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CLOSED FACTORS OF NORMAL Z-SEMIMODULES

DANIEL A. MARCUS

Let M be a set of positive integers which is closed under
multiplication and division whenever possible: if m, neM
and m|n, then n/me M. A closed factor of M is a subset
KC M which is closed under multiplication and for which
there is another subset B C M such that every member of
M is uniquely representable as a product kr with k< K and
re€R. A theory is developed for determining all closed
factors of a given M. The theory can be adapted to an
analogous problem for convex polyhedral cones.

1. Introduction. The factorization problem for a set S with
a binary operation ° can be stated as follows: Determine all pairs
of subsets A, B of S such that each member of S is uniquely repre-
sentable in the form a°b, a € A, b€ B. More generally, if the operation
is associative, one can replace the pair (4, B) with a sequence (4,
..+, A,) of subsets of S.

Several authors have considered this problem for finite abelian
groups. A special case, involving only subsets of a certain form,
was solved by Hajos in the course of settling a classical conjecture
of Minkowski on linear forms. (See [10] for a good exposition of
this.) Subsequent work on factorizations of finite abelian group was
done by Hajbés, Rédei, Sands, and deBruijn. (References appear in
[10].) Even for finite cyclic groups, the general factorization problem
is unsolved. The corresponding problem for the infinite cyclic group
was settled in a negative sense by Swenson in 1974 [12]. Partial
results had previously been obtained by deBruijn [1], [3].

In [5], Long characterized all factorizations of the set {0, 1, - --,
n — 1} under addition. The corresponding problem for certain subsets
of the plane was studied by Stein [11] and Hansen [4].

Complete solutions to the factorization problem have been obtained
for certain semigroups. In [2], deBruijn determined all factorizations
of the additive semigroup of nonnegative integers. The two-dimen-
sional version of this, in which S is the additive semigroup of non-
negative lattice points in the plane, was solved by Niven [9]. In
[6], this author solved the n-dimensional version for all %, including
infinite-dimensional cases: i.e., for any free commutative monoid.
These results were extended in [7] to include certain submonoids of
a free commutative monoid.

The results obtained in [2], [6], [7] and [9] can be summarized
by saying that every factorization of one of these semigroups can
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be constructed from a descending chain of factors which are closed
under the semigroup operation. (See §11.) For the semigroups con-
sidered in [2], [6] and [9], it is a simple matter to determine all of
the closed factors. (See Proposition 15 in [6].) The latter problem
is more difficult, however, for a wider class of semigroups known as
normal Z-semimodules (defined in §2). While all of the factorizations
of these semigroups are not known, it is possible to characterize all
of the closed factors. That is the subject of the present work.

In §7 it will be shown how the theory developed here for normal
Z-semimodules can be adapted to an analogous problem for convex
polyhedral cones.

2. Normal Z-semimodules. Let G be free abelian group and
let G+ denote the set of points having nonnegative coordinates with
respect to a fixed Z-basis; thus G* is a free commutative monoid,
or a free Z-semimodule. A mormal Z-semimodule is any semigroup
which is isomorphic to an intersection G* N H, where H is a subgroup
of G. Some familiar examples of normal Z-semimodules are

(1) The nonnegative points in a sublattice of Z7;

(2) The nonnegative integer-valued circulations in a digraph
(G* consists of all nonnegative integer-valued functions on the edges);

(8) The monic polynomials with constant term 1 over a unique
factorization domain (G* consists of all monic polynomials. This is
a multiplicative free Z-semimodule, as is G+ in all subsequent ex-
amples);

(4) The nonzero principal ideals in a Dedekind domain (G*
consists of all nonzero ideals);

(5) Any set M of positive integers which is closed under mul-
tiplication and division whenever possible:

m,meM, m|n=—mnmeM

(G* is the set of all positive integers).

It is clear that normal Z-semimodules are the kernels of homo-
morphisms from free Z-semimodules to abelian groups, and that every
such kernel is a normal Z-semimodule. In [8] it is shown that every
normal Z-semimodule is uniquely representable as the kernel of a
homomorphism G+ — A (where G+ is a free Z-semimodule and A4 is
an abelian group) having the property that for each basis element
b of G*, the members of G* not involving b (i.e., generated by basis
elements other than b) map onto A. This property is called strong
surjectivity. We note that the basis elements of a free Z-semimodule
are uniquely determined as the minimal nontrivial elements in the
natural partial ordering.
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The result described above will be used in the present work to
solve the following combinatorial problem:

Let M be a normal Z-semimodule with multiplicative notation.
A direct decomposition, or factorization, of M is a decomposition of
M as a direct product of subsets. Thus if A and B are subsets of
M such that each meM is uniquely representable in the form
ablac€ A, be B), then M = A X Bis a direct decomposition of M. Call
A and B factors of M in this case. A closed factor of M is a factor
of M which is closed under multiplication. The problem is to deter-
mine, in some sense, all closed factors of a given M.

3. Notation and terminology. From now on, the symbol N
denotes a free Z-semimodule with multiplicative notation, and we
employ the notation and terminology of the positive integers: The
basis elements of N are called primes and are denoted by the letters
P, q, r, ---. Divisibility in N (indicated by a vertical bar) is defined
in the obvious way, as are GCD’s and relative primeness. The rank
of N (the number of primes) is an arbitrary cardinal.

The symbol M denotes a normal subsemimodule of N:i.e., a
subset which is closed under multiplication and division whenever
possible, as in Example 5. Equivalently, M is the kernel of a homo-
morphism from N to an abelian group. We will also say that M is
normally embedded in N in this case. Thus M represents a typical
normal Z-semimodule.

For a subset X N, let [X] denote the set of all products of
elements of X, including the empty product 1. We write [z, v, ---]
for [{x, v, ---}]. Thus [X] is the monoid generated by X.

Let (X) denote the group generated by X, so that (N) is the
free abelian group generated by the primes of N. A subsemimodule
S c N is normally embedded in N iff (S)N N = S.

Call an element € X minimal in X if it has no divisors in X
other than itself and 1. Equivalently, x is minimal in the division
ordering on X — {1}. Denote by X™™" the set of all minimal elements
in X.

It is easy to see that for M normally embedded in N, N = [M™™"].

For subsets X, Y C N, define

X/ Y={zxeX:ykx VyeY,y=1}.

Clearly X/Y = X/Y ™,
Finally, for subsets X, Y C N, define

XY ={xy:2eX,yecY}.

4. Examples of closed factors.
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ExampLE 1. For any M, let {m, 1€ I} be a family of pairwise
relatively prime members of M, indexed by some set I. Then

[m;:iel]

is a closed factor of M, the complementary factor being
fmeM:m,tm Vviel}.
This should be regarded as a trivial sort of closed factor.
EXAMPLE 2. N = [p, q] (where p and ¢ are understood to be the

primes of N) and M is the kernel of the mapping

N— Z/AZ
determined by

p——1, q——3.

Then M = [p%, q*, pq], and [p*, ¢*, p°¢°] is a closed factor of M. The
complementary factor is {1, pq}.

ExAMPLE 8. N = [p, q, 7, s] and M is the kernel of the mapping
N —Z@ (Z]2Z) determined by

p—— (1, 0)
g—(—1,0)
r— (1, 1)
s—(—=1,1).

Then M = [pgq, rs, p°s’, ¢°»*], and [pgrs, p’s?, ¢°»*] is a closed factor of
M. The complementary factor is [pq] U [7s].

ExAMPLE 4. N =[p, q, 7, s}, and M is the kernel of the mapping
N — Z determined by

p—— 3
q+—— —3
r—— 2
St—— —2.

Then M = [pq, rs, ’s% ¢*r*], and [p’s%, ¢*r*] is a closed factor of M.
The complementary factor is

{p*q¢°*r’st:a,beZ;a,b=0; and a <2 or b<3}.

We note some common features in all of these examples. First,
in each case the complementary factor consists of everything in M



CLOSED FACTORS OF NORMAL Z-SEMIMODULES 125

which is not divisible by any of the generators of the closed factor.
We will see that the complementary factor always has this form.
More interestingly, in each case the closed factor has the form

Mn[n:tel]

where the n, are pairwise relatively prime members of N. In Example
1 the n, are just the m,. In Examples 2-4 the closed factors are,
respectively,

M N[ q°]
M N [ps, qr]
Mnlp, ¢, 7, s .

We will prove (Theorem 2) that all closed factors have this form.
However such intersections are not always factors, as the following
shows:

EXAMPLE 5. N =|[p, q], and N is the kernel of the mapping
N — Z/AZ defined by p, q— 1. Thus M=[p*, p%q, p°¢’, p¢*, ¢']. The in-
tersection MN[v?, ¢*1=[»", P’¢*, ¢'] is not a factor of M since if it were,
the complementary factor would contain pg¢® and p%g; but then the
equation (p*)(p¢®) = (p’¢*)(p’q) would contradict unique representation.

5. Theory of normal Z-semimodules. Let M and N be as in
§2. Clearly M is the kernel of the natural mapping

P: N—(N)/KM .

We define congruence mod M in terms of this mapping. For =, n,¢€
N, we have

n, = ny(mod M) iff @(n,) = p(n,) .
This is just congruence mod the group (M), so that
n, = ny(mod M) iff n,m, = n,m, for some m, m,e M .

We note that n e Miff n = 1(mod M), since NN <{M) = M.

Let f: N— G be any mapping (i.e., semigroup homomorphism)
from N to an abelian group G, and suppose that M is the kernel.
It is easy to show that the following conditions are equivalent:

(1) The image of f is a subgroup of G;

(2) Every member of N divides some member of M.

When these conditions hold, the kernel of the induced group
homomorphism (N) — G is just (M); it follows that image of f is
naturally isomorphic to (N)/{(M). In particular, any surjective
mapping N — G having kernel M is equivalent to o.
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We can always arrange for a given M to be the kernel of a
surjective mapping from some free Z-semimodule by removing the
primes of N which fail to divide anything in M. It is possible,
however, to attain stronger conditions:

In accordance with the definition in §1, @ is strongly surjective
if and only if for each prime p, the restriction

{neN:pkn}— (NH/IKM)

is surjective.

THEOREM 0. Ewvery normal Z-semimodule can be represented as
the kernel M of a strongly surjective mapping from a free Z-semi-
module N to an abelian group G. This representation is unique
up to isomorphism.

This is Theorem 1 in [8] for the special case R =Z. The mapping
referred to can be assumed to be the natural mapping from N to
(NYK{M), as noted earlier for any surjective mapping.

Thus we can assume that the embedding M < N is such that ¢
is strongly surjective. This embedding, which is uniquely determined
up to isomorphism, is called the canonical embedding of M. The
factor group (N)/{M) is an invariant of M, called the cogroup of M.

In [8] it is also shown (Lemma 1) that ¢ is strongly surjective
if and only if each ne N is a GCD from M:

vne N, n = GCD(m,, ---, m,) for some m, ---, meM.

Finally we note that as an immediate consequence of Theorem 0
we can assume that the following condition holds:

(*) Vvne N and V prime p, 3Ixe N
such that # = n(mod M) and p)x .

6. Theory of closed factors. We assume from now on that
the containment M c N is the canonical embedding of a normal Z-
semimodule M in a free Z-semimodule N.

Let K be a closed factor of M with complementary factor R,
and let © = m; denote the obvious projection of M on K.

PRrROPOSITION 1. =w(km) = kn(m)Vk e K, m e M.
Proof. m = w(m)r, r e R, so km = kx(m)r.

ProroOSITION 2. If ke K, me M and k|m, then k|x(m).
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Proof. w(m) = n(km/k) = kx(m/k).

Next we show that K is itself a normal Z-semimodule. In fact
K is normally embedded in N:

ProrosiTiON 3. (K)N N = K.
Proof. Let h, ke K and suppose h/k = n € N. Necessarily ne M
since hjke (M) N N = M. Then
h = w(h) = n(kn) = kx(n)

implying that w(n) = n. Thus neK.
ProposiTiON 4. R = M/K.

Proof. It is clear that R> M/K. Conversely, suppose 7€ R,
ke K, and k|r. Then k|x(r) by Proposition 2. But z(r) =1, so
k=1

Thus we have M = K x (M/K) whenever K is a closed factor

of M.
Next we let F denote the set of GCD’s from K:

F = {GCD(,, -+, k)i kyy -+, ke K} .

We will show that F' is freely generated by a set of pairwise
relatively prime members of N and that K = M N F.

THEOREM 1. Let feF,neN/M, and suppose f = n(mod M).
Then f = n(mod K).

Proof. Write f = GCD(,, ---, k,), k,€ K. For each 7 we have

nk,/f e (M) N N = M, so for each ¢
km(nk,/f) = ka(nk,/f)
by Proposition 1. Thus
k.| fr(nk./f) -

Writing nk,/f = kr with ke K, r€ R, we have k, | fk. It follows that
r|n. But reM and neN/M, so » =1. Thus nk, = fk, implying
n = f(mod K).

COROLLARY 1. K=MNF.

Proof. Trivally KcMn F. Conversely if feMNF then f =
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1(mod M), hence f = 1(mod K ), hence f € K by Proposition 3.
COROLLARY 2. If feF and flkeK, then k/f e F.

Proof. By (*) of §5, there exist elements n, € N such that
n, = f(mod M) and GCD(n,) =1.

Moreover the n; can be assumed to be in N/M since any nontrivial
divisors in M can be factored out without affecting the congruence
and GCD conditions. Then by Theorem 1 we have n, = f(mod K)
for all ¢, hence n;k/f € (K> N N = K. Finally

k/f = GCD(nj/f) e F .

(We should note that there may be infinitely many elements nk/f;
nevertheless their GCD is equal to the GCD of a finite subfamily of
them, hence the GCD is in F.)

THEOREM 2. F =|[n;:nel], where {n;: necl} is a family of
pairwise relatively prime members of N.

Proof. 1t is sufficient to show that F' is closed under

(1) multiplication;

(2) taking GCD’s; and

(8) division whenever possible.
(1) and (8) show that F is a normal Z-semimodule, normally embedded
in N, and hence F = [F™"]; moreover the members of F™" are

pairwise relatively prime by (2).
Let ¢, f € F and write

¢ = GCD(hlr ] hs)
f = GCD(&,, - -, k)

with all &, k,€ K. Then
ef = GCD(all hk;)
and
GCD(e, f) = GCD(hy, ++++, hyy kyy -+, k) -

Clearly F' is closed under taking the GCD of any number of elements.
It remains to show that if e/f € N, then ¢/f ¢ F. For each 1, we
have f|h,;, hence h,/f € F by Corollary 2 to Theorem 1. Finally, then,

e/f = GCD(hl/f’ T hs/f)eF
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by (2).
Combining results, we have

COROLLARY 1. K = MN F where F is freely generated by a set
of pairwise relatively prime members of N, and the containment
K C F is the canonical embedding of the normal Z-semimodule K in
a free Z-semimodule.

The fact that K — F is the canonical embedding follows from the
fact that everything in F'is a GCD from K (see §5). We should note
here that the divisibility relation in the free Z-semimodule F is the
same as that induced from N since F' is normally embedded in N.

COROLLARY 2. If K = K, X K,, where K, and K, are closed under
multiplication, then the members of K, are relatively prime to the
members of K,.

Proof. This follows from Corollary 1 and uniqueness of the ca-
nonical embedding. If we let K,CF, and K,CF, denote the canonical
embeddings of K, and K, in free Z-semimodules, then the induced
mapping of K into the direct product F, X F, must be the canonical
embedding of K. The resulting isomorphism F'— F, X F, shows that
any member of K, and any member of K, have no common factor
in F, hence no common factor in N.

Clearly this result generalizes to a decomposition of K into any
number of closed factors, even infinitely many. In particular we
obtain the following when all of the factors are cyclic:

COROLLARY 3. If K tis free, then the members of K™ are pair-
wise relatively prime.

In other words, the only free closed factors of M are the trivial
ones in Example 1 of §4. This result could also have been obtained
directly from Corollary 1: Necessarily K = F by uniqueness of the
canonical embedding.

We have established a one-to-one correspondence between the
closed factors K of M and certain families of pairwise relatively
prime members of N. As we have seen (Example 5 of §4), not all
families of this type correspond to closed factors. The next result
provides a characterization of those which do:

THEOREM 3. Let {n;:i€lI} be a family of pairwise relatively
prime members of N, and set F = [n;:1ell, K=MNF. Then the
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following conditions are equivalent:
(1) MF s normally embedded in N;
(2) 7wz(M)c M (note that F is a factor of N);
(3) M|F = M|K;
(4) K is a factor of M and F is the set of GCD’s from K.

Proof. (1)= (2). For me M, write m = fr with feF and r¢
N/F. Then re MF by (1). Then re M, implying f € M.

@)= (). M/Fc M/K trivially. Conversely, if m < M/K, then
wrm)=1. Then me M N (N/F) = M|F.

(8)=(2). First notice that M = K(M/K). For me M, write
m =kr with ke K, re M/[K. (We are not assuming that this re-
presentation is unique.) Then re M/F C N/F, so ©wy,(m) = ke M.

((2) and (3))=(4). By (3), we have

M = K(M/K) = K(M/F) = K X (M/F),

with the last part justified by the fact that K C F and M/F c N/F.
Thus K is a factor of M. Moreover it is clear that F' contains all
GCD’s from K since F is closed under taking GCD’s. Finally, let
feF; we know that everything in N is a GCD from M (§5), hence
we can write

f = GCD<m1, ) mt)’ mieM-
For each 7 we have f|m,, hence f|zz(m,) by Proposition 2. Thus
f = GCD(xz(m,), - - -, ws(m,)) .

The 7y(m,) are in M by condition (2), hence they are in K.
(4)= (). We must show that if

mfi = m,fox with m, m,e M; f,, f,e F,xe N
then xe MF. Write
r=mn with meM, ne NM.
We claim that ne F. Clearly f, divides some %k ¢ K; from
m, fik[f, = mbkmn

we obtain » = f(mod M), where f = fik/f,. Note that fe(F)nN N=
F. Then n = f(mod K) by Theorem 1, hence ne{(F) NN = F.

The proof is now complete.

The most important part of Theorem 3 is the equivalence of
conditions (1) and (4). We know that every closed factor K of M
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occurs in a condition (4) situation, hence such factors correspond to
sets {n;: 1€ I} for which MF is normally embedded in N. These
ME’s are among the normal Z-semimodules M’', M c M'C N, such
that M’ is normally embedded in N, and if we let G denote the
cogroup of M (G = (N)/{M>), then the semimodules M’ are in one-to-
one correspondence with the subgroups of G. Specifically, if for each
subgroup HCG we let My denote the kernel of the natural mapping

ozt N—> G/H ,

then the correspondence H — Mj is one-to-one and each M’(as above)
is of the form M,. In this correspondence H = {(M')/{M>.

Summarizing what we have said, there are one-to-one correspon-
dences

{closed factors K of M} —— {certain F’s}
{normal MF’s}—— {certain subgroups H c G}

where F' is used generically to represent a free semimodule of the
form [n.: 7€ I] where the n, are pairwise relatively prime members
of N. The F'’s occurring in the first correspondence are the ones
for which MF is normal.

This raises two questions:

(1) To what extent is F determined by a normal MF?
and

(2) Which subgroups H C G occur in the correspondence?

Answers are provided by

THEOREM 4. Let H be a subgroup of G. Then Mgz = MF for
some F = [n;:1elI] with pairwise relatively prime n,* 1, if and
only if the members of Mp™ — M are pairwise relatively prime. In
that case the members of Mp™ — M are among the n, and all other
n; are in M.

Proof. If M, = MF with F as above, then My c M™™ U F™",
hence
Mp®» —McF™ = {n;:tel}.
Moreover if n,c F’®2 — M, then from
M, = [Mg*] = [Mz™ — MM

we conclude that =, is divisible by some ne Mgp™ — M; we know
n = n; for some je I, hence n;|n,. It follows that n; = n,. Thus

F» — McCMp™ — M
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implying that M contains all #, which are not in M2 — M.

Finally, suppose the members of M7™ — M are pairwise relatively
prime. Then M, = MF, where F =[Mz™ — M], and the proof is
complete.

It should be noted that when a subgroup H of G corresponds to
a normal MF and hence to a closed factor K of M, then H is the
cogroup of K. We prove this by showing that K is the kernel of
a strongly surjective mapping of N onto H. The surjective mapping
N — G restricts to a surjective mapping M, — H; since M, = MF
and M is the kernel, the restriction ¥ — H is surjective. Moreover
everything in F'is a GCD from the kernel K. It follows by Lemma
1 of [8] that F'— H is strongly surjective.

Now we look back at the examples of §4 in the light of these
results.

In Example 1, F = K; MF = M; and H = {0}.

In Example 2, F = [p’, ¢°]; MF = [p*, ¢, pq]; and H = {0, 2}.

In Example 3, F = [ps, qr]; MF = [pq, rs, ps, qr]; and H = Z/2Z.

In Example 4, F = [p% ¢, 7° §’]; MF = [pq, rs, v°, ¢¢ 7°, s°]; and
H=62Z.

In each case MF = M, and H is the cogroup of K.

As a further illustration of the theory we determine all closed
factors of M in Example 3. The subgroups of G = ZP (Z/2Z) are

nZ,n=0;
nZ® (Z12Z)y, n=0;
and the cyclic groups
{(n, 1)), m=1.

When H = {0}, M, = M. F can be taken to be [m] for any m e M,
or [m,, m,] for any relatively prime elements m,, m,e M. The closed
factor K is just F.

When H=Z, My =|[p, q, v°, s*, rs]. M contains rs, so F =
[, q, 7*, s*] intersects M in the closed factor

K = [pq, s, 9°8", ¢'1"] .
When H = 2Z, My = [?°, ¢%, 1%, §°, pq, rs]. M contains pqg and 7s,
so F = [p% ¢ 7% s*] intersects M in the closed factor
K = [p°¢, 78, '8, 4] .

When H=nZ, n = 3, M3™ contains p™ and p"—**, neither of which
are in M. The members of Mp™ — M are not pairwise relatively
prime, so H is not the cogroup of any closed factor of M.
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We have already seen that H = Z/2Z is the cogroup of the closed
factor in Example 3.

When H=Z@P(Z/2Z), My = N; then F = N and K = M.

When H = aZ@ (Z/2Z), n = 2, M3™ — M contains p* and p*~'r,
so no closed factor results from H.

When H =<1, 1)), My = [r, s, v, ¢*, pq]. M contains pgq, so F' =
[7, s, ¥, ¢°] intersects M in the closed factor

K = [p’¢, rs, p°s*, ¢°r°] .

Finally, when H = {(n, 1)), n =2, M3 — M containsg p** and p"~'r.
No closed factor results from H.

7. Splitting subcones of a convex cone. All of the theory
developed in §6 for Z-semimodules can be adapted to finite-dimen-
sional normal R-semimodules, which are convex cones in real vector
spaces. By a convexr cone we mean what is usually referred to as
a “pointed convex polyhedral cone”, the nonnegative span of a finite
set of vectors such that the span contains no nonzero linear subspace.
Such a cone can be represented isomorphically as the set of non-
negative points in a subspace of R", where » is the number of facets
of M. We refer to this representation, which is unique up to
isomorphism, as the canonical embedding of M in the positive orthant
(R*)".

A splitting subcone of a convex cone M is a convex subcone which
is a direct summand of M, the complementary summand being a
subset (not necessarily a subcone) of M. Theorems 1-4, adapted to
convex cones, provide a theory by which the splitting subcones of
a given M can be determined by considering subspaces of the cospace
of M, the latter being defined as the factor space R*/{M)>, where M
is canonically embedded in (R*)” and (M) is the subspace generated
by M.

The results for convex cones can be stated in the same multipli-
cative number-theoretic language used in the paper if one agrees to
represent the additive group R™ with multiplicative notation, so that
the standard basis vectors are represented as “primes” p, ¢,  --- and
scalar multipliers become exponents. The natural partial ordering
on R" becomes “divides”, with GCD’s and relative primeness inter-
preted accordingly. The only real change that must be made in
adapting this material to convex cones is the definition of minimal
elements of a cone. These should now be defined as the points
on l-dimensional faces of M. Thus Theorem 4 must be reworded
slightly to allow for minimal elements which are powers of each

other.
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As an illustration of what this shows for convex cones, consider
the cone M generated over R+ by the five points in R® '

,09,0,1,0,0)
0,1,0,0,1,0)
0,0,1,0,0,1)
1,0,1,0,1,0)
0,1,0,1,0,1).

In multiplicative notation, we represent these generators as ps, ¢t,
ruw, prt, qsu. Then M is the kernel of the mapping from the
free cone N =[p, q, 7, s, t, u] to R* in which the six generators go
to the vertices of a regular hexagon centered at the origin. (This
configuration in R? is the Gale diagram of a triangular prism, which
is the dual of a cross section of M.) To determine the splitting
subcones of M, we consider subspaces H of R*. For each H, we look
at the minimal elements of the kernel M, of the mapping from N
to R}/H. If the members MZ™ — M are pairwise relatively prime
modulo powers, then they generate a free cone F which intersects
M in a splitting subcone; and every splitting subcone of M is
obtainable this way, possibly augmenting F' by including as generators
any pairwise relatively prime members of M which are relatively
prime to all members of M3 — M.

When H = R*, M3™ — M consists of the powers of p, q, 7, s, £, u.
This gives the trivial splitting subcone M. When H is a line con-
taining two opposite vertices of the hexagon (say the images of p
and s), then Mp™ — M consists of the powers of p, s, ¢, and qu.
This gives the splitting subcone of M generated by ps, prt, qus, and
rtqu. No members of M are relatively prime to all of p, s, 7, and
qu, so no other splitting subcone results from this H. Two other
splitting subcones are obtained from the two other pairs of opposite
vertices of the hexagon. However if H is any other line through
0 in R? then the members of Mz™ — M, modulo powers, are not
pairwise relatively prime, so H does not correspond to a splitting
subcone. Finally, when H = {0}, M3™ — M is empty and we obtain
the trivial splitting subcone {1} in M, corresponding to the vertex
of the cone. We also obtain all subcones of M having pairwise
relatively prime generators: These are the halflines [m], m € M; the
2-dimensional free subcones [ps, qt], [ps, rul, [qt, rul, [prt, qsu], [vs,
qt(ru)*], [ps(gt)®, ru], and [ps(ru)*, qt] for all a e R*; and the 3-dimen-
sional free subcone [ps, gt, ru].

It is interesting to interpret Theorem 2 in terms of convex cones:
If K is a splitting subcone of a convex cone M and M is canonically
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embedded in (R*)", then the GCD’s (greatest lower bounds) from K
form a free cone with relatively prime generators. Call this the
GCD cone of K. In general, GCD cones are not free. For example,
the points

10,1,0,1)
(1,0,0,1,1)
0,1,1,0,1)
0,1,0,1,1)

generate a normally embedded square cone K in (R*)® whose GCD
cone has nine minimal generators, hence the GCD cone is not free.
Thus, for example, K is not a splitting subcone of any canonically
embedded cone in (R*)°.

8. Further results for Z-semimodules. Maximal common di-
visors. Let K be a closed factor of M and let &k, ---, k,€ K. Set
f = GCD(,, -+, k,) and write f = mn, with me M and ne N/M. In
other words, m is a maximal common divisor of the k; in M.

COROLLARY 3 To THEOREM 1. With notation as above, me K.

Proof. f = n(mod M), hence f = n(mod K) by Theorem 1. Then
me{K)NN =K.

Intersections. We will prove that an intersection of closed
factors is a closed factor.

THEOREM 5. Let {K;:1e€I} be a family or closed factors of a
normal Z-semimodule M. Then K = (\;.; K; is a closed factor of
M. Moreover if H, is the subgroup of G = (N)Y/{M) corresponding
to K, then H = (\;c; H; is the subgroup corresponding to K.

Proof. Let F,; be the set of GCD’s from K,. By Theorem 3,
all MF, are normally embedded in N and hence so is ), MF;,. We
claim that this intersection is just MF, where F = ), F\.

Clearly N:; MF, contains MF. Conversely, fixing xe), MF,,
write £ = mn with me M and ne N/M. Then ne MF, for each 7 by
normality, hence

ne(MF)JMCF, Viel,

showing that x < MF.
From the above we conclude that MF is normally embedded in
N. Moreover F' is generated by a family of pairwise relatively



136 DANIEL A. MARCUS

prime members of N because each F, is. (Each F,; is closed under
multiplication, GCD’s, and division whenever possible, hence so is
their intersection; it follows as in the proof of Theorem 2 that F
has relatively prime generators.) Applying Theorem 3, we conclude
that K= MN F is a closed factor of M and that F is the set of
GCD’s from K. Finally, the fact that MF = ), MF, implies that
MF = M, hence K corresponds to H.

Multiplicity = 2. We establish a sufficient condition for M to
have no closed factors other than M itself and the trivial factors of
Example 1, §3.

Call M irreducible iff M has no direct product decomposition
K, X K,, where the K, are closed factors = {1}.

Define the multiplicity of M to be the smallest nonzero number
of primes in any nontrivial congruence class mod M. Thus M has
multiplicity = 2 iff for each prime pe N — M, there is a prime q # p
such tnat ¢ = p(mod M).

THEOREM 6. If M is irreducible and has multiplicity = 2, then
all closed factors of M, other than M itself, are of the form [m,: i€ I]
where the m, are pairwise relatively prime members of M.

Proof. Let K be a closed factor of M and let FF and H be as
in §6. By Theorem 4, the members of Mp™ — M are pairwise
relatively prime. Fixing any ne Mp™® — M, let p be a prime divisor
of n such that p¢ M and let ¢ #* p be a prime such that ¢ = p(mod M).
Then gn/pe Mg™ — M, hence gn/p is relatively prime to n, implying
n =p. Thus F,=[Mg> — M] is generated by a set of primes.
Moreover F,C F' by Theorem 4. Also note that MF, = M,, which
is normally embedded in N. Thus by Theorem 8, K,= M N F, is a
closed factor of M and the complementary factor M/K, is equal to
MJ|F,. Moreover it is clear that M/F, is closed under multiplication.
Since M is irreducible, we conclude that either K, = M, implying
K =M, or else K, = {1}. In the latter case, we have F, = {1} since
F, is the set of GCD’s from K, by Theorem 3. Then F C M, implying
K=F.

In the next section we will see how this result leads to the
determination of all closed factors of any M having multiplicity = 2.

9. Closed factors of a direct product. By a direct product of
Z-semimodules M;, we will always mean 7restricted direct product:
The direct product X,., M, consists of families (m,);.;, of elements
m; € M, such that m; =1 for all but finitely many ¢€ . Thus we
can speak of direct product decompositions of a given normal Z-
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semimodule M into closed factors, possibly infinitely many. We will
see that all such decompositions can be obtained from a single one
by grouping factors together.

Let M = X,., M, be a direct product decomposition of M into
closed factors M, It is clear that M™™cC U..; M;, and that
[M™™ N M]c M, Since M is generated by the members of M™™,
we must in fact have for each 17,

M, =[M™"nMj].

Thus the decomposition of M corresponds to a partition of M ™.
Moreover the partitions M™" = |J,., X; which correspond to decomposi-
tions are characterized by the condition

GCD(x;, ;) =1 if z,eX, x;eX;, 1% 7.

(See Corollary 2, Theorem 2. GCD refers to the divisibility relation
in N, where M c N is the canonical embedding of M.)

Call a partition of M™" admissible if it has the above property.
It is easy to see that there is a unique finest admissible partition
of M=, In view of the equivalence between admissible partitions
and decompositions, we obtain the following result:

THEOREM 7. A normal Z-semimodule M has a unique finest direct
product decomposition into closed factors. All other decompositions
of M into closed factors = {1} can be obtained from this one by
grouping factors together.

The factors in the finest decomposition of M are called the
irreducible components of M.

COROLLARY. A normal Z-semimodule is uniquely representable
as a direct product of irreducible Z-semimodules = {1}.

Next we show how all closed factors of a direct product X, M,
can be obtained from the closed factors of the M,.

THEOREM 8. Let M = X, M, be a decomposition of a normal Z-
semimodule M into closed factors M,, and let K be a closed factor
of M. For each 1, set K, = K M,,. Then

K=(X:K)xF

where F is free, generated by a set of pairwise relatively prime
members of M which are relatively prime to all members of all K,.
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Proof. It is clear that each K, is a closed factor of M,, hence
L = X K’i

is a closed factor of M. Since LC K, L is a closed factor of K. It
remains to prove that the complementary factor K/L is free; all
relative primeness statements will then follow by Corollaries 2 and
3 to Theorem 2.

First we show that K* = K/L is closed under multiplication.
Clearly K* is the intersection of the K/K,, so it is enough to show
that each K/K, is closed. Fixing 1, let h, k¢ K/K, and suppose hk is
divisible by %k,€ K,. Since the members of M, are relatively prime
to everything in M/M,, k, divides

b7y (k) .
Then by Propositions 2 and 8 of §6, we have
ki|wg(hry (k) = hrgmy (k) =k,

with the last equality following from the fact that zem, (k) is a
divisor of % in K,. Finally, we conclude that k., = 1. That completes
the proof that K* is closed.

The proof that K* is free is accomplished in several steps. First
assume that there are only two factors: M = M, X M,. Then the
projection mappings z,, and x,, are one-to-one on K*: If K* contains
uv and wuw with we M, and », we M,, then w, v and w are all in
M/K. Then the equation

(uv)w = (uw)v

implies that v = w by unique representation in K X (M/K). Thus
Ty, is one-to-one on K*. Similarly, so is ©,,. Thus the 7, map K*
isomorphically onto the x, (K*). Moreover K* is easily seen to be
a closed factor of

Ty (K*) X T (K*) .
LEMMA. Let M be a normal Z-semimodule and suppose that the
diagonal
D = {(m, m): me M}
18 a factor of the direct product M X M. Then M 1is free.
Proof. As usual, let M C N be the canonical embedding of M.

Then everything in N is a GCD from M. It follows that the set of
GCD’s from D is
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Dy ={(n, n):neN}.
Assuming that D is a factor of M x M, we have by Theorem 3
wr(Mx MycMx M
where ' = D,. Moreover for m, m,c M we have
Tp(my, my) = (n, n)

where n = GCD(m,, m,). We conclude that M is closed under taking
GCD’s, hence M = N.

Applying the lemma in an obvious way, we conclude that K* is
free when M = M, X M,.

Next we prove by induction that K* is free when M = M, X

- X M,. Fixing n = 3 and assuming the result for fewer than =
factors, we have

K=K XK, X --- XK, xF

where F' is free and K’ = KN (M, x M,). Since K'is a closed factor
of M, x M,, we have

K' =K x K, X F'’
where F' is free. Then
K*=F x F’.

Finally we prove that K* is free when M is decomposed into
arbitrarily many factors M,. It is sufficient to prove that any two
minimal elements of K* are relatively prime. Fixing h, ke (K*)™™,
we have h, ke M; x --- X M, for some finite set of indices 4,, - - -, 7,.
If we set

K= K50 My % -0 X M),

then K** is a closed factor of M; x --. X M, intersecting each M,
trivially. From the inductive argument above we find that K** is
free, hence its minimal elements are pairwise relatively prime. In
particular, » and k& are among these minimal elements.

The proof of Theorem 8 is now complete.

COROLLARY. If M has multiplicity = 2, then for each closed
factor K of M there is a direct product decomposition
M= M, X M,
with M, and M, both closed, such that
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K=M X F

where F is a free closed factor of M,.

Proof. Each irreducible component of M has multiplicity = 2,
and K intersects each component in a closed factor. Let M, be the
product of all components which are contained in K and apply
Theorems 6 and 8.

A closed factor of M can have more irreducible components than
M has, even if cyclic components (free semimodules of rank 1) are
excluded. We give an example in which M is irreducible and K has
n = 2 noneyclic irreducible components. Let M be the kernel of the

mapping
[p,aii=1, -, n]l— G = (ZnZ)D (Z]2nZ)"
defined by
Di— Uy
qi— Uy — Uy

where w, denotes 1€ Z/nZ and the u,; 1 <1 < n, are the canonical
unit vectors in (Z/2nZ)*. The product

m = plQl e pnqn

is in M™= implying that M is irreducible: i is in one irreducible

component of M, hence all elements in all other irreducible components

are relatively prime to m. But m is divisible by all primes in N.
We claim that

K = X, [p"g", (p:.9.)"]
is a closed factor of M. We have K = M N F where
F=[p,e:1=i=mn],

hence by Theorem 3 it is enough to show that MF is normally
embedded in N. It is not difficult to see that MF = M,, where
H = nG. In fact the generators of M, are the p”, the ¢7 and all
products of the form

(01g)™ -+ (Dagn)"™
with 0 < a; < n for all ¢ and ¥,a, = n. These products are all in M.
10. The cyclic cogroup case. It is possible to describe explicitly

all closed factors of M when the cogroup of M is cyclic. In view
of Theorem 8, it is sufficient to consider the case in which M is
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irreducible. Moreover since all free closed factors of M are known,
we consider only nonfree ones.
Throughout this section M is the kernel of a strongly surjective

mapping
P N—— G = ZInZ

where n is a nonnegative integer. M is assumed to be irreducible.
When »n = 0, this assumption is equivalent to the condition that p ¢ M
for all primes pe N. For each p, let a, be an integer representing
the congruence class @(p) in G.

Call two primes p and p’ paired if pp’ € M and pq, p'q ¢ M for all
other primes ¢. Equivalently,

a, + a, = 0(mod n)
and

a, # *+a,(modn) Vg=+#p, p .

THEOREM 9. Let {d,} be a family of positive integers satisfying
the conditions

(1) d,=11f p is not paired with any other prime;

(2) if p and P’ are paired, then d, = d, and d,|(a, n) for all
q#p, 0. Then K= MnNOF is a closed factor of M, where

F = [all p®].

Conversely, every monjfree closed factor of M 1is equal to such an
intersection, where the d, satisfy conditions (1) and (2).

Proof. Assuming first that the d, satisfy conditions (1) and (2),
we prove that K is a closed factor of M. By Theorem 3, it is
sufficient to show that z,(M)c M. For any me M, write m = fr
with feF and re N/F. We claim that »< M, which will imply
feM. Write

m = ] p™ ;
all p
then
r=][p"
all p

where z, reduces to y, modd,, 0 <y, < d,. Thus y, =0 if p is not
paired. For paired p, p’, we have

a,@, —x,) + >, a,x, = 0(mod n) ,
q#p,p’
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hence
a,(x, — x,) = O(mod d,) .

Moreover the fact that @ is surjective implies that @, is relatively
prime to d,. (Otherwise a, a,, and all a, would be in a proper
subgroup of G.) Thus z, = z,(mod d,), implying that

r= ]I (pp')y2e M.

paired
» p’

Now suppose that K is a nonfree closed factor of M and let F
be the set of GCD’s from K. Thus K= MNF and MF = M, for
some subgroup HcCG. Since K is nonfree and H is the cogroup
of K, H is nonzero. Thus H = dG for some positive divisor d of
n, d #+ n.

For each p, set

n a

=" _ 4=_2_
G T (@, d)

When n > 0, n, is the additive order of a,mod=. In all cases d, is
the additive order of a,modd. For all p we have

preM, pire Mp=™.

Call p good iff p?»¢ M. When » = 0, it is clear that all primes
are good. (Recall that M contains no primes since it is irreducible,
hence all a, are nonzero.) In all cases, p is good iff n, + d,.

LEMMA 1. Let p and q be two primes, at least one of which is
good. Suppose moreover that

(d, d)) =e>1.
Then
dl’ dl]

—2a, + —%a, = O(mod n) .
e e

Proof. Set a=4a,b=0a,a=4d, 3=d, and without loss of
generality assume that p is good. Then M2 contains both p* and
¢*, and p*¢ M. Moreover the members of M7™ — M are pairwise
relatively prime by Theorem 4. It follows that whenever M, contains
an element of the form

¢", 0=2<a,0=y<gp

then M also contains this element. (If not, then some divisor of this
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element would be in Mz® — M; this divisor could not be a power of
q, since MP™* contains ¢?, so M7™ — M would contain two multiples
of p.) Equivalently, every solution of the congruence

ax + by = 0(mod d)
with 0 <2 < a and 0 < y < b, is also a solution of
ax + by = 0(mod »n) .

Let (a) and <{b) denote the subgroups of Z/dZ generated (addi-
tively) by a and b. The intersection {(a) N <{b) is the unique subgroup
of Z/dZ having order ¢. This subgroup is generated by (a/e)a and
contains —(B/e)b, hence we can write

_ By =% (mod d)
e e

for some k, 0 = k < e. Moreover k # 0 since e > 1. By our observa-
tion above, the congruence

e+ Bp=0
e e

holds mod n, and it remains to show that k = 1.
The open interval (e, 2¢) has length > %, so it contains a multiple
hk of k. If k= 2, then h < e. Then the congruence

(hk% - a)a + h-f—b =0,

which holds mod d, also holds mod n. This implies aa = 0(mod ).
But then p*e M, contrary to assumption.

LEMMA 2. For all p,

Proof.

A, ) = (dn,, 1) = n,(d, (@, m) = n,(d, @,) .
d
We will use Lemmas 1 and 2 to show that no bad primes can

exist.
First, suppose all primes are bad. Then =, =4d,|d for all p,
implying
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n|n
—_—— = (A, N)| A, .
7l =@l
But then all a, are in a proper subgroup of Z/nZ, a contradiction
since @ is surjective.

Now suppose p is bad and ¢q is good. Then n, = d, and we have

a,d, =0, ad,#* 0modn).

Lemma 1 shows that (d,, d,) =1. Moreover by Lemma 2,

(o 20} o) 21

q

Combining results, we obtain (n,, #,) =1 whenever p is bad and ¢
is good. Thus, assuming that both good and bad primes exist, Z/nZ
has a subgroup decomposition A X B such that A contains all a, »
good, and B contains all a,, p bad. (Note that » >0 and consider
the Sylow subgroup decomposition of Z/nZ. Recall that =, is the
order of a, in Z/nZ.) Then M = M, X M, where

M, = Mn|[p: p» good]
M, = Mn|[p: p bad].

Both M, and M, are nontrivial since p"e M for all p. But M was
assumed to be irreducible.

We conclude that all primes are good. Thus all p%» are in M3p™ —
M and then necessarily F' = [all p?»]. It remains to show that the
d, satisfy conditions (1) and (2).

We claim first that for each p» there is at most one ¢ # p such
that (d,, d,) > 1. Assuming that p, ¢ and » are distinct primes such
that

(dpydq)=e>1v (d,,,d,)=f>l
and setting a =d,, g=d,v=d,,a=a,b=aqa,c=a, we have by
Lemma 1

Lo+ By = 0(mod n)
e e

Lo+ %o = O(mod n) .

f

Moreover aa = 0mod d but not mod % since p is good. Fixing integers
h and %k such that

IA

fz— h<e,
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we have

(hf“e— + k_jﬁ_)a n <h%>b + <k-}>c = 0(mod ) ,

hence the congruence

a X B T e =
(h? G a)a + <he >b + <kf>c 0
holds modd but not modn. Denoting the coefficients of a, b, ¢ by
x, Y, # respectively, we have

0e<a, 02y<p, 0=2<y
and the element
P°q'r*

is in M, but not in M. As in the proof of Lemma 1, this leads to
a contradiction.

Now suppose some d, is relatively prime to all d, ¢ = p. For
each ¢ # p, we have d,|d|d,a,, hence d,|a,. Thus all q,, g # p, are
in the subgroup of Z/nZ generated by d,. The fact that ¢ is strongly
surjective implies that this is not a proper subgroup, so (d,, ) = 1.
Since d,|d|n, we conclude that d, = 1.

We have shown that for each p with d, > 1, there is a unique
p’ # p such that (d,, d,) > 1. We show now that in fact p and p’
are paired. For each g = p, p° we have d,|a, since d,|d|d,a, and
d, d,) =1. It follows that d, must be relatively prime to a, since
otherwise all a,, ¢ # p, would be in a proper subgroup of G, con-
tradicting strong surjectivity. Thus from d,|d|d,.a,. we obtaind,|d,.
By symmetry, d,=d,. Applying Lemma 1, we obtain the fact that

a, + a,, = 0(mod n) .
Moreover for q # p, »
a, Z +a,(mod n)

since d, # d,. We conclude that p and p" are paired. Also note that
we have shown that d,|a, for all ¢ = p, .

It follows easily from the above that the d, satisfy conditions
(1) and (2). That completes the proof of Theorem 9.

As an application of this result, consider Example 4 of §4. The
primes p and ¢ are paired, and so are  and s. Theorem 9 shows
that all nonfree closed factors of M have the form

Mnlp ¢, 7, 8]
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where a|2 and b|3, and that every such intersection is a closed
factor. The closed factor in Example 4 was the case a =2, b = 3.

11. Conjecture on arbitrary factorizations. Let {K, 7€ I} be
a nested, well-ordered family of closed factors of a normal Z-semi-
module M such that K, = M and N K, ={1}. (I is a well-ordered
index set whose initial element is 0.) Then there is a factorization

M= Xie; (Ki/Ky+1)
where 7 + 1 denotes the successor of ¢. Every partition of I into
subsets I; leads to a factorization
M=X;4;,
where for each j
4; = Xite(Ki/Ki+1) .

Conjecture: Every factorization of M comes from a nested family
of closed factors K, by the above construction.

This was proved in [6] for all free Z-semimodules and in [7] for
all normal Z-semimodules of multiplicity = 3. Moreover it was shown
that if N is countable, then the index set I can be taken to be the
nonnegative integers.
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