.

4*1* Superextensionst Let £f be a closed subbase of X. Then
λ(X, £f) denotes the set of all maximal linked systems in 3f (see
§ 1), equipped with the topology generated by the closed subbase

where S+ = {£f \ £f e \(X, S^)9 Se £f). The resulting space is called
the super extension of X relative to S^i The subbase ^ + is automa-
tically binary. It is easy to see that for each Su S2e<9*:
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S1\jS2 = X iff StΌS}

S i n s 2 = 0 iff s + n S ί - 0 ;

Sx c S2 iff S+ c S2

+ .

In this way J5^+ can be regarded as a kind of a model of S^. The
above equivalences imply that Sf is normal iff 6^+ is normal. Being
a Wallman-type extension, the space X(X, &*) is automatically 2\.
Normality of ^ ( ^ + ) implies that λ(X, &*) is Hausdorff.

If X is a (ϊ\) space with a Tx subbase Sζ then there is an
embedding i:X—>\(Xf&*) defined by

In the sequel, we shall identify X with the subspace i(X) of X(X,
For detailed information on superextension theory, the reader

can consult Verbeek [19]. A simple example that λ(X, £f) Φ λ(X, S O
can be found in [9, p. 13]. It is very obvious that ^ + Φ {S^+T
in general.

We now come to a proof of Theorem 2.6. For proof-technical
reasons, we give an extended formulation of 2.6, including three
more equivalent conditions.

THEOREM 4.2. Let X be a compact space, and let ^ be a normal
convexity on X. Then the following conditions are equivalent.

( i ) & is compact;
(ii) I&\ H(X) —> ^ is continuous;
(iii) & is a retract of H(X);
(iv) the mapping (^-*(£p+, sending Ce^ to C+ e ^ + , is a

homeomorphism;
(v) the collection

n ίriceίf} u {<c, xy n^\C

is a normal T1 subbase for the space ^
(vi) the restriction of I& to the space of all finite subsets of X

is continuous, and a nonempty closed set AaX is ^-convex iff for
each finite Fa A, I^(F) c A.

The implications (ii) => (iii) => (i) are obvious, since H(X) is compact
(cf. Michael [8, Thm. 4.2]). We shall prove the following statements:
(i) « (ii) and (iv); (iv) => (i) - (v) - (iv); (i) ~ (vi).

Proof of (i) => (ii) and (iv). Recall that X is regarded as a sub-
space of λ(X, ^ ) , which at present is closed by the compactness
of X. Let g denote the restriction of U+ to H{X) c H(X(X,
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and let h denote the restriction of g to ^ aH{X). The functions
g and h are continuous by Theorem 3.8. For each A e H(X) we have

and it easily follows that

U+(A) = (

This shows that g(H(X)) = &(ίf) c

Regarding h as a map ^ —• ^ + , one can easily see that this
map has a two-sided inverse, which is the mapping ^ + -> <g* sending
C+ to C = C+ Π X As 9f is compact and Hausdorff, it follows that
h: <& —> <g*+ is a homeomorphism. We then obtain a well-defined
continuous mapping

h~ιg: H(X) > ^ + > 9f ,

which equals 7 .̂

Proof of (iv) => (i). Assume that ^ and ^ + are homeomorphic
spaces. We show that 9^+ is a closed subset of (^ + )" . The latter
being compact, we then find that ^ + , and hence also ^ , is compact.
Let A e (<gf+Γ - 9f+. If AΓ)X=0, then <λ(X, ^ ) - X) is a
neighborhood of A not meeting ^ + (since each C+ 6 (g:?+ satisfies
C + n I = C ^ 0 ) . So assume that A n X Φ 0 , and let J ^ c ^ + be
such that A — Π J^I Then

Hence we can consider (4 ίl I ) + . As we noticed in the proof of
(i) => (ii) and (iv), (A Π X)+ — I^+(A Π X), whence by the convexity
of A c λ(X, if), (A n X)+ c A. As A e ^ + , we find that (A n X)+ Φ
A, and hence there must be a maximal linked system

Fix Le^fa^f, such that L n (A Π X) = 0 . ^ being normal, we
can find Co, Cx e <& such that

L c l - C o ; 4 n l c I - C i ; (X - Co) n (X - CO = 0 .

Observe that £fsL+ Π A, whence L+ n A ^ 0 , and that

L+ c λ(X, ^ ) - Ct

as one can easily see from LaX — Co. Hence, the collection

V = <λ(X, 9f) - Co

+, λ(X, ^)> n
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is a neighborhood of A. We show that Fί l ̂ + = 0 . Indeed, as-
sume that D + G 7 Π ^ + . We find that

- ct) u (λ(x, g?)

0 Φ D+ Π (λ(X, ΐf) - Ct), whence 0 ^ D Π (X - Co) .

This contradicts with the fact that X — Co and X — CΊ are disjoint.

Proof of (i) => (v). First notice that for each Ceίf,

H{X) - <C> = <X - C, X)

iϊ(X) - <C, X> = (X - C) ,

and hence that the sets <C> Π if, <C, X> Π i f are closed in if.
Assume that ^ is compact, let & c ^ be closed, and let JD e i f - ,^.
For each J 5 e ^ we have either that B<£D, or that DqLB.

If £ ί D , then choose α e B - D, and fix CB, CDer^ such that

x e CB - CD BaCD~ CB; CDUCB = X .

In particular, & e i? Π int CB, and it follows that (CB, X> is a neigh-
borhood of B which does not contain D.

If Dςt B, then choose y eD — B, and fix CB, CDe^ such that

y £ CD — CB BaGB — CD) CD U CB — X .

We then find that <C5> is a neighborhood of J5, and that D $ (CB).
By the compactness of &, a finite number of the selected neigh-
borhoods of type <Cβ, X> or (CB) suffices to cover &. It easily
follows that the sets of type <C> n ̂  or <C, X> Π ̂ , C e ̂ , form
a subbase for the space r<^.

The proof that this subbase is normal and T1 is a routine argu-
ment, involving the corresponding assumptions on ̂ . We leave this
to the interested reader.

Proof of (i)=>(vi). We only have to show that if AeH(X) is
such that for each finite Fa A, U(F)aA, then 4 G ^ . Let (0^ , 0Λ>
be a basic open neighborhood of A. Fix at e A f] 0iy 1 <£ ί <̂  w, and
let ί7 = {α2, , α j . By assumption,

U(F) c A c U 0, /^(ί7) n θ ^ 0 for U i ^ w ,

and hence <0i, , 0Λ> meets ^ . It follows that

A e closure of <g* = <^.

P?*oo/ o/ (vi) => (i). Let AeH(X) — &>. By assumption, there
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is a finite set F = {alf , an) c A and a point x e IV(F) — A. By the
regularity of X, there exist open sets 0, P c X such that a;eP,AcO,
and 0 f] P = 0 . Since J^ is continuous on the space of finite sets
in X, there exist open sets 0* c 0 such that α* e 0<(l ^ i ^ n) and such
that for each w-tuple (αί, , <) e Π?=i 0*, ! * « , <) Π P Φ 0 . The
set V — <0, 0x, , 0%> is a neighborhood of A. We show that it does
not meet 9f: let B e F , and fix δ* e BnO*, 1 ^ i S n. We find that

U(K - ,bn)ΠPΦ 0

It follows that U(bu •• ,bn)<£B, whence B<ί <&. Π

4*3* Comments* Except for the rather surprising equivalence
between compactness of ^ and continuity of i^, two other equivalent
conditions seem to be interesting: (iv) and (vi). As for (iv), we
noticed already that the modelling of & into a binary ^ + is com-
binatorically faithful. Compact convexities are characterized by the
fact that this modelling is also topologically faithful.

On the other hand, condition (vi) states that compact convexities
satisfy a slightly weaker form of a characterization of convex sets
when compared with binary convexities (cf. Theorem 2.6).

The condition (v) appears to be rather technical, though it has
proved useful already in various applications ([14, Thm. 2.1.] and
[18, Thms. 8, 9 and 10]).

5* Some examples and corollaries* Theorem 4.2 shows that
a subbase which

(a) is normal and 2\;
(b) is closed under (nonempty) intersection;
(c) is compact as a hyperspace of convex sets;

must satisfy quite stringent properties. The most interesting types
of examples are the normal binary subbases (including Example 2.3(i)),
and the ones described in 5.1 below.

EXAMPLE 5.1. Let X be a compact convex subspace of a locally
convex linear space, equipped with the subbase (convexity) ^ of all
closed and linearly convex subsets of X (cf. 2.3(ii)). By Hahn-Banach's
theorem ([16, p. 58]) & is also normal. This convexity is compact,
as one can see from an obvious argument on line segments, using
the continuity of the algebraic operations.

It follows from Theorem 4.2 that the hyperspace of all dosed
and linearly convex sets of X is a retract of if(X), with a retraction
equal to the convex closure operator.
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EXAMPLE 5.2. Let X be a locally connected continuum, and let
C{X) denote the hyperspace of all subcontinua of X. Then C(X) is
easily seen to be a normal Tx subbase for X, and C(X) is compact.
C(X) is a convexity if and only if X is hereditarily unicoherent. A
locally connected hereditarily unicoherent continuum is a tree (cf.
Why burn [21, Thm. 9.1]; a tree is a continuum in which every two
distinct points can be separated by a third point, cf. Ward [20, p.
992]). In this case, C(X) is even a binary subbase, as can be derived
from the proof of [12, Thm. 4.3]. A direct proof of this fact can
be obtained from Lemma 3.2 (which was also taken from [12]): using
unicoherence, one can find for each a,beX a smallest continuum
I(a, 6) with a, b e I(a, ft). It is now easy to see that the resulting
map I:X2-*έ^(X) and the subbase C(X) satisfy the assumptions (i)
(ii) and (iii) of Lemma 3.2, whence C(X) is binary.

In [2, Thm. 2], Curtis and Schori have shown that C(X) is a
Hubert Cube factor (that is, a space whose product with the Hubert
Cube is homeomorphic to the Hubert Cube), iff X is a Peano con-
tinuum. In particular, C(X) is then a retract of H(X). Theorem
4.2 (or 3.8) implies that for the class of dendra (metrizable trees)
such a retraction can be well described as the convex closure operator
relative to C{X).

EXAMPLES 5.3. Let S1 denote the unit circle. The following
collections are easily seen to be closed subbases for S1 (0 < r <> 2π):

Si = {C e C(Sι) I arc length of C ^ r} ,

&? = {C e C(SX) I arc length of C < r} .

There is a well-known homeomorphism h: CiS1) -> E2 (the unit 2-cell)
constructed as follows: HS1) = 0, and for each CeCiS1) - {S1}, h{C)
is the point of E2 on the line segment joining 0 with the middle
point of the arc C on a distance

1 - —(arc lenght of C)
2π

of the origin. Applying this m^p to the subspaces Sζ, &? of Ciβ1),
it is easy to see that each Sfr is compact and each S^J is noncompact.
S^r (resp. S^r) is closed under intersection iff r < π (resp. iff r ^ π).
S^. is nonnormal for each r < 2τr, and &? is normal iff r > π.

None of the above subbases therefore satisfies (a), (b), and (c)
simultaneously. Notice that £fr and &? are even binary if r < 2π/3.

Let S? = SV with r = 2τr/3. Then y is a normal nonbinary
subbase for the circle. The members

A = {(0, 1), (0, -1)} , B= {(1, 0), ( -1 , 0)}
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of the generated convexity Sf~ can only be screened by disconnected
closed sets. One easily sees that disconnected members of Sf~ have
measure less than π. Hence Sf is not normal.

We now present some corollaries of the results obtained in §§3
and 4.

COROLLARY 5.4. Let ^ be a normal binary convexity on X.
Then the space & has a normal binary convexity.

Proof. By Theorems 3.8 and 4.2, & admits a normal TΊ subbase
consisting of all sets of type <C> Π ̂  or <C, X) Π ̂ , where C e ^.
This subbase is binary: let the collection

be linked, where Cif Dό e <& for each i e I and j e J. Choose

CiV 6 <C,> n <Ĉ > n ΐ f i,i'el,

Di3 e <C<> n < A , ^ > n ^ i e l , j e j .

H e n c e

0 ^ C«/ cCiίlC,,

Diά c C4 Ai Π Dj Φ 0 ,

proving that for each i e J the collection

{d\iel}\j {Dό}cif

is linked. Choose

iel

and let A = J (̂{% | j 6 J}). Then A c Γhe/ C,, and AnDjΦ 0 for
each i e J . Consequently, ^Sf Φ 0 . Π

COROLLARY 5.5. Lβί X be a continuum with a normal binary
convexity ^. Then

( i ) the space <& has the fixed point property for continuous
maps;

(ii) if X is metrizable, then ^ is a metric AR.

Proof. The space H(X) is connected, and hence its retract ^
is connected. A connected space carrying a normal binary subbase
is an acyclic Lefschetz space (cf. van de Vel [17, Cor. 3.7]). If Xis
in addition metrizable, then ^ a H(X) is metrizable. It then follows
from a result of van Mill ([10, Thm. 4]) that ^ is a metric AR. •
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Statement (ii) can also be derived as follows. A continuum X
carrying a normal binary subbase is locally connected (cf. Verbeek
[19, Thm. Ill, 4.1]). If X is metrizable, then H(X) is an AR (cf.
Wojdyslawski [22, p. 247]), and hence ^ is an AR, being a retract
of an AR.

5 6* Construction of hyperspaces which are AR's* By the
above cited result of Wojdyslawski, the hyperspace of a Peano con-
tinuum is an AR. In case a metric continuum is not locally connected,
the techniques discussed in the present paper provide a way to
construct hyperspaces which are AR's and which are close to the
original hyperspace.

Let £f be a normal I\ subbase for the metric continuum X.
Then \{X9SS) is Peanian ([19, Cor. IV 2.4, Thm. Ill 4.1]), and
consequently

(<9*+Γ is an AR, being a retract of an AR (Theorem 3.8) .

By a recent result of Edwards (cf. [5]) every (compact metric)
AR is a Hubert cube factor. It would be desirable to find conditions
on (X, S?) such that ( ^ + ) " is not only a Hubert cube factor but is
homeomorphic to the Hubert cube itself.

Added in proof. (1) The equivalence of (i) and (ii) in Theorem
4.2 has been obtained more economically by R. E. Jamison in his 1974
dissertation (University of Washington, Seattle). Rather unfortuna-
tely, no part of this dissertation has been published, so that the
authors became aware of it only recently.

(2) In [18] a notion of "convexity" has been developed for
nonclosed sets, and which is based on the above studied type of
topological convexity structure. If one adds the nonclosed "convex"
sets to the given convexity structure, one obtains the "topological
alignments" which were studied by R. E. Jamison. In this way, both
approaches are basically the same, and a unifying account is given
in a forthcoming paper of the second author, entitled: "Pseudo-
boundaries and pseudo-interiors for topological convexities".

(3) In another forthcoming paper of the second author, entitled:
"Finite dimensional convexity structures II: the invariants", it will
be shown that the "classical" invariants of a convexity are rather
deeply affected by certain topological conditions, e.g., concerning
dimension. This seemingly contradicts with the expectation raised
in §2 above. We emphasize, however, that these results only work
under rather stringent (though natural) restrictions such as con-
nectedness of convex sets.
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