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THE SHEAF OF i^-FUNCTIONS IN PRODUCT DOMAINS

SERGIO E. ZARANTONELLO

Let W=WiXW2x •••x^nbea bounded polydomain in Cn

such that the boundary of each Wf consists of finitely many
disjoint Jordan curves. The correspondence that assigns to
every relatively open polydomain V in W (the closure of W)
the Hardy space £έ?*>(Vf)W), defines a sheaf ^ over W. This
sheaf is locally determined in the sense that Γ(W, 3f$) is
canonically isomorphic to ^*(W). In this paper we prove, for
any 0<^<oo and all integers q>l, that the cohomology groups
H*(W, &$) are trivial.

I* Introduction* The Hardy spaces £έfp(Un)y 0<p< ooy for

the unit polydisc Un, consist of all functions F which are holomorphic
in Un and satisfy

sup [ -. [\F(reίθί, , rei0*) \pdθ1 dθ% < +
0<r<l JO JO

The observation ([9, Exercise 3.4.4(b), p. 52]) that
if and only if F is holomorphic and \F\P has an ^-harmonic majorant
in Un, leads to a definition of Hardy spaces for -arbitrary product
domains; the requirement now being that F be holomorphic and \F\P

have an w-harmonic majorant in the polydomain in question.
The symbol 34fp can thus be regarded as a presheaf on the

polydomains in C\ In this paper we concern ourselves with the
sheaf induced by 3$fp on the closure of a polydomain, and prove,
under certain topological restrictions, that the corresponding
cohomology groups are trivial.

Specifically, let W = W1 x W2 x x Wn be a bounded poly-
domain in Cn, and suppose each Wt is bounded 'by finitely many
disjoint Jordan curves. The correspondence that assigns to each
relatively open product domain V in W (the closure of W) the linear
space £έ?p(Vΐ\W), defines a sheaf £% over W. This sheaf is
locally determined, i.e., Γ(W, Jg*w) is canonically isomorphic to
£ίfp(yV). Our goal is to prove, for any such W, for 0 < p < oo,
and for all integers q ^ 1, that the cohomology groups Hg(W, ^w)
are trivial.

In [8] A. Nagel proved similar results for a wide class of sheaves
of holomorphic functions satisfying boundary conditions in poly-
domains. Although NageΓs methods can be applied to the sheaves
Stw when 1 < p < oo, the cases 0 < p ^ 1 present difficulties.
Instead, as in the earlier papers [12], [13], we follow the approach
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of E. L. Stout in [11]. In this respect Theorem 3.3, which is central
to our study, is the analogue of Lemma 1.2 of [11].

The crux of our work is Theorem 3.3 (the Decomposition
Theorem); the proof, together with the necessary groundwork,
appears in § III which is essentially self-contained. The basic
definitions are listed in § II. In § IV we consider the Cech
cohomology with coefficients in Sίfw, and prove our main result,
Theorem 4.9.

We mention in closing that although most of our results are
proven for the case n > 1, they are also verified if n = 1 (the
modifications in the proofs required for this case are always straight-
forward).

II* Preliminaries* A polydomain in Cn is a cartesian product
Wί x W2 x x Wn of n open connected subsets (domains) of C.
If each Wι is a bounded domain, bounded by finitely many disjoint
Jordan curves (a Jordan domain) we say that W is a Jordan poly-
domain.

Possessing an ^-harmonic majorant in a Jordan polydomain is a
local property (see also [5]):

THEOREM 2.1. [12, Th. 2.10, p. 301]. Let W be a Jordan poly-
domain and let {Ua) be a relatively open covering of W. If s is a
positive n-subharmonic function in W with "local" n-harmonic
majorants ua in each intersection Ua Π W, then s has an n-harmonic
majorant in W.

DEFINITION 2.2. Let V be a polydomain, and let 0<p< <*>.
We define the Hardy space <§ίfv{y) to be the linear space of all
functions F which are holomorphic in V and for which \F\P has an
^-harmonic majorant in V. We establish the convention £ίfp(Φ) = {0}.

DEFINITION 2.3. Let W be a fixed polydomain in C\ We define
the sheaf ££% (the sheaf of germs of .^g^-functions on W) as the
sheaf over W which is induced by the correspondence between the
relatively open polydomains VczW and the linear spaces ^ ^ F Π W).

If W is a Jordan polydomain, it is a direct consequence of
Theorem 2.1 that the linear spaces Γ(W, <%%) and £0f*(W) are
canonically isomorphic.

If T7and F a r e Jordan polydomains in Cn, with correspondingly
conformally equivalent coordinate domains, the sheaves έ%fw and
£07 are isomorphic; consequently, the cohomology groups of V and
W with coefficients in ^ψ and £έfw, respectively, are isomorphic.
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This follows from the invariance of the ^^-spaces under w-conformal
transformations, and the well known fact that a conformal equivalence
between Jordan domains extends to a homeomorphism between their
closures.

Ill* A decomposition theorem* In what follows, U will be the
open unit disc {zed \z\ < 1} and T its boundary, the unit circle.
The cartesian product of n copies of U will be denoted by Un.
Similarly, Tn will be the cartesian product of n copies of T. We
will denote the normalized Haar measure on Tn by mn (by m in the
particular case n = 1); the corresponding ,5^-spaces will be indicated
bγ £fp(Tn), and the .SP'-norm by || |UP(Γ*,. The extended complex
plane will be denoted by S2.

Let F be a holomorphic function in Un and let 0 < r < 1. We
denote by Fr the function defined on T* by the equation

Fr(w) = F(rw)

and define, for each 0 < p < ooy

n) = lim \\Fr\\^PίTn) .

An alternative characterization of the Hardy space <%*p(Un) is
that it consists of all holomorphic F for which

\\F\\^p{un) < +oo .

Moreover, if H is the least w-harmonic majorant of \F\P in Un, then

where we denote the w-tuple (0, 0, , 0) by 0.
We define <%*P((S2 - Ό) x Un~ι) to be the class of all functions

F for which the function F*, defined for (x, y)eU x Un~ι by

F*(x, y) = F(±-, y) ,

is in 3έfp{Un). If F and F* are related as above, we write

The space of test functions on T will be represented by ^
the space of distributions on Γ by ^ ( Γ ) , and the bilinear pairing
between fee^°°(T) and fe^(T) by

Let Z be the set of integers. For each j e Z and w e T, we define

eό(w) = w3' .
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The Fourier coefficients of fe£&(T) are the numbers

where j ranges over Z.
Given Fz£ifv(lJ), 0<p< oo, there exists a unique

such that the Fourier coefficients /(i), with j ^ 0, are the Taylor
coefficients of F, and such that f(j) = 0 whenever i < 0. This can
be derived, for example, from [3, Th. 6.4, p. 98]. We refer to /
as the boundary distribution of F.

Let w eT and zeS2 — T. The Cauchy kernel C(z, w) is defined
by the equation

C(z, w) =
1 — wz

If we fix z and allow w to vary, we obtain a test function which
we denote by C(z, •)• If Fe<%*p(U) has the boundary distribution
/, then, for all z e U,

On the other hand, if z$U9

The first part of the next lemma states that the Toeplitz
operators induced by the functions in ^°°(T) extend or restrict to
bounded operators on J%*p( U) for 0 < p < oo. This was proven in
an earlier paper ([14, Th. 3.2]). A straightforward modification of
the proof yields part (2).

LEMMA 3.2. [14, Th. 3.2]. Let he^°°(T)y let
0 < p < °°, and let f be the boundary distribution of F. Define

jΓhF(z) = (h( )C(z, •),/(•)>.

There are constants B = B(p, h) and B* = B*(p, h), independent
of F, such that

(1)
and

(2) W^FWrPtf-m £B*\\F\\*9lU) .

For the next theorem, let Lx and L2 be disjoint closed arcs on
the unit circle ϊ7, and define Vj9 for j — 1, 2, to be the union of the
unit disc U, its exterior S2 — U, and the interior (relative to T) of
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THEOREM 3.3. (Decomposition Theorem). Let n > 1, and let Y
be a Jordan polydomain in C™-1. If FeHp(Ux Y), 0<p<°°, there
exist holomorphic functions F± in VΊxY and F2 in F 2 x 7 such that

(1) F(z) = F1(z)+F2(z)ifzeUx_Y,
(2) 0 = F,(z) + F2{z) if ze (S2 - U) x Γ,

and, for j = 1, 2,
(3) Fjegf'iUx Y),
(4) FjeSer'dS*- U) x F),
( 5 ) i^ e £έfv{JDά x F) /or some opew seί jDy c C that contains L3.

Proof. Choose functions hjβ^^iT) such that hά is identically
zero on a neighborhood of L3 in T, and such that h^ξ) + A2(f) = 1
for all ς e T. If (a?, y) e U x Y we write Fy(x) = JP(X, i/). For each
y GY, the function i ^ is in £έfp(U); denote its boundary distribution
by fy and define

Ffa y) = ̂ -hJF'{x) = <h^)C(x9 •), Fyί )> .

We observe that jPy is separately holomorphic in x and yy and
hence holomorphic, at all z = (x, y) such that yeY and # is not in
the closed support of hά. In particular, Fs is holomorphic in Vd x Y.

Since J^ + h2 = 1, we have

F&, y) + ί1^, ») = <C(x, •), / y ( )>

Fix yeY. The right-hand term above, the Cauchy representation
formula for Fy, is 0 if x e S2 - U and Fy(x) = F(x, i/) if x e Z7. This
establishes (1) and (2).

To prove the remainder of the theorem, we assume first that Y
is the cartesian product ofn — 1 simply connected domains.

Without loss of generality set Y — Un~ι. Let H be the least
w-harmonic majorant of | JP | P in Un, and write Hy(x) = H(x, y) for
(x, y)eU x Un~\ The relations

Fd(x, y) =

rtjF'W

(part (1) of Lemma 3.2), and

imply
ί \Fj(rξ, rη)\pdm{ξ) £ BPH(O, rη)

for all 0 < r < 1 and w = (f, η) e T x T"-1. Integrating the above
with respect to η, we get
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'dmu(w) ^ BΉ(0) = B" 11F| |

Hence Fde<%?p(Un).
By part (2) of Lemma 3.2 we have

A similar argument to the one used above then establishes Fά e
3TP(S2 -U)x Un~\

Finally, for the case Y = Un~\ we prove part (5) of the
theorem.

Fix j = 1, 2. The function hd will be identically zero on some
open connected subset Oά of T which contains the arc Ly. Let HΌ

and Hsz-ϋ be ^-harmonic majorants of \Fj\* in Un and (S2 — ϋ) x Un~x

respectively. Considered as functions of the single complex variable
x, Hu(x, 0) and HS2-ΰ(x, 0) (where 0 is the zero element in C*-1),
are positive harmonic functions (in U, and in S2 — ϋ). As is well
known, they must have nontangential boundary values at almost all
points of T. Choose in each of the two connected components of
O3 — L5 a point where both Hn(x, 0) and HS2_ϋ(x, 0) simultaneously
have a nontangential boundary value. Call these points ζ' and ζ",
and let C be a circle that intersects T precisely at ζ' and ζ". Let
a be the center and p the radius of C, we write C = a + pT and
let Dj be the disc bounded by a + pT. The function Fd is holomorphic
in a neighborhood of D5 x Un~ι; we proceed to show that Fde
Sίfv{Όά x Un-χ), or equivalently, that the function G, defined by
G(x, y) = Fj(fl + px, y), is in &f*(U*).

Since the circle a + pT intersects T nontangentially at ζ' and ζ",
there is a constant K such that

&, 0) £ K

for α? 6 (a + |θΓ) Π ?7, and

for x 6 (a + /oϊ7) n (S* - £7"). Hence, for all 0 < r < 1, we have

(3.3.1) ( I Fy(α + pf, w) I'dm.-xft) ^ ( t ^ ( α + pξ, r
jτn~1 jτn~1

= Hjj(,a + pξ, 0 ) ^

whenever ξ 6 T is such that α + f 6 U, and

(3.3.2) ( I F/α + pi, rw) \pdmn_^) ^ ( -ffS2_i7(α + pξ,

(α + /of, 0) ^
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whenever ξ e T is such that a + pζ e S2 — U.
The inequalities (3.3.1) and (3.3.2) yield, for all 0 < r < 1,

JTJTn~ί

Recalling the definition G(x, y) = F/α + px, y)f and writing w = (£,
we obtain

\Fό{a

^\ \ I F/α + (βf,
J Γ Λ - 1 Jr

It follows that G e <%*p(Un), or equivalents that Fs e S^^iΌ^ x i/^"1).
TFβ next assume that Y = Yi x F2 x x 7 Λ is α^ arbitrary

Jordan polydomain in Cn~\
Decompose each Yt as a finite union Yi = \Jk U\k), where the

sets U\k) are simply connected domains in C, and where every
boundary point of F< has a neighborhood that intersects inside
some Uik). Let ^ be the class of all cartesian products U[kl) x
Ulk* x ••• x J7i* r ι ).

The members of Ήf are cartesian products of simply connected
domains in C; accordingly, as was proven earlier, for each Qe^f
we have Fό 6 £έ?p{Ux Q), Fό e <β^p((S2 -ϋ)x Q), and F 3 6 ̂ r p (i)? x Q),
where D^ is a disc, depending on Q, which contains L5. From our
construction of ^ it follows that {U x Q}ρê  is a covering ofUxY
that satisfies the requirements of Theorem 2.1; the same is the case
for the coverings {(S2- ϋ) x Q W o f (S 2~£7)xΓ, and {ByXQ}^
of Do x Y, where Ώ5 is the intersection of the (finitely many) discs
Df. If we apply Theorem 2.1 to the w-subharmonic function \Fό\

p

9

we conclude that Fde 3!f*(O x Y), Fά e βέfp((S2 - Ό) x Γ), and Fd e
Dό x Y). This completes the proof of the theorem.

IV* The Cech cohomology with coefficients in 3ίfw- Through-
out this section 0 < p < 00 will be fixed. We assume n > 1. Our
goal is to prove, for any Jordan polydomain W in Cn and all integers
9 ^ 1 , that H*(W, <&%) = 0.

It simplifies matters if we take our coefficients in the presheaf
§ίfp rather than in its completion, the sheaf £ίfp. We specify below
what we mean by the Cech cohomology theory with coefficients in

Let W be a polydomain in Cn. We define a class Ωw of open
coverings of W as follows.

An open covering ^ of W belongs to Ωw if and only if:
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(1) Each member of ^ is a poly domain.
(2) For every point b on the boundary of W there exists a

neighborhood N(b) and a set Ue^f such that N(b) Π WaU.
Equivalently, ^ e Ωw if and only if %S is the restriction to W of a
family of polydomains that covers W.

Let ^ e Ωw. A q-simplex σ of <%f is a q + 1-tuple (Uo, Ulf , Uq)
of members of ^ its support \σ\ is the set J70 Π Ux Π Π Uq. We
denote by Sq{^) the collection of all g-simplices of ^ , and by
C g(^, ^ p ) the group of all functions 7 (q-cochains) that assign to
each σeSq(^) an element τ(σ) of ^ T ^ M ) .

The graded group Cq(^, ^fv), together with the obvious co-
boundary operator δ: Cq(%f, Sίf*) -> C p + 1(^, §ί?v), constitutes a cochain
complex with cocycles ZQ(%f, ^f9), coboundaries Bq{^, £tfv), and
cohomology group Hq(%f, £έfv). The relation of refinement induces
a partial ordering on Ωw. The corresponding direct limit groups

Hq{W,

^eΩw

are the cohomology groups of W with coefficients in the presheaf

As can be easily verified ([10, Cor. 18, p. 329]):

LEMMA 4.1. The groups Hq(W, <£%) and H\W,£ίfv) are
isomorphic for all integers q ^ 0.

If VaW are polydomains, and if <%f eΩw, we denote by
the restriction of ^ to 7 (in particular ^ = 1fr(W)). We then
have restriction homomorphisms Cq{^{W), £ίfv) -> Cq(%S(V), 3ίfv),
which as can be easily verified, commute with the coboundary
operators. If 7eCq(%S(W), Sίfv) we denote its restriction to ^{V)
by the same symbol 7.

LEMMA 4.2. Let W be a polydomain in Cn, and let W =
{W{1), Wm} be a covering in Ωw.

If ^ 6 Ωw satisfies the conditions:
(1) For every simplex σeSq(%f), the support \σ\ is either a

Jordan polydomain or the empty set.
(2) For every σ e Sq{^), the homomorphism

n wω) e jr*(| σ i n w{2)) -^U ^r p ( | σ i n wa) n w{2)),

defined by ψ(ga\ g{2)) = g{1) + g{2\ is onto.
Then there is an exact sequence of groups and homomorphisms
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0 ,.. .£!>&(& {W)f ^

( n τr ( 2 )), &(), )

(Such a sequence will be called a Mayer-Vietoris sequence.)

Proof. For each σeSg&) define

\ a I) -^-> < ^ ( | σ | n Wω) ® ^T'(| σ | n W™)

by the equation φ(g) — (g, —g)9 with suitable restrictions.
By hypothesis \σ\ is a Jordan poly domain (or the empty set).

We can then invoke Theorem 2.1, and conclude that the image of φ
and the kernel of ψ are the same. Since also φ is one-one, we have,
for each σeSq(^)f a short exact sequence

o — > &f*{\ σ i) -£-> ser*{\ a I n wa)) e ^ r p ( | σ | n wi2))

~^->ser*(\σ\ n w{1) n τr(2)) — > o ,

which in turn induces a short exact sequence of graded groups

0 > Cq(f?( W), ̂ fv) -^-> Cq(^( Wa)),

^ ΓΊ Wi2)), SZ?V) > 0

for if 7 is a polydomain in W, then

\σ\ n V)

σ e

Since the homomorphisms φ and α/r of (4.2.1) commute with the
coboundary operators, the sequence (4.2.1) is a short exact sequence
of cochain complexes. As is well known ([4, Th. 3.7, p. 128]) there
is then an associated exact cohomology sequence. This completes
the proof.

Our next lemma is a direct consequence of Theorem 2.1.

LEMMA 4.3. If W is a Jordan polydomain, and if ^ e Ωw,
then H%%S, ^fp) and £ίfp(W) are canonically isomorphic.

Henceforth, unless otherwise indicated, W — Wt x W2 x x Wn

will be a Jordan polydomain.

Towards our goal of establishing Hq(W, έ%fp) — 0 we consider
two cases.
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1. The Simply Connected Case. We follow the argument of
[13]. The proofs are identical (replacing the symbol P by <&?*, and
using Theorem 3.3 instead of [13, Lemma 3.1, p. 269]). We outline
the procedure. Without loss of generality we take W to be a poly-
rectangle; this will allow a systematic partitioning into smaller
polyrectangles.

Let I, Ilf and I2 be the open intervals ( — 1,1), ( — 1, J), and ( — *, 1),
respectively. Consider the rectangles R = I + il, Rλ = Ix + ίl, R2 =
J2 + il. For Lemmas 4.4 and 4.5 we write ΪF = Rn,W§ = i^xiZ*-1,
Wo\=R2xRn~1; and let ^ be a finite open covering of Wconsisting of
polyrectangles with edges parallel to the real and imaginary axes of C.

LEMMA 4.4. If σeSq(%f) and geβέ?p(\σ\ n TFgj Π W$), there
exist g{1)e^f%\σ\ n TO, 0(2) 6^T p ( |α |n TFg), s%cfe ίΛαί ^ = gw + ^(2).

LEMMA 4.5. For all integers q ^ 1, ί/̂ e cohomology groups
, 3ί?v) are trivial.

THEOREM 4.6. If W is a simply connected Jordan polydomain in
C, then Hq(W, 3ίfv) = 0 for all integers q ^ 1.

2. The Multiply Connected Case. We first observe that Theorem
3.3 remains valid if we substitute the unit disc by a suitable doubly
connected domain.

Let 0 < n < r2, and r2 - rJ2 < p < r2 + rJ2. Write

A = {zeC:r,< \z\ < r2) ,

•x = z e C: z —
r2

= UeC: z

and define B(ru r2; p) = A U Ω1 U ώ2. The set B = 5(n, r2; p) is the
union of the annulus A with the symmetric discs Ωx and Ω2. Any
such region will be called a buldged annulus.

We write

C+ = {z e C: Im s > 0} ,

and set Aw = A n C+, A(2) = 4 n (-C+), 5 ( 1 ) - A(1) UfltU i22, and
β(2) - A(2) U βx U i22.

LEMMA 4.7. Let Y be a Jordan polydomain in Cn~\ If g e
3ίf\(Ω1 U Ω2) x Γ), ίfeere exist gω e £έ?p(B{1) x Γ) and g{2) e ^r p(B ( 2 ) x Γ)
such that g(z) = βr(1)(z) + ^ ( 2 )(z) whenever z 6 (i2x U β 2) X Γ.
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Proof. Let Cx and C2 be the boundaries of Ω± and Ω2 respective-
ly. Consider the disjoint closed arcs L[j) = Ct Π AU), for i, j = 1, 2.

It is clear that Theorem 3.3 remains valid if we replace the unit
disc U by the disc Ωx. We apply Theorem 3.3 to Ω1 x F, the
restriction of g to Ωx x F, and the closed arcs L£\ Irg|, to obtain
holomorphic functions g[1] and #£2), which by Theorem 2.1 are in

A(1) x F) and in <ar*(A(2) x Γ) respectively, such that

if s e i2j x F, and

0 = glι\z) + </ί2)(s) ,

if z $ Ωλ x Y.
Similarly, by applying Theorem 3.3 to Ω2 x Y, the restriction

of g to Ω2 x F, and the closed arcs Z4υ, Lf}, we obtain g^ e
A(1) x F) and gP<§er*(Aw X F), such that

= Λtt)(«) + fff}(«) ,

if 2 6 422 x F , and

0 = g£\z) + g?(z) ,

if « g Ω2 x F.
If we define g{j) = g[j) + giά\ for ^ = 1, 2, the lemma is verified.
We next prove that the set of buldged annulli is a canonical

class for the doubly connected domains in C.

LEMMA 4.8. Let A be a doubly connected domain in C. There
exists a buldged annulus which is conformally equivalent to A. If
A is bounded by two Jorden curves, the conformal equivalence extends
to a homeomorphism between the closures.

Proof. Without loss of generality let A be an annulus centered
at the origin. To prove the lemma it suffices to show that there
exists a buldged annulus with the same modulus as A.

The modulus M{D) of a doubly connected domain D, we recall,
is a conformal invariant which in the special case of an annulus of
radii a <b reduces to l/2π log b/a. Moreover, two doubly connected
regions with the same modulus are necessarily equivalent ([6, Th.
2, p. 208]).

Let B = B(ru r2; p) be a buldged annulus contained in A. Since
B separates the boundaries of A, we must have ([6, Th. 3, p. 209])

(4.8.1) M(B) ^ M(A) .

For each 0 <: t < °o define Bt = B(ru r2 + t; p + t/2). Given any
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λ > 0 there exists t > 0 such that

(4.8.2) M{Bt) ^ λ

for we can always find an annulus of inner radius r1 and modulus
λ contained in Bt if we choose t sufficiently large.

A direct calculation (using the extremal length characterization
of the modulus M{Bt)) shows that M(Bt) varies continuously with
t. The function f(t) = M(Bt) is therefore continuous on [0, °o). By
(4.9.1) and (4.8.2), we have /(0) ^ M(A) and l im^ + β β /(«)=+°°,
respectively. Consequently, for some t0 we must have M(Bto) =
/(t0) = Λf(A). This proves the first assertion of the lemma.

As is well known ([6, Th. 1, p. 208]), if two conformally
equivalent doubly connected domains are bounded by Jordan curves,
any conformal equivalence between them extends to a homeomorphism
between their closures.

THEOREM 4.9. If W is a Jordan poly domain in Cn, then
Hq(W, <%*p) = 0 for all integers q^l.

Proof. Denote by Z+ the set of all ^-tuples of positive integers.
If μ and y are in Z+, and if μ< ̂  v4 for all 1 ^ i ^ n, we write
μ <̂  v. We say that a polydomain W — Wx x W2 x x Wn is μ-
connected (for some μ e Z+) if each Wi has connectively μt.

For each v 6 Z+ let P(v) be the proposition:
P(v): For all μ-connected polydomains W, μ ^ v, and all integers
q ^ 1, the cohomology groups Hq(W, Sίf9) are trivial.

Since a Jordan polydomain is necessarily finitely connected, the
theorem will be proven if we verify P(v) for all v e Z+.

Suppose P(JJ) is true for some v e Z+. Fix 1 ^ k ^ n, and denote
by v' the ^-tuple define by v\ = viy if i Φ k, and v'k — vk + 1. We
claim that P(i/) is true. Without loss of generality take fc = 1.

TΓe first consider the case vx = 1. Let T7 be an arbitrary z/-
connected Jordan polydomain, and write W — B x Y, where B is a
doubly connected Jordan domain in C and where FcC 9 1 " 1 . By
Lemma 4.8 there is no loss of generality if we let B a buldged
annulus. As in Lemma 4.7, decompose B = B{1) U 5 (2), with Bω Π Bi2) =
0X U i22. Define TΓ(1) = .B(1) x Y, and T7(2) = B™ x Γ.

We consider the coverings in Ωw that satisfy the following
condition: the support \σ\ of any simplex σ is a Jordan polydomain
(or the empty set) contained in either Wa) or W{2). Such coverings
satisfy the hypotheses of Lemma 4.2; and the collection of them
constitutes a cofinal subclass of Ωw. By taking the direct limit of
the corresponding Mayer-Vietoris sequences, we obtain the exact
sequence
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) 0 ^\wκ2)) -1-* zer*{ww n w{2))

H'(W, S^v) — H*(Wiι), 3ίf*) 0 Hq(Ww,

n W{2),

By Lemma 4.7, the first row above is a short exact sequence;
we disregard it, and retain the exact sequence

0 > H\ W, ̂ ) — H\ W{1), 3ίfv) 0 H\ W{2),

(4.9.1) -£U H\wa) n w(2\ ̂ v) — >Hq-\w{1) n

Since Wa) and ΐî ^5 are Jordan polydomains of connectivity 5g v,
and since W(1) Π T^(2) is the disjoint union of two Jordan polydomains
of connectivity ^ v9 the inductive hypothesis implies H9( W{1\ Sίf*) — 0,
Hq{Wi2), Hq) = 0, and Hq(W{1) Π ΐ^(2), £έ?p) = 0. The exactness of (4.9.1)
then establishes IP(ΐF, ^T2') = 0 for all q ^ 1.

We next consider the case v1 > 1. As before, let W be an
arbitrary ^'-connected poly domain. Write W= I x Y, where ΓcC*" 1 ,
and where X is a domain in C of connectivity ft = ux + 1 which is
bounded by an outer contour Ck and ft inner contours COf Cl9 , C4_le

Let JS be the doubly connected domain bounded by Co and Ck,
and let A{1) and A(2) be simply connected Jordan domains such that

(1) A{1) U Ai2) = B,
(2) A{1) Γl A(2) is the disjoint union of two simply connected

domains,
(3) each contour Cl9 C2, , Cfc_! is entirely contained in either

A(1) - A{2) or A{2) - A(1).
We define Xa) = A{1) Π X, X{2) = A{2) Π X; and consider the Jordan

polydomain F ( 1 ) = 4 ( 1 1 x 7 , F ( 2 ) = 4 ί 2 1 x 7 , 7 = 5 x 7 , T^(1) = I ( 1 ) x 7 ,
and W{2) = X(2) x Y.

As in the previous case of the theorem, by taking suitable
coverings, applying Lemma 4.2, and taking the direct limit of the
Mayer-Vietoris sequences that correspond to such coverings, we
obtain the exact sequences

o —> 3έ?\v) -̂ -> ser*{yw) 0 ^rp(F ( 2 )) -̂ -> ser'iy™ n v(2))

^H\V,

and

0 —> ̂ rp(W)-^^fp(w{1)) 0 s^p{ww)-^ser9{W{1) n w{2))

(4.9.2) > > H"(W,
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Π W{2\ 3ίf*) -^-> Hq+1(W,

The polydomain V has connectivity μ, with μx = 2, and μt = vt

for i = 2, 3, , n. Consequently, as was established earlier,
Hq(V, Sίfv) = 0. In particular

0 > <%?»( V) — «sr*( F ( ι ) ) 0 Sίf\ F ( 2 )) -^-> «ar*( F ( 1 ) Π F ( 2 )) > 0

is exact. Since Wa) Π W(2) = F ( 1 ) n F ( 2 ) . and since W{1) c F ( 1 ) ,
T F ( 2 ) c F ( 2 ) , it follows that

o — > ser*{W) -^-> ^r*(ττ ( 1 ) ) Θ ^r '(TF t 2 ) ) -^-> ^r*(TF ( 1 ) n TF ( 2 )) — > o

is also exact. We can then disregard the first row of (4.9.2) and
retain exactness in

0 > H\W,

(4.9.3) - ^ > H\W{1) n τ^ (2), ^ r p ) — > > if ?- i(T7 ( l ) n w{2),

Hq(W, βέ?p) -^> ff9(T7(1), ^ r p ) 0 Hq(W{2),

The inductive hypothesis, together with the exactness of (4.9.3),
implies Hq(W, <%?*) = 0 for all q^l; for T7(1) and W(2) are Jordan
polydomains of connectivity <; v, and W(1) ΓΊ W{2) is the disjoint union
of two Jordan polydomains of connectivity <̂  v.

We have thus established P(v') in all cases. Since, as was proven
in Theorem 4.6, P(v) is true for v = (1,1, , 1), by the principal
of mathematical induction P(v) must also be true for all v 6 Z+.
This concludes the proof.

V* Remarks*
1. The Gleason Problem for £έfp(W). Let Fe<&rp(W), let

a e W, and suppose F(a) = 0. The problem asks if there exist
Fl9 , Fn e &?*{ W) such that F(z) = fe - αO^^) + . . . + (« .- an)Fn(z)
for all 2 e W. The method of [7], together with the vanishing of
the cohomology of £tfv, gives an affirmative answer when W is a
Jordan polydomain. A non cohomological treatment of the Gleason
problem for various other functions spaces is given in [1].

2. The extension of έ%fv-functions from hyper surfaces in W.
Let S be the zero set of a bounded holomorphic function in Un.
In [2] Andreotti and Stoll defined a strictly £έf°°-function to be a
function f: S—>C for which there exists a covering {Ua} of Un, and
functions fa e £έf°°(Ua f]Un) and gaβ e 3tr*(JJa f]Uβn Un) such that

( i ) f = fa on SnUa
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(i i) fβ - Λ = hgaβ on UaΠUβΠ Un;
and proved, as a direct consequence of the vanishing of H\Un,
that any such function has an extension in ĝ̂ °°(17*).

If W is a Jordan polydomain, S is the zero set of an
function in W, and /: S-* C is a strictly έ%fv-ίunction (defined as
above, but requiring now that fa and gaβ be in the corresponding
^"^-spaces), the vanishing of the cohomology of β^p establishes the
existence of an extension F e J%fp( W) of /.
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