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SOLUBILITY OF FINITE GROUPS ADMITTING A
FIXED-POINT-FREE AUTOMORPHISM OF
ORDER st 1

PETER ROWLEY

The ‘fixed-point-free automorphism conjecture’ asserts
that if a finite group G admits a fixed-point-free automor-
phism group A (and, if A is noncyclic, further suppose that
(]G, |A|) =1), then G is soluble. This paper is the first in
a four part series, which considers the above conjecture
when A is cyclic of order rst where r, s and ¢ are distinct
prime numbers.

1. Introduction. Suppose G is a finite group. For A a sub-
group of the automorphism group of G we say that A acts fixed-
point-freely upon G if and only if C,(A) ={geG|a(g) =g, Vac A} = {1}.
When A = (a) is cyclic we sometimes say « acts fixed-point-freely
upon G.

Let 7, s and ¢ denote distinet prime numbers. The main result

to be proved here is

THEOREM 1.1. A finite group which admits a coprime fixed-
point-free automorphism of order rst is soluble.

In [15] the above result is obtained with the additional assump-
tion that rst is a non-Fermat number (for the definition of a non-
Fermat number see §4). The main result of [15] has been further
extended in [17] where the ‘fixed-point-free automorphism conjecture’
is established for automorphisms whose order is a non-Fermat square-
free number. The ‘fixed-point-free automorphism conjecture’ asserts
the following.

If a finite group G admits a fixed-point-free automorphism group
A (and, if A is noncyclie, further suppose that (|G|, |4|) = 1), then
G is soluble.

References for other works which contribute to the solution of
this problem may be found in [13] and [16].

We now review the strategy of the proof of Theorem 1.1. A
substantial part of our arguments will be in the context of a minimal
situation. So let the pair (G, {a)) be a counterexample to Theorem
1.1 chosen so that |G| + |{a)]| is minimal. Lemma 3.13 demonstrates,
in such a group, the existence of certain a-invariant nilpotent Hall
subgroups. Let L and M denote (respectively) a-invariant nilpotent
Hall - and pg-subgroups of G. By (2.22) the number of maximal
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«a-invariant {\ U p}-subgroups of G is at most two. Making use of
this fact, for various choices of L and M, we deduce the possible
consequences when L and M do not permute. Such deliberations are
sometimes referred to as ‘local analysis’. The structural consequences
predicted by the local analysis must, in some way, be woven together
to present ‘global’ information about G. Frequently the transition
from local to global information in this type of problem is achieved
by factorizing G as the product of two proper a-invariant subgroups.
In [13] and [14] the local information obtained leads fairly naturally
to a ‘useful’ factorization. In proving Theorem 1.1 there arise many
more possible interactions globally (that is, the local deductions are
not as restrictive as in [13] and [14]). The diverse possibilities
(globally) force us to consider the interaction between more than
just a pair of a-invariant nilpotent Hall subgroups. We have termed
results dealing with such situations as ‘linking theorems’. Valuable
contributions to the proofs of the linking theorems are made by
(2.6), (2.14), (2.26), the (so-called) triangle lemmas and Theorem 4.4.

Let P denote the (unique) a-invariant Sylow p-subgroup of G.
We say P is of type 4 where 4= 4 = {1, 2, 3} according to the trivi-
ality or otherwise of Cp(a?) for various j (a precise definition is
enunciated in §3). Depending on whether 4 = 4 or 4 = A the ‘nuts
and bolts’ of the proofs of certain technical lemmas will differ. For
example, if we have two a-invariant Sylow subgroups of types (say)
4 and I' with 4 = A4 = I, then results such as (2.11) are available.
Whilst, if 4 = 4 = I, then the two a-invariant Sylow subgroups will
have more interaction between their a-invariant subgroups (see for
instance Lemma 3.14), which, sometimes, may be exploited to advan-
tage. A further general point is that, unlike most current work
on nonsoluble finite groups, during the proof of Theorem 1.1 we
have few encounters with centralizers of involutions. However, a
fortuitous meeting in the proofs of Theorem 8.6 and Lemma 14.10
helps us out of a potential empasse.

The proof of Theorem 1.1 will be presented in four parts; our
section numbering will run through all the parts. The material
presented in Part I is of a more general nature and also covers much
of the groundwork for [17]. Section 2 establishes notation and
reviews results from other sources. In §8 we introduce the concept
of the ‘star-subgroup’ and the ‘type’ of an a-invariant Sylow sub-
group. The star subgroup figures prominently in § 4 where we study
soluble groups which admit a fixed-point-free automorphism. Section
5 contains certain preliminary observations pertinent to the linking
theorems, and includes the ‘triangle lemmas’. Some ecriteria for
normal p-complements are noted in §6. In §7, contained in Part
II, we begin the proof of Theorem 1.1 in earnest; § 7 catalogues the
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local information relevant to Theorem 1.1. The remaining two sec-
tions of Part II are devoted to establishing various linking theorems.

The sequel to Part II is wholly concerned with showing that the
a-invariant Sylow subgroups of type 4 =1{1,2,3} (in a minimum
counterexample) generate an a-invariant soluble subgroup. It is left
to Part IV to examine the various factorizations that arise and draw
together the threads of the proof, from which we infer that no
counterexample can exist.

During the course of this work I enjoyed the stimulating hos-
pitality of the Mathematics Institute at the University of Warwick.
Also, I would like to thank Dr. Trevor Hawkes for supplying the
example following Theorem 4.4, and Jenny, my wife, without whose
financial and moral support this work would never have seen the
light of day.

2. Assumed results and notation. The notation of [7] will be
adhered to as much as possible, and all groups considered in this
paper will be assumed to be finite.

The first result summarizes certain well-known properties ger-
mane to fixed-point-free automorphisms which will be used frequently.
When A4 is cyclie, (2.1)(i) is proved in Lemma 10.1.3 of [7] and, when
A is noncyclice, (2.1)(i) follows from Theorem 6.2.2 of [7]. For veri-
fication of the remainder of (2.1) see [(2.1); 16].

(2.1) Let G be a finite group admitting a fixed-point-free auto-
morphism group A (and if A is noneyeclic also assume (|G|, |A]) = 1).
Then

(i) If N is a normal A-invariant subgroup of G, then A acts
fixed-point-freely on G/N.

(ii) For each p e (@) there exists a unique A-invariant Sylow
p-subgroup, P, of G and, moreover, P contains every A-invariant
p-subgroup of G;

(iii) If H is an A-invariant subgroup of G and P is the (unique)
A-invariant Sylow p-subgroup of G, then HNP is the (unique) A-
invariant Sylow p-subgroup of H.

(iv) If G possesses an A-invariant Hall z-subgroup H, then H
contains all A-invariant z-subgroups of G. Also, if K is an A-
invariant subgroup of G, then KN H is the A-invariant Hall 7-sub-
group of K.

(v) If G is soluble, then, for each set 7 of primes, there exists
an A-invariant Hall z-subgroup of G which (by (iv)) is unique and
contains every A-invariant m-subgroup of G.

(2.2) Suppose G is a finite group admitting the automorphism
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« fixed-point-freely.
(i) (Thompson [19]). If |{a)| is a prime, then G is nilpotent.
(ii) (Ralston [14]). If |<{a)| = rs (where » and s are distinct
primes), then G is soluble.

Our next result is a compendium of results pertaining to coprime
operator groups.

(2.3) Let G be a finite group admitting A as a coprime operator
group.

(i) G=C4A)[G, A] where [G, A]={g"'a(g)|g G, a € A). More-
over, if G is abelian, then G = Cy(4) X [G, Al.

(ii) [IG, 4], A] =[G, A] is an A-invariant normal subgroup of
G.

(iii) If N is a normal A-invariant subgroup of G, then Cy/y(A) =
(C4(A)N)/N.

(iv) If A is an elementary abelian r-group (r a prime) of rank
2, then G = {(Cyla)|a € A*).

(v ) Suppose G is a nilpotent group with H a subgroup of G.
If C4(H)H = Cy(A), then G = Cu(4).

(vi) If B=J A, then Cyi(B) and [G, B] are A-invariant.

(vii) If H is an A-invariant subgroup of G containing [G, A],
then [G, A] = [H, A].

(viii) If H is an A-invariant subgroup of G, then Cy,m(4) =
No([H, A).

(ix) If G = HK where H and K are A-invariant subgroups of
G with K < Cy4(A), then [G, A] £ H (and so, by (vii), [G, 4] = [H, A]).

(x) If HZG with H < C,(A), then [G, A] centralizes H.

(xi) Suppose G = HK where H and K are A-invariant sub-
groups of G. Assume H <G and (|H|, |K|) =1, and set &= = n(H).
If H < Cys(A) and Cy(A) has a normal z-complement, then [H, K] = 1.

(xii) If H < Cy(A) = C, then Ny(H) = N (H)Cy4(H).

(xiii) For each pen(G) there exists at least one A-invariant
Sylow p-subgroup and any two A-invariant Sylow p-subgroups of G
are conjugate by an element of Cyz(A4). Also, every A-invariant p-
subgroup of G is contained in some A-invariant Sylow p-subgroup
of G.

(xiv) Assume G is soluble and = is a set of primes. Then G
possesses at least one A-invariant Hall z-subgroup, any two Hall z-
subgroups are conjugate by an element of C4(A) and every A-invariant
w-subgroup of G is contained in an A-invariant Hall z-subgroup of
G.

(xv) Suppose that A = BC where B=]A and C=<lA, that
Cz(A) =1 and that G = Cx(B)C4(C). Then G = Cyx(B) x CxC).
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Proof. For parts (i)-(x) consult (2.6) of [16]; the proof of
[Theorem 5.2.3; 7] may be used to show that, in (i), the sum is
direct when G is abelian. Part (xi) follows by combining parts (i),
(ix), and (x), and part (xii) is given as Corollary 2 to Theorem 3 in
[5]. For part (xiii) see Theorem 6.2.2 of [7]; taking into account
[Theorem 6.4.1; 7] the proof of Theorem 6.2.2 of [7] also yields part
(xiv). Part (xv) may be verified as follows. From (vi), both C.(B)
and C4z(C) are A-invariant and a double application of (ix) (with B and
C in place of A) yields that [G, B] £ C¢(C) and that [G, C] £ Cx«(B).
Since Cyz(A) =1, Cx(B)NCe(C) =1 whence (using (i) for B and C),
CyB) =[G, C] and C,(C) =[G, B]. Hence, as [G, B]<IG and [G, C1<ZG,
the sum must be direct and (xv) follows.

The following two results describe solubility criteria. A proof
for (2.4), when A is cyclic, is given in [(2.12); 14]. However, the
proof also works for a noneyclic (coprime) automorphism group.

(2.4) Suppose G admits the automorphism group A fixed-point-
freely (with (|G|, |A]) =1 if A is noncyclic). Then G is soluble if
and only if for each pair of primes p, ¢ € 7(G) the corresponding A-
invariant Sylow p- and g¢-subgroups of G permute.

(2.5) (Wielandt [p. 680, 9]). If G = HK where H and K are
nilpotent Hall subgroups of G, then G is soluble.

For P, a p-group, J(P) denotes the Thompson subgroup of P,
as defined in [p. 271; 7]. In establishing certain ‘linking theorems’
the next theorem is of great help.

(2.6) Let G be a soluble group admitting A fixed-point-freely and
let P be the A-invariant Sylow p-subgroup of G. If A is noncyclic
also assume that (|G|, |A]) = 1. Then G = 0,(G)Ny(J(P))Cs(Z(P)).

Proof. If G # 0,(G)Ng(J(P))Cx(Z(P)), then, from the main theo-
rem of [6],

p=2 or 3;

and there exists a (nontrivial) section H/K of G (where H and K
are A-invariant subgroups of G and K <] H) such that H/K is a
direct product of copies of SL (2, p).

Clearly H/K admits the action of A and, by (2.1)(i), ;the action
will be fixed-point-free. Set H/K = H. Then H=H, x --- x H,
where H; = SL (2, p). Observe, since the orders of Z(SL (2, »)) and
SL (2, p)/SL (2, p)’ are coprime, that A will permute the H, by the
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Krull-Remak-Schmidt theorem (see [Satz 12.3, p. 66; 9]).

Set B = N,(H,)). By (2.1)(ii), there exists an A-invariant Sylow
2-subgroup of H, say T. If p =2, then |TNH,| =2 and so (when
p=2) Cg(B) #1. When p =3, then |Z(H))| =2 and so Cg,(B) = 1.
Hence

1% a,(F) - 0 € Cry(4) ,

where 1 # i_Lngl(B) and a,, ---, a, is a left transversal to B in A4,
contrary to Cz(4) = 1. Therefore G = 0,(G)Ng(J(P))Cy(Z(P)).

We also require a slight extension of (2.6); (2.12) of [16] furnishes
a proof for (2.7).

(2.7 Let G be a soluble group admitting a fixed-point-free
automorphism group A (with, if A is noneyclic, (|G|, |[A]) =1) and
assume that G possesses an A-invariant nilpotent Hall »-subgroup,
N say. Then

G = (NJ(P)), Co(Z(P))|p €7, Pe8yl, (N))0,(G) .

The next result, (2.8), appears as Theorem 4.1 of [14] for the
case |{a)| = rs (r and s distinet primes), but the proof is valid for
any «a of square-free order; (2.9) may be established by a proof
analogous to the one given in [14] for Lemma 3.5 (and does not
require « to be of square-free order).

(2.8) (Ralston). Let G be a finite group admitting a fixed-point-
free automorphism « of square-free order, and let P denote the «-
invariant Sylow p-subgroup of G. If Cy(a?) =1 for all 5,1 <5<
[{a)]|, then P is a direct summand of G.

(2.9) Suppose G is a soluble group admitting « fixed-point-freely.
If R is an a-invariant p-subgroup of G (p a prime) such that Crz(a?) =1
for all j,1 < j < |[<{a)|, then R =< O,(G).

(2.10) Let G be a group admitting the coprime fixed-point-free
automorphism a of order s (where » and s are distinet primes),
and set p =a*® and 0 = a". Let P denote the a-invariant Sylow p-
subgroup of G, p a prime. Then

(i) G has Fitting length at most 2;

(ii) if P = Cp(0)Cs(0), then G has a normal p-complement; and

(iii) if p # 2, then P = Cx(0)Cx(0)0,(G).

Proof. (i) From (2.2)(ii) G is soluble and so, by the main
result of Berger [1], has Fitting length at most 2.
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(ii) The proof given for Lemma 3.2 of [14] suffices to establish
(ii), since the solubility of G removes the need to employ the Thompson
normal p-complement theorem in that proof.

(iii) See Theorem 3.3(1) of Ralston [14].

We shall rely upon the ensuing four results frequently.

(2.11) (see (2.19) of [16]). Let G be a finite soluble group
admitting a coprime automorphism a« of prime order. Suppose
G = MN= N, where M and N are a-invariant subgroup of G with
(M|, |N|) =1. If M centralizes Cy(a), then [[M, a], N] =1 unless
2exn(M) and |{a)| is a Fermat prime.

(2.12) (see (2.20) of [16]). Assume G, M, N and « are as given
in (2.11). If M centralizes Cy(a) and M is abelian, then [M, a] cen-
tralizes N.

(2.13) Let G be a soluble group admitting a coprime auto-
morphism « of prime order and let H be an a-invariant Hall z-
subgroup of G. For (i) and (ii) assume that 2¢ n(H) or |[{a)| is a
non-Fermat prime. If Ci(a) is a w-group, then

(i) H = 0.3)Cyla);

(ii) G = O, . (@) (that is, G has n’-length at most one); and

(iii) for J an a-invariant abelian z-group, J = C,(a)(J N O.(G)).

Proof. (i) See (2.21) of [16].

(ii) By (2.3)(xiv) G will have an a-invariant Hall z’-subgroup,
call it K. Set G = G/O.(G), and use bars to denote images of sub-
groups of G in G. Using (i) and (2.3) (iii) gives H = Cz(a). By
hypothesis, K = [K, a] and so K<IG (by (2.3)(ix)). This establishes
(ii).

(iii) Using (2.12) in the proof of [(2.21); 16] gives (iii).

(2.14) Let G be a soluble group which admits an automorphism
a of square-free order. Suppose G = JH= H, where J and H are
a-invariant subgroups of coprime order, H is nilpotent and J nor-
malizes an a-invariant subgroup, K, of H.

(i) Suppose that |{a)| is a prime number, Cy(a) < K and
(|Gl, [{a>]) = 1. Further, assume at least one of the following
holds: 2¢ z(J); |{a)| is a non-Fermat prime; or J is abelian. Then
[[J, «l, H] £ K (or, equivalently, H = KCy([J, al)).

(ii) If a acts fixed-point-freely upon J, (|H|, |{a)]) =1 and
Cyla?) £ K for all j,1 < 7 < |{a)]|, then [J, H] < K (or, equivalently,
H = KCy(J)).
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Proof. Constructing a ‘normalizer chain’ between K and H (as
in, for example, (2.26) of [16]) and then using either (2.11) and (2.12)
(for part (i)) or (2.8) (for part (ii)) together with (2.3)(ii) yields (2.14).

In §4 we shall have recourse to the following theorem.

(2.15) (see [Satz 17.13; 9]). Let P be an extra-special p-group
of order p*™*' admitting a coprime cyclic automorphism group A
which centralizes Z(P) and acts regularly upon P/Z(P). Let G denote
the semi-direct product of P with A. Suppose G is faithfully and
irreducibly represented on the K-vector space V, where K is an
algebraically closed field and (char K, |G]) =1. If X denotes the
character of this representation of G on V and p the regular character
of A, then

_ (™ —d)p
X4 AT + op

where g is some irreducible character of A and 6 = +1 or —1.

(2.16) (see [(2.25); 16]). Let G be a soluble group admitting the
automorphism «a fixed-point-freely. Suppose H is an a-invariant
nilpotent Hall z-subgroup of G which contains an a-invariant sub-
group J such that Cyp(J) < J. 1If, further, 2¢x, then every ='-
subgroup of G which is normalized by J is contained in O..(G).

A further piece of notation is the following: if G is a group
which admits A as an operator group, then, for ac A4, Cila) will
frequently be denoted by G,.

As intimated in the introduction, most of our subsequent argu-
ments will be in the context of certain ‘minimal situations’. Accord-
ingly, we introduce the following hypotheses.

The pair G, A) will be said to satisfy Hywpothesis 1 if G is a
nonsoluble group admitting A as an automorphism group fixed-point-
freely and satisfying

(i) if A is noncyclic, then (|G|, |A]) = 1;

(ii) all proper A-invariant subgroups of G are soluble;

(iii) G possesses no nontrivial proper A-invariant normal sub-
groups; and

(iv) if B is a proper subgroup of A and H is a B-invariant
subgroup of G upon which B acts fixed-point-freely, then H is soluble.

The pair (G, A) will be said to satisfy Hypothesis II if
(i) (G, A) satisfies Hypothesis I with A cyclic of square-free
order.



FIXED-POINT-FREE AUTOMORPHISM I 209

Finally, the pair (G, A) will be said to satisfy Hypothesis III if
it satisfies Hypothesis II and, additionally,

(1) |A|=rst (r, s and ¢ being primes);

(ii) (G|, [AD) =1; and

(iii) |A| is odd.

Part of the argument presented in the proof of [(2.28); 16]
shows

(2.17) If G satisfies Hypothesis I, then G is a non-abelian simple
group.

REMARKS. (i) Part (iv) of Hypothesis I will be satisfied pro-
vided that the ‘fixed-point-free automorphism conjecture’ has been
verified for all B = A.

(ii) In Hypothesis III we note that part (iii) is a consequence
of part (ii) (of Hypothesis III), the nonsolubility of G and a theorem
due tc Feit and Thompson [4].

As in [16], when (G, A) satisfies Hypothesis I and A is a proper
A-invariant subgroup of G, (H). will denote the (unique) A-invariant
Hall z-subgroup of H (which exists by (2.1)(v)), where = is a set of
primes.

For the remainder of this section we shall assume (G, A) to be
a pair which satisfies Hypothesis I. Additionally, we will suppose
(up to and including (2.23) that G possesses A-invariant nilpotent
Hall A~ and p-subgroups denoted (respectively) by L and M. In such
a situation, .Z(\, 1) is defined to be the set of all maximal A-
invariant {\ U #¢}-subgroups of G. The ‘local analysis’ of G is con-
cerned with the number of elements of _Z(\, #) and their group
theoretic structure. Clearly, (using (2.1)) [.Z (A, )| = 1 if and only
if LM = ML. Because xOpt # @ forces LM = ML, we further sup-
pose, in the ‘local analysis’, that ANy = @. Further details of the
methods adopted in this type of work may be found in §2 of [16];
(note that using our (2.7) in place of [(2.12); 16] in § 2 of [16] removes
the need for coprimeness when A4 is eyelic).

The next three results are some of the tools used in the ‘local
analysis’ mentioned above.

(2.18) (Martineau [11]; see also [(2.10), 16]). Let He Z(\, 1)
and let J be an A-invariant {A U #}-subgroup of G. If JNO(H) #
1+ JNO.(H), then J < H.
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(2.19) (Martineau [11] and Ralston [14]; see also [(2.11); 16]).
Suppose He _#Z(\, 1) with O.(H) # 1 +# O,(H) and suppose J is a
nontrivial A-invariant subgroup of F(H). Then (Ng(J))uysm < H.

Let X (respectively Y) denote the largest A-invariant subgroup
of L (respectively M) which permutes with M (respectively L).
Note that {LY, MX}<S _Z(\, 1).

(2.20) (Martineau [12] and Pettet [13]; see also [(2.18); 16]).
L =0(LY)X and M = 0.(MX)Y.

(2.21) (i) LYNMX = XY.

(i) O0(XY)=0(LY)NX and O.(XY) =0.(MX)NY.

(iii) If O.(LY) # 1 +# 0,(MX), then ML = LM.

(iv) If Ou(LY)=+#1, then C,(Y)=< Y and, in particular, Z(M)<Y.

(v) If Y<ILY, then either LM = ML or Y = 1.

(vi) If L=XC/(Y) and _Z(\, p) ={LY, MX}, then either
LM = ML or Y = 1.

Proofs. Proofs for (i), (ii) and (iii) are given in [(2.17); 16].
The remaining assertions are well known (and straightforward).
Part (iv) follows from the fact that (Ny(O.(LY))):,y = LY and parts
(v) and (vi) by using the nilpotence of M.

Concerning the number of elements possessed by .Z (A, ) we
have

(2.22) (Rowley [Lemma 3.3; 16]). If A is an abelian group of
square-free exponent and (|G|, |A|) =1, then |_.Z(\, )| = 2.

(2.23) (Rowley [Lemma 4.2; 16]). Suppose (|G|, |A]) =1, LM #
ML, 2¢ ¢t and C.(a) £ X where |{a)| is a prime and a € Z(4)*. Then
either Y < Cy(a) or O(LY) # 1.

In certain situations that we shall encounter, the following result
is indispensable.

(2.24) (Rowley). Assume that (|G|, |A]) = 1. If Bis a subgroup
of A for which C4(B) is soluble, then C,(B) does not contain a Sylow
2-subgroup of G.

Proof. If Cy(B) were to contain a Sylow 2-subgroup of G, then,
by [(2.28); 16], (G, A) would not satisfy Hypothesis I. Thus (2.24)
holds.
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Let L and M be two proper A-invariant subgroups of G (not
necessarily nilpotent Hall subgroups). We define &7 (M) to be the
largest A-invariant subgroup of L which is permutable with M.

(2.25) (i) .AM)={L,|L, is an A-invariant subgroup of L

permutable with M.
(ii) F(M) = {L,| L, is a subgroup of L permutable with M.

Proof. (i) This is immediate from the definition of .2 (M).

(ii) Let &2/ (M) denote the right hand side of the equation in
(ii). Clearly, from (i), (M) < .Z°/(M). Since L and M are both
A-invariant, we observe that .7/(M) is A-invariant and plainly per-
mutes with L. Thus &°/(M) < .7°(M), and (ii) is proven.

The penultimate result of this section plays a vital role in manu-
facturing (interesting) subgroups of G.

(2.26) (Rowley [(2.29); 16]). Suppose G possesses an A-invariant
Hall z-subgroup, H say, and let L and M be proper A-invariant
subgroups of G with (| L], |M|) = 1. Then either MZ (M) = G or
the A-invariant Hall z-subgroup of &7, (M) is .Gy (M).

(2.27) Suppose G is a group and let L and M be subgroups of
G with LNnM=1. If M, ---, M, are subgroups of M each of which
permutes with L, then L permutes with N/, M,.

Proof. Suppose f=2, and let leL and meM,NM, Then
myl, = lm = m,l, for some [, l,e L and some m,eM,; (i=1,2). So
my'm, = LI;7'e MNL = 1. Hence l, = [, and m, = m,c M,N M, There-
fore L and M,N M, permute. An easy induction now completes the
proof of the lemma.

3. The ‘Star-subgroup’. We begin by giving the definition of
the ‘star-subgroup’.

DEFINITION 3.1. Suppose G is a finite group admitting the auto-
morphism a. Let H be an a-invariant subgroup of G and let {(B)
be a subgroup of (a). Then set H}, = (Cx(B)|1 £ 7 < [{B)]) (‘the
star-subgroup of H with respect to (B3)’).

That in, H, is defined to be the subgroup of H which is generated
by the fixed-point sets (in H) of the nontrivial powers of 3. When
{B> = {a) and there is no possibility of confusion, H, will be written
as just H*.
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REMARK. We may rephrase (2.8) as follows:- suppose G is a
finite group admitting a fixed-point-free automorphism a of square-
free order and let P denote the a-invariant Sylow p-subgroup of G.
If P* =1, then P is a direct summand of G.

In Lemma 3.3, after a further definition, we collect together
some elementary properties of the ‘star-subgroup’.

DEFINITION 3.2. Let G be a group admitting a fixed-point-free
automorphism «, let H be an a-invariant subgroup of G and let
pBelay. Then H is said to be star-covered with respect to (B) if
only if for each a-invariant subgroup K of H, K = K},.

Again, when {B) = {a), and confusion is unlikely, H will just
be referred to as being star-covered. Observe that, if H is an a-
invariant subgroup of G which is star-covered with respect to (8},
then all a-invariant subgroups of H are, likewise, star-covered with
respect to {B).

LemmA 3.3. Let G, a, H and B be as defined in Definition 3.1.

(i) H%, is an a-invariant subgroup of G.

(ii) If K s an a-invariant subgroup of H, then K3, < H,.

(iii) If <v) (B, then HE, < H,.

(iv) H = Ca()|7e2.({B)).

(v) Suppose 2,({B)) is of order r, ---, r, (Where r; is & prime,
1=<i<m)and for j=1, ---, m, let B; denote an element of 2,({B3))
of order r;. Then Hp, = {Cy(B)|j =1, -+, m).

(vi) If (|H|, 1{B) =1 and N is an a-invariant normal sub-
group of H, then (HIN)%, = (HX N)/N.

(vil) Swuppose that (|H|, |{B>|) = 1 and that N is an a-invariant
normal subgroup of H. If both HIN and N are star-covered with
respect to {(B) then H is star-covered with respect to {(B).

Proof. Parts (i), (ii) and (iii) follow from the definition of the
star subgroup.

(iv) Since, for each j (1 = 7 < [{8]), (B NLKB) #1, Hf =
(Cu(m)|7e2,B)) (< H};) whence (iv) follows.

(v) Let ve2,{B). Then (B = {v) for some ke{l, ---, m}.
Now (v) follows from (iv).

(vi) Let bars denote images in H/N. As ((H|, |[{B)]) =1, by
(2.8)(iii), Cx(R?) = Cr(g?) for all 7, 1 <5< |{B)|, and so it follows that

(H)% = Ca@E)1 =7 <D
=CuaE)L =<

=Ca(B)1 =3 <[KBD
= (H) -
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(vii) Let K be an a-invariant subgroup of H. Since H is star-
covered with respect to {8, (KNN)% = KNN. Now KN/N =
K/KNN (and this isomorphism commutes with the « action). Thus,
since H/N is star-covered with respect to {8), (K/KNN)}%, = K/KNN.
By (vi) (K/KNN)}% = (K& KNN)/KNN and so K = K}, (because
K}, = KN N). Therefore H is star-covered with respect to {(5).

For Lemma 3.4 and its corollary, and Lemmas 3.6 and 3.7, (G, A)
will be assumed to be a pair which satisfies Hypothesis I with
A(= {a)) cyclic and, furthermore, the following additional properties
are assumed to hold:-

(i) m is a subset of z(G) for which a* = g acts fixed-point-
freely upon all a-invariant m-subgroups of G (that is, Cy(B) is a «'-
subgroup); and

(ii) perm with (p, [<®]) = 1.

Also, P will be used to denote the a-invariant Sylow p-subgroup of
G.

LEMMA 3.4. If R is a nontrivial a-invariant p-subgroup of G
containing Py, then (Ny(R)): < (Ng(P))..

Proof. Choose R maximal with respect to the following prop-
erties.

(1) R is an a-invariant p-subgroup;

(2) R= R; and

(3) (No(B): = (No(B)x, .

Clearly, there exists at least one such R.

Since R is nontrivial, because Hypothesis I holds for (G, A),
N,(R) is a proper a-invariant subgroup of G and therefore must be
soluble. Hence K/R is soluble, where K = (Ny(R))..

As (p, 148 ]) = 1, (N.(R)/R)%, = 1 by Lemma 3.3 (vi) and so, from
(2.9), Np(R)/JR < K/R since K admits g fixed-point-freely. Thus
Ny(R) <0 K which, together with (8), implies that

(Ns(R)): = (N4(R)): = K < (Ns(No(R)))- .

Since Np(R) also satisfies (1) and (2), Np(R) = R by the maximal choice
of B. Consequently P = R and therefore (N (R)): < (Ng(P))-.

We have the immediate

COROLLARY 3.5. If R is a montrivial a-invariant p-subgroup
of G containing PX, with {(8) = {a), then Ng(R) = Ny(P).

LEMMA 3.6. Suppose A(= {a)) is of square-free order and let
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R be a nontrivial a-inveriant p-subgroup containing Pg,. Then,
setting K = Ng(B)n 1,

(i) [P, L] =I[R, L] £ R, where L is any a-invariant subgroup
of K;

(ii) Cg(P%,) = Cx(P); and

(iii) (Ce(P*))y = (Cx(P)), (recall that P* means PZ,).

Proof. (i) From Lemma 3.4, L < (Ng(P)). = Ny (P). Now g
acts fixed-point-freely upon L and P}, < R, and so applying (2.14)(ii)
to PL, yields that [P, L] £ R. By (2.3)(vii) (with L as a coprime
operator group on P) [P, L] = [R, L}.

(ii) If P}, =1, then the result is obvious from (2.8). So we
may suppose that P, = 1. Applying part (i) with R = P, and
L = C,(P},) yields that

[P, Cx(P&)] = [P, Cx(P&)] =1

which, together with Cr(P) < Cx(P%,), gives Cx(P) = Cx(PZ%,).
(iii) This follows from (ii) with = = =#(G) (since a acts fixed-
point-freely on G).

We note the following

Lemma 3.7. If L is an a-invariant nilpotent Hall A-subgroup
of G with NS x, then analogues of Lemmas 3.4 and 3.6 holds.

LeMmA 3.8. Let (G, A) be a pair satisfying Hypothesis 1 with
A(= {a)) cyclic. Moreover, suppose that |A| is square-free and that
H is an a-invariant subgroup of G upon which B(€ A) acts fixed-
potnt-freely. Let P denote the a-invariant Sylow p-subgroup of H
and set M = 0,(H). If (p,|{B]) =1, then [P, M]= [P, M].

Proof. Since [P}, M] < [P, M], it will be sufficient to establish
the reverse inclusion. Let R be an a-invariant p-subgroup which is
maximal (under inclusion) subject to containing P}, and satisfying
[R, M] < [P}, M]. From (2.3)(i)) M= CyR)R, M]. Now, from
Lemma 3.6 (ii), Cy(Np(R)) = Cy(Pf,) = Cy(R) since Ny(R) = R = P},.
So M = Cy(R)[R, M] = C,(N(R))[R, M]. Because [R, M] is Np(R)-
invariant by (2.3)(vi), employing (2.3)(ix) yields that [N(R), M] <
[R, M]. Hence [Ny(R), M] < [P}, M] and so, by the choice of R,
Np(R) = R. Therefore P= R, and the lemma follows.

LeMMA 3.9. Suppose G is a soluble group admitting the auto-
morphism o fized-point-freely and suppose |{a)| is square-free.
Let P denote the a-invariant Sylow p-subgroup of G and assume
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(p, [ <ay]) = 1. If K is an a-invariant p'-subgroup of G normalized
by P*, then K < 0,(G).

Proof. Set G = G/0,(G) and use the usual ‘bar notation’. By
Lemma 3.3 (vi), (P)* = (P*) (since (p, |{a)| = 1). Hence

Since K ncrmalizes (0,(G))*, applying (2.14)(ii) to 0,(G)K yields that
[0,(G), K] = (0,(G))* and hence [0,(G), K] = [[0,(G), K], K]=1. Now
Cz(0,(G)) = 0,(G) by a result of Hall and Higman (see Theorem 6.3.2.
of [6]) and hence K = 1. Thus K = 0,.(G).

Suppose, for the remainder of this section, that G is a group
admitting a fixed-point-free automorphism « of square-free order
7, -+ 7, (where 7, is a prime, 1 =1, ---, n). Set 4 ={1, ---, n}.

For each 7€ 4, a, will denote a generator of the Sylow 7».-sub-
group of {(a) (so aji = 1).

We now make a further definition.

DEFINITION 3.10. Let P be an a-invariant Sylow p-subgroup of
G where pen(G). Then P is said to be of type I" (where /" is a
subset of 4) if and only if 7€/ implies P,, # 1 and i ¢ [" implies
P, =1 (recall that P, stands for Cy(a,)).

REMARKS. (i) If P is an a-invariant Sylow p-subgroup of G
of type I (where /"= 4), then P* = (P, [iel’).

(ii) If (G, {a)) also satisfies Hypothesis I, then (2.8) shows
that G can have at most 2" — 1 possible types of a-invariant Sylow
subgroups.

LeMMA 3.11. Let P and @ denote (respectively) the a-invariant
Sylow p- and q-subgroups of G with p #= q. Suppose P is of type
I" (where 'S A) and set v = [lier ¢, (for I' = @ we make the conven-
tion v = Ilicoa; =1ela)). Then [P, Cy(v)] = 1.

Proof. This will be done by induction on [{a)|. First observe,
by (2.2)(1) and (2.8), that we may assume % > 1 and I = 4.

Let jelI'. Since Cyla;) admits a, --- a;-, €1y - -+ a, = B fixed-
point-freely and |{(8)| < [{(a)|, we deduce that C,(a;) satisfies the
conclusion of the lemma. Now (by (2.1)(iii)) Cs(«;) is the a-invariant
Sylow p-subgroup of C,(a;) and hence must also be the (unique) 5-
invariant Sylow p-subgroup of Cy(a;) (see (2.1)(ii)). Likewise Cy(a;)
is the g-invariant Sylow g¢-subgroup of Cy(a;). With respect to g3,
Cp(er,) will be of type 4 where 4= I'\{5}. Setdé = [I,.,a;. Then we
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have [Cp(a;), CCQ(,Xj)(B)] =1. Now

CCQ(DL]‘)(B) = Cola;) N C4(0)
= Cola)) N () Cole)

=QN (ieQ{j,CG(ai))
=QnN (iQCG(ai)) = QNCu(7) = Co(7) .

Thus, for each je I, [Cplar;), Co(7)] = 1. Consequently [P*, Cy(v)] = 1.

Choose D to be a maximal (under set theoretic inclusion) a-
invariant subgroup of P containing P* which centralizes Cy(v). Set
N = Ny(D), N= N/D and use the ‘bar notation’. If (p, |[{a)]) =1,
then, since P* < D, N (D)* =1 by Lemma 3.3(vi). Thus N,(D) is
a direct summand of N by (2.8) whence 1 = [[N:(D), Co(7)], Co(v)] =
[Np(D), Cy(v)].  Therefore Ny (D)= D and hence P=D. This
shows that [P, Cy(v)] =1 when (p, |[{a)]) =1. Now suppose that
(p, | {a>]) #+ 1 and, for convenience, we assume p = r,. Observe that
(Np(D))a)y- oy = 1 and so (Np(D)),, is a direct summand of (N),,
by (2.8). From a well-known property of p-groups, 1€l and so
Co(7) £ (N).,. Hence, if E denotes the inverse image of (Np(D)),,
in Np(D), [E, Co(7)] = [[E, Co(M)], Co(v)] = 1. Therefore K = D and
so we conclude that N,(D)=1. Consequently P= D and so
[P, Co(v)] = 1 in this case as well.

DEFINITION 3.12. Let I" be a subset of 4. Then define
L. = (P|Pis an a-invariant Sylow subgroup of G of type (U\I")) ;
and
& = (L |all subsets 4 of A4 with 421") .

Set n, = n(L;) and 7, = 7(<%).
For ie A we shall write <&4,, L., ®, and 7T, as (respectively)
<, L;, @, and %,, and L, will be denoted by L,.

REMARKS. (i) If I' is a subset of 4, then (L,),, =1 for all
rel.

(ii) If I" and 4 are subsets of 4, then 4< " implies that
&L = L

LEmMMA 3.13. Suppose (G, {&)) satisfies Hypothesis 1l and let I
be a subset of A. Then

(1) for each 1€, <Z is a nilpotent a-invariant Hall subgroup
of G;
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(ii) if I == @, .7 1s a nilpotent a-invariant Hall subgroup of
G; and
(iii) [ 77, (Cx(0).] = 1 where n = (&), 6 = [Lic,a, and 4 = A\[.

Proof. (i) Clearly (because of (2.2)(i)) we may suppose n > 1
and, without loss of generality, we set ¢ =1. Let P and Q be,
respectively, (nontrivial) a-invariant Sylow p and ¢-subgroups of G
such that P, = @, =1 with p # q. Suppose P and @ are, respec-
tively, of type 4 and /" and set 6 = [[,., @, and v = [],., @,. Note
4,72 -, ).

To establish (i) of the lemma, it will be sufficient to show that
[P, @] = 1. This may be achieved by demonstrating the existence
of an a-invariant {p, q}-subgroup H, for which PNH,# 1+ QNH,.
Then, if H is a maximal a-invariant {p, ¢}-subgroup of G containing
H,, H is nilpotent since H, = 1. As Hypothesis II holds, N,(PNH)
is soluble. Hence (N (PNH))y,, = Np(PNH)NW(PNH)= H and the
maximality gives N,(PNH) < H which implies N,(PNH)= PNnH.
Thus P < H, and, similarly, @ < H whence [P, @] = 1, as desired.

If unl" # ©, then we may take H, = P, 0, = (Ciay)) ,, where
jednr.

So we may suppose that 4N/ = @. From Lemma 3.11 we have
LP, (Gy), ] = 1@, (Gy), ] =1. Since 4NI = @, we infer that C,(vd) is
a {p, ¢}'-subgroup of G. Now Hypothesis II requires that G be a non-
soluble group and, since |{(vo)| < 7, --- 7, < [{a)|, again by Hypoth-
esis II (actually Hypothesis 1(iv)) (G,), N(G)), = Cs(vd) # 1. Taking
H, = (Ng(Cy(v6))),p,., in this case, completes the proof of (i).

(ii) Since 7 < ~ for some i€ 4, (ii) is an immediate con-
sequence of (i).

(iii) If P is the a-invariant Sylow p-subgroup of ;2}, then P
will be of type ¥ where ¥< 4. From Lemma 3.10 [P, (G), ] =1
where v = [[,er ;. Since ¥ S 4, G, £ G; and now (iii) follows.

We next give a result concerning Sylow subgroups of type [
when n = 3.

LEMMA 3.14. Let P and Q be (respectively) the a-invariant Sylow
p- and g-subgroups of G with p, qen(G) and p #q. If P and @Q
are both of type I' and mn = 3, then there exists a nontrivial «-
nvariant p-subgroup P, of P* and a montrivial a-invariant q-
subgroup Q. of QF such that [P, Q] = 1.

Proof. First suppose that at least two of C,(aia,), Cplaa;)
and Cpla,n,) are nontrivial. Suppose Cpla,a,) # 1 # Cplaa,).  Since
Cila,et,) and Cuila,;) are both nilpotent, either the lemma holds or
Cyla,a,) =1 = Cyla,a;). But the latter possibility yields, by (2.8),
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that [Cp(ae,), Co(a)] = 1. Therefore we may suppose that Cp(a,a,) =
1 = Cpr(a,a;). Again, by (2.8), [Cp(ary), Co(a))] = 1, and so the lemma
is proved.

REMARK. We note that Lemma 3.14 does not hold for n = 4.

In §7 we shall specialize to the case |{a)| = rr,7;; from that
section onwards we shall employ the following additional notation.

o, =p, a, =0 and a, =7
r=1, r,=8 and rs=1.
Sop=0=1"=1)

If 4,jel' =11, 2,3} with 7= j, then L,; and m,; will be
written (respectively) as L,; and z,;.

Therefore
L1p=1, L,#1+#L,;
L,=1, L, +1%L,;
L,_=1, Ly, # 1+ Ly_;
L, = Ly, =1% Ly_;
Ly, = Ly, =1 Ly, ;
and

L230 = Lzs, =1 L23p .

Also, A = L,L,L;,, & = L,L,;Ly; and & = Lyl Ly,

In this new notation Lemma 3.12(iii) asserts that [<~, (Go:)i?i]::
[a%’ (GPr)z?é] = [9%, (G!‘a):é] = 1'

The unique a-invariant Sylow 2-subgroup of G will be denoted
by T.

4. Soluble groups admitting a fixed-point-free automorphism.
In Theorem 4.4, the main objective of this section, a type of structure
theorem is established for a soluble group admitting a fixed-point-
free automorphism which involves star-subgroups of certain sub-
groups of the soluble group. Some consequences of this structure
theorem will also be discussed.

DEFINITION 4.1. [ is said to be a non-Fermat number if and
only if

(i) 1 is a positive integer; and

(ii) there does not exist an integer m, m = 1, such that 2" + 1|1.

We remark that there exist infinitely many non-Fermat numbers
which are square-free.
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Before stating the first lemma of this section, which contains
the bulk of the work in proving Theorem 4.4, we recall that a group
of automorphisms A (of a group @) is said to act regularly on G if
all the nontrivial elements of A act fixed-point-freely upon G. In
Lemma 4.2 we shall use additive notation for modules.

LEMMA 4.2. Suppose G = PA where P is a normal p-subgroup
of G (p a prime) and A = {a) s cyclic with its order a {2, p}-
number. Let V be an F,G-module which is faithful for G (F, denotes
the finite field of q elements, q a prime) with (q, |G|) = 1. Further,
assume

(i) P has a nontrivial a-invariant section upon which <o)
acts regularly; and

(ii) 1f p = 2, then either |{a)| is a non-Fermat number or P
1s abelian.
Then C,(a) + 0.

Proof. Assume the result is false and choose G and V to be a
counter-example to the lemma, subject to |G|+dim, V being minimal.
Thus C,(a) = 0. Note that a positive integer divisor of a non-Fermat
number is also itself a non-Fermat number.

Suppose F' is a field which contains a copy of F,. Then it is
well known and easy to show that

dimrq (Cy(a)) = dim,, (C(F®Fq na))

and so Cyer,m(@) = 0. Thus, for the remainder of the proof of this
lemma we shall assume V to be a vector space over F' where F is
a field containing a copy of F, and which is algebraically closed.
By hypothesis, there exists a-invariant subgroups Y and Z of
P such that Z< Y and the induced action of {a) upon Y/Z is
regular. Clearly AY and V satisfy the hypothesis of the lemma
and so, if Y = P, C,(a) # 0 since |AY| < |G|, contrary to the choice
of G and V. Thus Y = P. Furthermore, it may be deduced that
Y/Z (= P/Z) has no nontrivial proper a-invariant subgroups. For,
suppose that Y, is a subgroup of P containing Z for which Y,/Z is
a proper nontrivial a-invariant subgroup of Y/Z, then, as the hy-
potheses of the lemma hold for AY, and V ({a) acts regularly on
Y./Z), it may be asserted that C,(a) = 0. Thus there does not exist
any such Y, as claimed. Hence P/Z is an elementary abelian p-group
and so, in particular, ¢(P) < Z. In fact ¢(P) = Z. Suppose other-
wise, and let bars denote images in P/3(P) = P. Since (|[{a)|, p) = 1,
appealing to Mashke’s theorem (see, for example, [Theorem 3.3.1; 7])
gives that P =Z x Z, where Z, is an a-invariant subgroup of P.
Let Z, denote the inverse image of Z, in P. Then Z, is a proper
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a-invariant subgroup of P which has {(a) acting regularly upon
Z,)Z (= Z,#1). Again, because of the minimal choice of G and V,
we obtain C,(a) # 0 which is untenable. Hence ¢(P) = Z, as as-
serted.

We next observe that the minimal choice of G and V forces V
to be an irreducible FG-module. If V were not an irreducible F'G-
module, then use of Maschke’s theorem gives V= UPU,D---P U,
where each U, is an irreducible F'G-module and d > 1. Since G acts
faithfully upon V and P is nontrivial (by assumption (i)), there exists
at least one U, for which P £ ker U;. In view of P/¢(P) being ir-
reducible under the action of {(a), PNnker U; < ¢(P). Consequently

[ay nker U;), P] < Pnker U; < ¢(P) ,

and so the fact that {(a) is regular upon P/¢(P) demands that (a)N
ker U; = 1. Therefore ker U; < P and so ker U; < ¢(P). Since
dim, U; < dim, V and the pair G/ker U; and U, satisfy the lemma’s
hypotheses, we may infer that Cj(a)+# 0, against the supposition
Cy(a) = 0. Therefore V is an irreducible F'G-module.

Let D be a nontrivial abelian normal p-subgroup of G. Then,
an appeal to Clifford’s theorem (see [Theorem 3.4.1; 7]) yields that
Vip= VP --- B V, where each V, is itself the direct sum of ir-
reducible F'D-modules which are pairwise isomorphic (as F'D-modules).
The V,; are normally referred to as the Wedderburn components of
V (with respect to D). For each g € G, the mapping m,: V,— Vg =
{vglve V,;} is a permutation upon the set of Wedderburn components
of V (with respect to D). Morerver, this permutation representa-
tion of G (that is, m: g — m,) upon the set of Wedderburn components
of V (with respect to D) is transitive.

The aim of the ensuing analysis is to show that the number of
Wedderburn components of V with respect to D is one. So we shall
suppose d > 1, and argue for a contradiction. Since d > 1, we may
regard V as being ‘induced up’ from a proper subgroup of G. More
explicitly, if {1, g,, ---, g} is a set of right coset representatives of
the stabilizer of V, in G (in the permutation representation) on the
Wedderburn components), then V=V, Q Vg, X --- R V.9, and so
V= Ve

Since the act of ‘inducing up a module’ is transitive (see [Theorem
4.4.4; 7)), we may suppose that V = U?¢ where U is an H-submodule
of V and H is a maximal subgroup of G. We now consider two
cases depending on whether P< H or P£ H.

Suppose that H contains P. Then clearly H = P(HNA) and
[G: H] is a prime number. Since P=<JG, ker U cannot contain P
(otherwise P < ker V; see [Theorem 4.4.3; 7]) and thus PNnker U = P.
From
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[ker UN(HNA), Pl=ker UNP= P

we may infer (using the regularity of A upon P/¢(P) and the fact
that ¢(P) (ker UN P)= P implies P=ker UN P) that ker UN(HN A)=1.
Thus ker U = P. Hence C,(HNA) # 0 by applying induction to the
pair H/ker U and U. Because [G: H| is a prime it now follows
(from the definition of the action of G on the induced module) that
C.(a) #= 0 also.

Now we consider the case when H dces not contain P. Replacing
H by H?, (9@ if necessary, and U with U?, the conjugate module,
(U% and (U will be isomorphic F'G-modules) we may assume that
H= (PNHYANH). Then, if A £ H, we have H= PANH) =G
which contradicts the maximality of H. Thus A < H and this, we
claim, implies that PN H = ¢(P). For, by the irreducibility of A on
P/s(P), either (PNH)g(P) =P or PNH < ¢(P). The former gives
P = PN H by a well-known property of ¢(P), and so PNH = ¢(P)
holds. Therefore

H=(PnH)HNA) =¢(P)HNA) + G,

whence PN H = ¢(P) by the maximality of H. Let ge P\¢(P) and
set g = {9* = a'gajac A = {a)}. It is asserted that g is contained
in a set of right coset representatives for ¢(P) in P. Clearly, it
will be sufficient to show that, if g, g.cg' with ¢;'g.€¢(P), then
9. = ¢.. So let g, g.€9* with g;'g,€4(P). Since g, = g for some
ac A, grlgt = 97'g.€ ¢(P). By choice, g¢ ¢(P) and so g, € ¢(P). Thus
a = 1 by the regularity of A upon P/¢(P). Hence ¢,=g! =g, as
required. Now a complete set of right coset representatives for
é(P) in P is, at the same time (because HN P = ¢(P)), a complete set
of right coset representatives for H in G. By choosing a complete
set of right coset representatives for ¢(P) in P containing g¢g* for
some g€ P\¢(P) and using the fact that a € H and {«) acts regularly
upon ¢g* it may be verified, using the definition of U’ (= V), that
Cy(a) # 0 in this case also.

Hence the objective of showing that d = 1 has been attained.
Consequently, since V| is a direct sum of isomorphic F'D-modules
and F is algebraically closed, by [Lemma 3.2.1; 7] D ‘acts scalarly’
upon V and hence G = Cy(D). A further inference from d = 1, using
[Theorem 38.2.3; 7], is that D must be cyeclic.

Therefore any characteristic abelian subgroup of P must be
cyclie, contained in Z(P) and centralized by A. In particular, P has
class at most 2 (otherwise there would exist a characteristic abelian
subgroup of P which is not contained in Z(P)). From the regularity
of A on P/3(P), ([P, alp(P))/s(P) = Pl/3(P) for each ac A* and so
[P, a] = P for all ac A*. This forces CP(a) < P’ for each ac A* for
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otherwise Cp(a) £ P’ together with (2.3)(1) and (iii) applied to P/P’
would yield P # [P, a]. Thus A acts regularly upon P/P’ and hence
must act irreducibly upon P/P’ (if not then the minimal choice of
G and V would be contravened). So P/P’ is an elementary abelian
p-group and hence ¢(P) £ P' < Z(P) < Cp(A) (+ P). The irreduci-
bility of A on P/¢(P) forces ¢(P) = P’ = Z(P) = Cp(4). Letw, yec P.
Then (see [Lemma 2.2.2; 7]) [z, y]* = [2?, y] =1, since x? ¢ Z(P).
Hence P’ has exponent p as well as being cyclic, and so |P'| = p.

We are now in a position to use (2.15). So (in the notation of
(2.15))

1, =2 =90 L5 (5= +10r —1).
|A]

If 6 = +1, then X|, would contain the regular character of A as a
constituent which then yields that C,(a) = 0. Thus ¢ = —1. More-
over, (p™ + 1)/|A] > 1 would, again mean that X|, has the regular
character of A as a constituent. Hence ™ + 1 =]A4|. Now |A4] is
odd by hypothesis and so the only possibility is »p = 2. Therefore
|A| is not a non-Fermat number and P is not abelian, contrary to
Hypothesis (ii).

This is the final contradiction, and so we conclude that C,(a) = 0.

REMARK. Results of a similar nature to Lemma 4.2 appear in
[2] (Theorem 5.1(a)) and [18] (Theorem 4.1) and, in fact, our proof
of Lemma 4.2 could be abbreviated by appealing to these two results.

To facilitate the statements of our next results we introduce

Hypothesis 4.3. Suppose G is a soluble group admitting the
automorphism « fixed-point-freely. Let H and K denote, respec-
tively, the a-invariant Hall n- and z'-subgroups of G (x a set of
primes), and suppose {B) is a subgroup of {a) for which

(1) Cx(B) =1; and

(ii) [{B>] is odd and ([<{8)], |G]) = 1.

Further, if 2¢x, assume that either H is abelian or |{8)| is a non-
Fermat number.

THEOREM 4.4. Assume Hypothesis 4.3 holds. Then H/O.(G) is
star-covered with respect to {B).

Proof. Suppose the theorem is false, and let G be a counter-
example of minimal order. Since (|G|, |{B)]) = 1, by Lemma 3.3 (vi)
and the minimal choice of G, 0.(G) =1. Thus, as the theorem is
supposed false, H is not star-covered with respect to (8> and so
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there exists an a-invariant subgroup, R, of H such that R * R%,.
Clearly we may assume that R is a p-group for some per.

By a result due to Hall and Higman ([Theorem 6.3.2; 7])
Cs(0.,, (@) £ 0.(G@). Thus O.(RO.(@)) =1. Hence RO.(G) = G would
imply, because of the minimal choice of G, that R is star-covered
with respect to {(8). Therefore, as R # R}, RO..(G) = G. Suppose
that |7(0.(@))| > 1 and let ¢ € 7(0.(G)). By (2.1)(v), there exists a-
invariant Hall {p, ¢}- and ¢'-subgroups of G which (respectively) take
the form RQ and RQ, where @ and @, are (respectively) the a-
invariant Hall ¢- and ¢’-subgroups of O..(G). Since RQ and RQ, are
proper subgroups of G we have that both R/CL(Q) and R/Cr(Q)
are star-covered with respect to (8). Because Cyx(O0., (@) £ 0.(G),
Cr(@) NCr(@Q) =1. Consequently Cr(Q) = (Cx(@)Cr(Q))/Cx(Q, (and
this isomorphism commutes with «), and so Cr(Q) is star-covered
with respect to (8). Applying Lemma 3.3 (vii) we conclude that R
is star-covered with respect to (B>, contrary to R # R}, Hence
we deduce that |7(0..(G))| =1, and so G = RO,(G) (where ¢ is a
prime number).

Observe that, as R == R}, and (|G|, |{8)|) =1, there exists a
nontrivial a-invariant section of R upon which (B> acts regularly,
namely R/¢(R)RY,. Note that, by [Theorem 5.1.4; 7], {B>R acts
faithfully upon 0,(G)/¢(0,(G)). An examination of G yields that the
necessary hypotheses exist for an application of Lemma 4.2 with
A={38), P=R and V = 0,(G)/$(0,(G)). Consequently C,(B3) # 1.
Hence, as (q, | (8)]) = 1, Co,e(8) # 1 by (2.3)(iii). However, Cx(8) = 1
by hypothesis and so we have obtained a contradiction. Thus there
does not exist a counterexample to the theorem, so establishing the
theorem.

REMARKS. (i) Theorem 4.4 may be viewed as an extension of
results such as (2.13) and [Theorem 3.3; 14]. It may also be con-
sidered as a (weak) analogue of (2.3)(iv).

(ii) In Theorem 4.4 the presence of the fixed-point-free auto-
morphism is not strictly necessary.

(iii) The following example shows that the ‘non-Fermat number’
assumption in Theorem 4.4 is necessary.

Let R denote a 2-group of order 2° with the following properties.
(For the existence and properties of such a group see [8]-actually
R is isomorphic to a Sylow 2-subgroup of U,(4).)

(i) Z(R) = R’ = ¢(R) is a Klein four group;

(ii) R possesses an automorphism « of order 15 (set p = @’ and
g = a’);

(iii) p acts fixed-point-freely upon R; and

(vi) Cxlo) = Z(R).
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Let € Z(R). Then R = R/{x) is an extra-special group which
admits ¢ with Cx(o) = Z(R). We claim that there exists an F,R
module U faithful for R, q¢{2, 3, 5}, and such that U extends to an
F,(R{0c)) module with ¢ acting fixed-point-freely upon U. Let gq¢
{2, 8, 5} be a prime number such that F, is a splitting field for (o) R
and F, contains a 5th root of unity. Let W be an irreducible
F,(R{o)) module faithful for R{(c). Since R{(¢) has a unique minimal
normal subgroup, there exists such a W. Let F be the algebraic
closure of F,, and set Wy, = W@y F. Then W, is an irreducible
F(R{c)) module faithful for R{s). Let X denote the character of
We. By (2.15), since (p™ — 9)/|A] = (4 — 6)/5 must be an integer,
Xl = p — ¢t where p is the regular character of {(¢) and g is some
irreducible character of (o). Let i denote the inverse of g in the
character group of (¢). We may regard 7 as a character of R{o)
(note that #& takes values in F,). Let M be an F(R{o)) module
affording fg. If g is the trivial character, then take U= W.
Otherwise take U = W®Fq M. Then U has the required proper-
ties.

So U may be considered as a module for R{¢) with ker U = {x).
Set V = U**®, Since ker U L R{a), R{a) will be represented faith-
fully on V. Hence, setting G = RV, we have 0,(G) =1. It may
be checked that C,(a@) =1 and so G admits a fixed-point-freely.
Further R* = Cp(o0) = Z(R) # R, and so G is an example of the
required type.

COROLLARY 4.5. Assume Hypothesis 4.3 holds and let R be an
a-invariant subgroup of H. Then R = R},(0.(G)NR) (and, in par-
ticular, H = H}%0.(G)).

Proof. This follows from Theorem 4.4 and Lemma 3.3 (vi).

Typically, in the situations to which Corollary 4.5 will be applied
H will be an a-invariant nilpotent Hall subgroup and so, sometimes,
the following lemma will be of use.

LEMMA 4.6. Assume Hypothesis 4.8 holds. Moreover, suppose
H is nilpotent and R is an a-invariant subgroup of H which con-
tains 0(G@). If (Ny(R)%, = R, then R = H.

Proof. From Corollary 4.5,

Nu(R) = (Na(B)(Nu(R) N 0(G))
(Nx(R)&0-G)
R,

IA
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and so B = N,(R). The fact that H is nilpotent forces R = H, as
desired.

The last result of this section gives a hint of the type of role
the ‘star-subgroup’ will play in global arguments.

LEMMA 4.7. Let (G, A) be a pair satisfying Hypothesis 1 with
A = {a) eyclic, |A] odd and (|G|, |A])=1. Let P denote the «-
invariant Sylow p-subgroup of G, and assume that either p + 2 or
|A] is a non-Fermat number. Suppose H and K are two proper a-
invariant subgroups of G which contain P. If P is mot star-covered,
then O,(H)NO(K) # 1.

Proof. Since H and K are a-invariant soluble groups, Corollary
4.5 applies to both H and K, and so P/O,(H) and P/O,(K) are both
star-covered. If O,(H)NO,K) =1, then O,(H) = O0,(H)0,(K)/0,(K)
whence O,(H) is star-covered. By Lemma 3.3 (vii) this implies P is
star-covered, contrary to the lemma’s hypotheses. Therefore O,(H)N
0,(K) + 1.

5. Elementary properties of pairs satisfying Hypothesis 1.
Throughout this section, (@, A) will assumed to be a pair satisfying
Hypothesis I. For the duration of this section L, M and N will
denote (respectively) A-invariant nilpotent Hall »~, #- and »-subgroups
of G with \, ¢£ and 7 pairwise disjoint. Set Z,(M)=X and F,(L)=7Y.
Qur first result contains some straightforward observations, which
will be of frequent use.

LEmMMA 5.1. Suppose LM # ML and let B € A* with | {B)| a prime
number and | {(By|&NU .

(@) If My £7, then M = YCyu([J, B]) for all A-invariant abelian
subgroups J of X. DMoreover, if 2¢n, then M = YC (X, 8)).

d) If My £Y, then Z(IL)NX £ L.

(0 If M; =Y, 2¢n, [X,Bl=Xand | Z(\, )| = 2 then X = 1.

For (d) and (e) assume, additionally, that A is cyclic of square-
free order. Suppose v A*,

d) If M <Y, {&v) is a t/-group and J is an A-invariant
subgroup of X for which J, =1, then M = YC,(J).

(e) If Mk, =< Y and {v)is a WU ) -group, then Z(L)N X< Z(L)},.

Proof. (a) Applying (2.14)(i) to O.(MX)J yields, since J nor-
malizes O, (MX)N Y(= 0.(MX),), that
OuMX) = Co,uxJ, BDOLMX)NTY) .

Now (2.20) gives M = YCy([J, B]). Similarly, it may be verified
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that M = YC,([X, B]) when 2¢\.

(b) Employing (a) with J = Z(L)N X gives that M = YC,(Z(L)N
X, Bl). Since Y = M by hypothesis, Z(L)NX =< L, must hold.

(¢) From (a), M = YC,(X, B]) = YC,(X) whence, by (2.21)(vi),
X =1.

(d) Using (2.14)(ii) on 0,(MX)J and then employing (2.20) yields
(d).

(e) Suppose |{¥)| =171y, -+, rn (Where the 7, are prime numbers).
Then (using the notation of §3) (Z(L)NX)¢, = (Z(L)nX),li=
1, ..., m) by Lemma 8.3(v). Set Z=1[---,[[ZL)NX, a], - -], an)-
From (2.3)(i) Z(L)NX = Z x (Z(L)NX)%,. Clearly Z%, =1 and, in
view of (d), we must have Z = 1 since LM # ML. This proves (e).

LeEMMA 5.2. Suppose L and M do not permute. Also, suppose
that B is a (WU )'-group of A and that O(LY) = 1. Then either

(@) [0.(MX)NY, B] #1; or

(b) MX < Cyi(B).

Proof. Since O (LY)OALY)NX)<LYNMX, OJ(LY)=1,
O0,(LY) #1 (by (2.20)) and LY == MX, we see, because of (2.18), that
O(LY)NX =1. By (2.21)(1ii) F(XY) = 0,(MX)NY = O.(XY). Thus
Crr(0,(MX)NY) £ 0(MX)NY since XY is soluble (by (2.5)).

Now suppose that [0.(MX)N Y, B] = 1 holds. Then, using (2.3)(x)
on XY, yields that

[XY, B] = Cxy(O(MX)NY) £ OMX)NY = Cu(B) .

Thus [XY, Bl =[[XY,B],Bl=1. By (@2.21)iv) C,(Y)=Y
whence, since Y =< Cy(B), M < C,(B) by (2.8)(v).
Therefore, either [0, (MX)NY, B] = 1 or MX < C,(B) must hold.

LEMMA 5.8. Suppose that L and M do not permute. Further,
assume that A = {a) 18 a cyclic (LU )'-group of square-free order.
If O LY)+#1 and 2¢ p, then X = 1.

Proof. We recall (see §3) that «, denotes a generator of the
Sylow 7,-subgroup of {(a) for each 1€/ = {1, ---, n} where [{(a@)|=
Ty ¢+, 7, (With each »;, a prime).

By (2.22), #Z(\, ¢t) = {LY, MX}. Thus, since G,, is a-invariant
by (2.3)(vi), (G,)uay. is contained in at least one of LY and MX
(note that G # G,, because of Hypothesis I (iv)). That is, for each
1€4, either L, = X or M,, =Y. Set 4={iced|L, = X} and set

I'={ied|[0.(MX)NY, a,] =1}. Also, let v=T]1l;cra; and let
B=1licr
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From Lemma 5.2, MX < G,, for each e I', and so MX = (Gy)uyu-
Hence B acts fixed-poin-freely upon MX. Let 7€ 4\I", then, since
2¢ ¢, L = XC,([0.(MX)N Y, a;]) by Lemma 5.1 (a).

Because 1€ A\, [0.(MX)N Y, a;] # 1 whenee, since | _.Z (), &)| =2,

Ny([Ou(MX)NY, ) = Y .

Thus, employing (2.8)(viii) (and setting N =Noﬂ(MX,(OF(MX)m Y))
yields that

N, = N,([0.(MX)NY, a;]) NO(MX)

a; =

= YNO(MX) (for each teA\I') .

Now M, = Y for all i¢ 4 and so N < YNO(MX) by Lemma
3.3(v). Thus (N/YNO.(MX))% =1 by Lemma 3.3(vi). Since X
normalizes both N and YNO.(MX), by applying (2.8) to the semi-
direct product X(N/YNOL(MX)) (recall that g acts fixed-point-free
upon MX) we obtain

N = Cy(X)N(Y NOMX)) .

Now suppose that X = 1. Then Cy(X) < Y since | .Z (\, )| = 2.
Hence No#(MX,(O,,(MX) NY)=N=0,MX)N Y which then yields that
0.MX)< Y. In view of (2.20) and the assumption LM = ML this
is untenable.

Therefore we conclude that X = 1, so establishing the lemma.

REMARKS. The proof of Lemma 5.3 is capable of several varia-
tions. For example, by using Lemma 2.9 of [13] instead of (2.8) in
the proof of Lemma 5.3, we obtain the following which extends
[Corollary 3.13; 13].

LEMMA 5.4. Suppose that LM = ML and that A is an abelian
(WU )'-group of square-free exponent. If O, (LY) # 1 and 2¢ p, then
X =1

For Lemmas 5.5 and 5.7 and Corollary 5.6 we assume that A is
an abelian (LU g)'-group of square-free exponent.

LEmMA 5.5. If LM+ ML, 2¢ ¢t and L; < X where € A* with
[{B>| a prime number, then either

(1) Y £ Mg or

(ii) Ly=X=1.

Proof. By combining Lemma 5.4 and (2.23).
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We single out a special instance of Lemma 5.5.

COROLLARY 5.6. Suppose LM + ML and let g€ A* be such that
[{B)] is a prime number. If Ly=1,2¢tand X # 1, then Y < M,.

LeEmMMA 5.7. Suppose that LM + ML. If L, =1 where g¢c A*
with |{B>| a& prime number and 2¢ ¢, then Y = N,(L).

Proof. Clearly N,(L)=Y. We proceed to show the reverse
inequality. From (2.13)(ii) LY has \-length at most one. Thus
Y = OLY)N,(L).

If O,LY)=1, then the required conclusion follows. While
O.LY) #1 implies that X =1 by Lemma 5.5 which in turn gives,
by (2.20), L = O(LY)X = O,(LLY). Hence, in this case also, we have
Y < N,(I.). Now the lemma follows.

The remaining three results of this section are the so called
‘triangle lemmas’. They play a fundamental role in connecting the
local and global situations that we shall encounter.

LeEmMA 5.8. (‘First Triangle lemma’). Let Be A* with |{B)]| a
prime number and |{B)|eénULUn. Suppose that following hold:
(i) L permutes with both M and N;
(ii) MN == NM; and
(iii) N(ML) # G.
Then the following statements hold.
(@) If My = FPu(N), then

O ML) = Co,ur(lJ, BDO(ML) N F(N))

for all A-invariant abelian subgroups J of L.
o) If M; = FPy(N) and 2¢ N, then

O0ML) = Co, (L, BNOLML) " Fu(N)) .

(¢) Suppose BeZ(A) and | #Z (1, )| = 2. If My < FPy(N), then
either J < L; for all characteristic abelian subgroups J of O,(LN)
or at least one of

O.(ML) £ Z4(N) and Ny = FPy(M)

must hold.
Further, if 2¢\, then either O)(LN) < L; or at least one of

0.(ML) £ Z(N) and Ny < Py(M)
must hold.
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For (d) and (e) we assume, additionally, that A = {a) is cyclic
of square-free order. Let (v) be a (MU ) -subgroup of A.

(d) If M < FPy(N), then, for all a-invariant subgroups J of
L for which J, =1,

O.(ML) = Coﬂmm(J)(O#(ML) N Fu(N)) .

(e) Suppose that M, < FPy(N) and that L, = 1. If 2¢ p, then

(i) M= Fy(N)Cy(L); and

(ii) Ny(J) £ Fy(M) for all nontrivial a-invariant subgroups
J of L.

(f) Suppose that ME < F,(N) and that L, =1. Then either
OLN)=1 or 2ep.

Proof. Firstly, we observe that &, ,(N)N+#G since &, (N)N=G
forces (because of order considerations) G = (ML)N, contrary to
assumption (iii). By (2.26), Fy(N) = FPu(N)F(N) = FPy(N)L.
Consequently L normalizes both O.(ML) and O,(ML)N &,(N). Now
(a) and (b) follow by applying (2.14)(i), respectively, to O.(ML)J and
O.(ML)L. By using (2.14)(ii) upon O.(ML)J we also obtain (d).

We now proceed to establish (¢). Let J be a characteristic
abelian subgroup of O, LN) with [J, 8] # 1. Employing part (a)
gives

Oy(ML) = Co#wm([Jy B])(Oy(ML) N gM(N)) .

Since N; normalizes J, we have N; =< N x([J, B8]) by (2.3)(viii).
Thus considering (Ng([J, B]))un in conjunction with the hypothesis
that |.Z (g, 7)| = 2, we infer that either C,([J, 8]) < Z,(N) or that
N; = FPy(M). Hence the first part of (c¢) follows; the second part
is established similarly (using (b) in place of (a)).

(e) By part (d) we have

Ou(ML) = Co,un)(L)(Ou(ML) N Fy(N)) .
Since, by hypothesis, 2 ¢ ¢ employing Corollary 4.5 (note L; = 1) gives
M= M%0.(ML) .
Thus
M= FPu(N)CW(L) = M,

which gives (e)(i).

If Ny(J) £ FPy(M) for some nontrivial a-invariant subgroup J
of L, then, since Z(, 7)) = (MFPy(M), NF,(N)} by (2.22), Ny(J) =
Fy(N). In particular, C,(L) < F,(N) so forcing the untenable
M= Zy(N). Thus (e)(ii) holds.
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(f) Suppose that O,(LN) = 1. If, further, 2¢ g, then (e)(ii)
would demand (with J = O,(LN)) that N < & (M), a contradiction.
Hence (f) follows.

LeMMA 5.9. (‘Second Triangle Lemma’). Let {8> be a cyclic
(WU p)'-subgroup of A which is of square-free order. Assume that

(i) MN = NM and LM =+ ML;

(ii) M < Py(N); and

@iii) J 1s a montrivial A-invariant subgroup of F,(N) such
that J; = 1 (here we have set Z = F,(M)).

Then

(@) M= Cy(J)Fu(N)Fu(L); and

b) of M MZ, then M = C,(J)FPu(N).

Proof. (a) If it were the case that N7, ,(N) = G, then order
considerations would force L = Z = (M) contrary to the supposi-
tion ML = LM. Hence, using (2.26), we have that &, ,(N)=
FPy(N)F,(N). Therefore J normalizes both O.(MZ) and O.(MZ)N
Fu(N) (=z OMZ)E,) whenee, by (2.14)(ii),

O#(MZ) = Co,,(Mz)(J)(O.u(MZ) N gM(N)) .
Thus, using (2.20),
M= .@M(L)Oy(MZ) = CM(J)«Q"M(L)-QJM(N) ’

as required.
(b) Arguing as in part (a) we obtain

M= O#(MZ) = CM(J)(Mﬂ gM(N)) = CM(J)'?M(N) ’

and we have (b).

LEMMA 5.10. (‘Third Triangle Lemma’). Let {8) be a cyclic
WU p)'-subgroup of A which is of square-free order. Also assume

(i) NM +# MN and LM + ML (set Z = F,(M)); and

(i) M < Pu(N).

Then the following statements hold.

(@) If J is a nontrivial A-invariant subgroup of F,(N) with
Js =1 and one of FPy(N) = FPy(L) and FPy(L) = FPy(N) holds, then
Cu(J) £ FPu(L) and Cy(J) £ FPu(N).

(b) If A is abelian of square-free exponent, L, =1, J is a non-
trivial A-invariant subgroup of F,(N) and 2¢ p, then Cy(J) £
Fou(L).

(e) If Z(L); = 1 and one of Fy(N) £ FPyu(L) and Py(L) £ FPy(N)
holds, then F,(M)NZ(L) = 1.
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(d) If A is abelian of square-free exponent, Ly =1 and 2¢ p,
then F,(M)NZ(L) = 1.

Proof. (a) By Lemma 5.9(a), M = Cyu(J)FPy(N)FPy(L). Since,
by hypothesis, one of Fy(L) = Fy(N) and Fy(N) = Fy(L) must
hold and M does not permute with either L or M, it follows that
Cu(J) £ FPu(L) and Cy(J) £ FPu(N).

(b) In view of part (a), we may suppose that .2, (L) £ Fx(N).
Since ME, < Fy(N), this gives F, (L) #+ F, (L)%, and so, since 2¢ p,
Corollary 4.5 dictates that O.(F,(L)L) + 1. From Lemma 5.4 (since
2¢p and LM+ ML), Z = (M) =1. However, by hypothesis
1#J=< F(N) £ Z. This establishes (b).

(¢) If Z(L)NF,(M) were nontrivial, then setting J = Z(L)n
F,(M) would violate the conclusion of (a). Thus Z(L)N.Z,(M) = 1.

(d) Likewise, (d) follows from the assertion contained in (b).

6. Normal p-complements. This short section consists of
criteria for the existence of normal p-complements in groups which
admit certain automorphism groups.

LEMMA 6.1. Let G be a finite group admitting a coprime auto-
morphism group A. If Cz(A) contains a Sylow p-subgroup of G and
CG(A) = Op’,p(CG(A))7 then G = OP';p(G)'

Proof. Let R be a nontrivial subgroup of P where PeSyl, G
and P=Cy(4) =C. From (2.3)(xi])) NgR) = N(R)Cx(R) and so
NgR)/Cs(R) = No(R)/C;(R). Because C has a normal p-complement,
Ny(R)/Co(R) must be a p-group. Now a well-known results of
Frobenius ([Theorem 7.4.5; 7]) yields the desired conclusion.

Our next result will render valuable service in Part IV.

LEMMA 6.2. Suppose G is a finite group admitting the coprime
automorphism v, which is of square-free order r, ---, r, (r; a prime
for 1 =1, ---, m). Further, assume that the following hold:

(i) G = TH where T is a v-invariant Sylow 2-subgroup of G
and H is a v-invariant Hall 2’-subgroup of @G;

(i1)  Ce(7) = Cp(7);

(iii) Cr(B) = N,(H) for all Be<{7)%

(iv) NgJ(T)) and Cx(Z(T)) both possess normal 2-complements;
and

(V) every finite group admitting a coprime fixzed-point-free
automorphism of square-free order s, ---,8, (s; a prime for i =
1, ---, m) is soluble.
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Then G has a normal 2-complement.
Proof. By induection upon |G|.

First we note that, for each p € 7(G)\{2}, H contains all v-invariant
p-subgroups of G. By (2.8)(xiii) this is equivalent to showing that
H contains all y-invariant Sylow p-subgroups of G, and, since Cy(7) <
Ny (H) (by (ii) and (iii)), this follows from (i) and (2.8)(xiii). Similarly
we have that T contains all v-invariant 2-subgroups of G. Con-
sequently, by (2.8)(xiii), K = (KN T)(KNH) for all v-invariant sub-
groups K of G. Clearly K will also satisfy conditions (ii) and (iii)
with KNT and KNH in place of T and H. Also observe that ~-
invariant quotients of G will satisfy conditions (i), (i) and (iii).
Hence we may assume that 0,(G) = 1.

We assert that, if G is soluble, then the conclusions of the lemma
hold. For [Corollary 1; 6] implies as Cy(v) is a 2-group, that G =
N(J(T))CKZ(T))0,(G). Then, by (iv) and [Theorem 8.1.1; 7], G has
a normal 2-complement. Therefore we may suppose G is not soluble.

We now argue that O,(G) = 1. Suppose O,(G) # 1, and let bars
denote images of subgroups of G in G/O,(G). Note that T = 1, for
otherwise J(T)ch T<I G implies that G has a normal 2-complement.
Therefore, since Z(T) = 1 = J(T), the inverse images in G of Cz(Z(T))
and Nz(J(T)) must be proper v-invariant subgroups of G which contain
T and hence, by induction, will have normal 2-complements. Thus
Nz(J(T)) and Cz(Z(T)) possess normal 2-complements. Applying induc-
tion to G yields G = 0,, ,(G), which implies, by [4], that G is soluble.
Hence 0,G) = 1.

So S(G) (the largest normal soluble subgroup of @) is trivial from
which we infer

(a) T is a maximal v-invariant subgroup of G;

(b) Z(T)N N (H) =1; and

(€) Czn(B) =1 for all ge{7r)*

Suppose K is a proper v-invariant subgroup of G containing 7.
By induction K has a normal 2-complement and so O,(K) = KNH.
Thus (KNH)® = (KNH)™ = (KNH)? £ H which forces (KNH)® <
S(G)=1. Hence K= T(KNH)=T and this proves (a). Now
(Z(T)NN(H))* < HNy(H) and so (Z(T) N Ny(H))* < S(G) = 1, whence
(b) holds. By (iii) (e¢) follows from (b).

By supposition G is not soluble and so, from assumptions (ii)
and (v), Cx(v) = 1. Let « be an involution in C,(v) and set C = Cy(2).
Clearly C is a proper v-invariant subgroup of G, and C=(CN T)(CN H).
By (¢) and condition (ii) we have, using (2.8) upon Z(T)0,.(C),
[Z(T), 0,(C)] = 1 whence (a) dictates that O,(C) = 1.

Suppose C has a normal 2-complement. Then CNH = 0,(C) =1
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and thus a(e Ny(H)) acts fixed-point-freely upon H. From (2.2)(i)
H is nilpotent and hence G is soluble by (2.5). Thus we conclude
that C cannot have a normal 2-complement. Therefore & + @,
where & denotes the set of vy-invariant 2-subgroups 7, of T such
that Ng(T,) does not have a normal 2-complement.

Among the elements of & choose T, such that the <v-invariant
Sylow 2-subgroup of N = Ng(T,) has maximal order. We claim that
T < N. Suppose otherwise; so R = TNN = T. Since Z(R) and J(R)
are characteristic subgroups of R, Ng(J(R)) and Cx(Z(R)) (£ Ny (Z(R))
will have normal 2-complements. Hence Ny(J(R)) and Cy(Z(R)) have
normal complements and therefore so too has N by induction. So
T < N, as claimed. But then, by (@), T= N and so T,¢%.

This concludes the proof of the lemma.

In Part IV we shall also require the following variation of Lemma
6.2.

LeMMA 6.3. Suppose G is a finite group admitting the coprime
automorphism v of order st where s and t are distinct primes. Set
vt =0 and v =7. Also suppose the following hold:

(i) G = TH where T is a v-invariant Sylow 2-subgroup of G
and H is a v-invariant Hall 2'-subgroup of G;

(ii) H = H,H, where H, and H, are v-invariant nilpotent Hall
subgroups of H with H,, =1 = H,;

(iii) Ce(7v) = Cr(7);

(iv) T,= Ny(H) and T. = N,(H,); and

(v) NgJ(T)) and Cx(Z(T)) both possess normal 2-complements.
Then G has a normal 2-complement.

Proof. By induction upon [G|. Note that (iii) and (iv) imply
that Cy(v) = Cp(v) = N (H). As in Lemma 6.2 we may deduce that
conditions (i), (ii), (iii) and (iv) hold for ~-invariant subgroups and
v-invariant quotients of G and thence that S(@) =1, T is a maximal
v-invariant subgroup of G and Z(T)NN,(H) = 1. Hence, from (iv),
Z(T),=1. If Z(T).+#1, then, since T.= N,(H,) and H, =1,
[Z(T)., H] =1 by (2.2)1). But then T, H, < Ci(Z(T).) # G forces
H, = 1 which implies, by (2.5), that G = S(G) = 1. Hence Z(T)%., = 1.
Since S(G) = 1, (2.2)(ii) guarantees Cyz(v) =1 and so we may show
that G has a normal 2-complement by imitating the latter part of
the proof of Lemma 6.2.

LEMMA 6.4. Suppose G is a soluble group admitting the coprime
fixed-point-free automorphism a of square-free order rst (r, s and
t primes). Set p=a", c=a" and v =a", and let H denote the
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a-invariant Hall w-subgrouwp of G. If H, = H,,H,., H, = H,,H,. and
H.= H, H,, then G has a normal w-complement.

Proof. Let P denote the a-invariant Sylow p-subgroup of H.
Then, by (2.3)(i) and (ix), P, = Py, Py, P, = P,,P,. and P. = P,.P,,
and so it will be sufficient to prove the lemma with = = {p}.

Deny the result and let G be a counterexample of minimal order.
Note that the lemma’s hypotheses hold for a-invariant subgroups of
G and a-invariant quotients of G. So 0,(G) =1 by the minimal
choice of G. Hence Cy(0,(G@)) = 0,(G) by [Theorem 6.8.2; 7], and we
conclude that G = 0,(G)Q, where @ is the a-invariant Sylow ¢-sub-
group of G with ¢ = p and Q possessing no nontrivial proper a-
invariant subgroups. Furthermore, the minimality of G together
with (2.8)(iii) implies that O,(G) is a minimal normal a-invariant
subgroup of G. Therefore O,(G) is an elementary abelian p-group
and Co,,(e)(Q) =1

From (2.10)(ii) we deduce that [0,(G),, Q.] =[0,(G), Q.] =
[0,(G), Q] =1. Moreover O,(G* # 1+ Q* by (2.8). So we may
suppose @, = 1. Since @, is a-invariant, @ = Q, and so 0,(G), =
Co,@(Q) = 1. Consequently O,(G)* = 0,(G), = 0,(G). = 1. Hence Q, =
Q.=1. So Q<{or) is a Frobenius group which is faithfully and
irreducibly represented upon O,(G). By a well-known result, this
representation when restricted to {oz) contains the regular represen-
tation of {or) and, under these circumstances, 0,(G), = O,(G). cannot
hold.

Hence there does not exist a counterexample, and the lemma is
verified.
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