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JETS WITH REGULAR ZEROS

LesLiE C. WILSON

If a mapgerm f: R*, 0 > R?, 0 is a submersion (rkf = p),
then its zero set is regular (the germ of a manifold) by
the Implicit Function Theorem. Of course, there are also
critical maps (rkf < p) whose zero sets are manifolds. Sub-
mersions have the added feature that one can discern that
the zero set is regular from the first derivative of f at 0.
Are there other instances in which one can tell purely
from the derivatives of f at 0 that the zero set is regular?
In this paper we show that there are, and go part way
toward the eventual goal of describing them all.

The k-jet j*f(x) is (f(®), Df(x), -+, D*f(x)) if k< o or (f(x),
Df(x), --+) if k= c. A k-jet z is said to have regular zeros if
every representative f (a germ such that j*f(x) = z) has regular
zero set. Suppose f has regular zero set V;. In §2 we show that
j=f has regular zeros iff f is co-2%-determined. In this case
dimV;=0 or » —p. If this dimension is 0, then f is oo-&-
determined. If p =1 and dim V;=n — 1, then f=g¢g-h where ¢
is a submersion and & is «-Z- determined. (If f is analytic, then
it is oo-J%"determined at x iff it is a submersion at each point of
V; — {a} and is «-Z-determined at z iff V,; = {z}.) In §3 we show
(again assuming V, regular) that j*f has regular zeros for some
finite & iff f is co-2¢-determined and either dim V;=0or p = n — 1.
In this section we especially consider finitely .%-determined map-
germs. (If f is analytic, then it is finitely 2#~determined at z iff
it is a submersion at each of its complex zeros except possibly =z.)
Among the examples given are z(2* + %), 2(x* + ¥*)* and z(x* + ¥* + 2%);
the first example is finitely determined and its 8-jet has regular
zeros, the second is oo- but not finitely determined and its 5-jet has
regular zeros, and the third is co-determined and its o-jet but no
finite jet has regular zeros.

For notational simplicity, we restrict our study of regular zeros
to jets of germs at 0. Let E,, denote the germs at 0 of C~ maps
from R" to R?, m,,, those which are 0 at 0, £, = E,, and m, = m,,.
Let 22 be the set of pairs (R, A), where Rem,, is invertible and
Ais a p X p matrix with entries in E, such that A(0) is invertible.
Define a group structure on 9" by (R’, A")- (R, A) = (R'° R, (A’>R)A)
and a left action of 2" on m, , by (R, A)-f = (Af)-R™. Note that
while this definition of .2 differs from that of Mather (see §2 of
[6]), the 2" orbits are identical under both definitions. “# and ¥
are the subgroups in which A or R is the identity, respectively.
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Two germs f and g are %-, - or &-equivalent if they lie in the
same %, <& or ¥ orbits, respectively. Note that if f and g are
2% -equivalent, then their zero sets are diffeomorphic. A jet z is
2%, #- or w-sufficient if all representatives are .=, &- or &~
equivalent, respectively. A mapgerm f is k-27-determined if its
k-jet is #~sufficient and is finitely .2#~determined if the above & is
finite (ete. for &Z or ¥).

Next we review from [6], [7] and [10] some facts about .o#-
determined mapgerms. Let fE, denote the ideal generated by
fi, -+, fo- Let Jf denote the ideal generated by the » X » sub-
determinants of the Jacobian matrix of f. Let df be the ideal
generated by fE, and Jf. Then f is finitely #-, “#- or &-
determined iff (respectively) of, Jf or fE, contains m! for some
finite !, and is co-determined iff the ideal contains m. It follows
that an analytic f is finitely .2#~determined iff its complexification
F is a submersion on V, — {0}. In V. 4.3 of [8] it is shown that
an ideal gFE, contains mj iff g satisfies a Lojasiewicz inequality
lgx)| = ¢|xz|", ¢ >0, r = 0 (r is called the order of the inequality).
Let S denote the set of 1-jets of mapgerms with value 0 and rank
less than p. It is easy to see (and is shown in [10]) that f is
infinitely .2#-determined iff dist (5'f, S) satisfies a Lojasiewicz in-
equality. If «, converges to x in R", a sequence a, is flat along =z;
if, for each » > 0, there corresponds an N such that ¢ = N implies
la,| = |z, — z|". Thus f is not oo-%-determined iff there is a
sequence x; converging to 0 along which dist (5%, S) is flat.

2. Infinite jets with regular zeros. A 27 sufficient jet z has
regular zeros iff any one representative of z has regular zero set.
Our first theorem shows we can restrict our attention to .9#-sufficient
jets.

THEOREM 1. If an oo-jet is not #-sufficient, then some re-
presentative of z has a singular zero set.

The following is a special case of Lemma 3.3 of [10].

LEMMA 2. If a sequence of k-jets z; is flat along x,, then there
18 an fem: such that j*f(x;) = 2, for infinitely many 1.

Proof of Theorem 1. Suppose z is not Z-sufficient. Let f be
a representative of z. There is a sequence zx, converging to 0 and
a sequence z,< S such that dist (' (x,), z,) is flat along =z,.

Assume n = p. Let m denote the projection of J* onto J*.
Since the fold germs with value 0 (those germs which are 2~
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equivalent to (x, -+, @, ,, 25 + --+ £ a}) —see [4]) are dense in
7~Y(S), we can find a sequence of fold jets ¢, with value 0 such that
7f(x;) — q, is flat along ;. Then by Lemma 2 there is a representa-
tive g of z such that j%g(x,) = ¢, for infinitely many <. The real
zero set of g in a small neighborhood of «; is either an isolated
point or is singular. If » < p, we choose g instead so that ¢ is an
immersion at each z;, with g(x,) = 0. In either case, the zero set of
g is not a manifold in a neighborhood of 0. 1

Since an co-_2%-determined f is nonsingular on V; except possibly
at 0, V; is of dimension either 0 or » — p. In [10] it is proved
that f is oo-2%-determined with isolated zero set iff f is co-&-
determined.

PROPOSITION 3. An oo-jet z has regular zeros of dimension
n—1 iff each (equivalently, any one) representative is F-equivalent
to a function f(x, ---,x,) = 0,90, -+, %,), Where g 18 oo-F-
determined.

Proof. Suppose z is an infinite jet with regular zeros of
dimension % — 1. Then every representative is .“Z-equivalent to a
function f(x,, ---, z,) = .92, ---, x,). Since f is oo-%-determined,

(f, of/oxy, -, dflox,) = (x.g9, ©x.09/0x, + g, ©,09/0%,, - - -, X,09/0%,)

satisfies a Lojasiewicz inequality of some order ». Let U = {|lg| =
|z}, On U°, (w9, x,09/0x, ---, ©,09/0%,) satisfies a Lojasiewicz
inequality of order ». Thus, on U® (g, dg/ox,, - --, 0g/ox,) satisfies a
Lojasiewicz inequality of order » —1. On U, g and hence
(9, 0g/ox,, - -, 0g/ox,) satisfies a Lojasiewicz inequality of order » + 1.
Thus g is co-¢-determined. Clearly g 0 when x, 0. If z, =0
and g = 0, then f is critical; since f is only critical at 0 along V,,
g is 0 only at 0. Thus g is co-Z-determined.

Now suppose we have a g which is co-Z-determined. Let
f=ux9. Then the zero set of f is «, =0. Since g satisfies a
Lojasiewicz inequality of some order », f satisfies one of order » + [
on V= {w|>|x4}. If I >r, then |df/ox.| = ||g| — |x.09/0w,| implies
that of/ox, satisfies a Lojasiewicz inequality or order » on V°. Thus
(f, 8f/ox,) and hence j'f satisfies a Lojasiewicz inequality. Thus f
is oo-_97-determined. |

ExAMPLE 4. Let A be a p X p matrix whose entries are analytic
functions in n variables, n = p. Suppose det A = 0 only at 0. Then
f@) = (%, -+, 2,) A is - ¢-determined with zero set z, = --- =
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2, = 0. This gives examples of all ranks. For instance, let A be
the diagonal matrix with » entries 1 and the rest a? + --. 4 a2.
Then f has rank 7.

It is difficult to make any systematic list of examples execept in
the case of finitely determined mapgerms, to which we turn our
attention.

3. Finite jets with regular zeros. It is much easier to carry
out computations for finite jets with regular zeros. Finite .9~
sufficient jets are of this type, and considerable study has already
been made of these jets. We will see, however, that finite jets with
regular zeros form a somewhat limited class of examples, in that
the zero sets must have dimension 0 or 1.

ProprosITION 5. Suppose f: C*, 0 —C?, 0, p < n, is holomorphic
and finitely determined. Then Ry = O,/(f, « -, [»)0,. (O, is the ring
of holomorphic germs) is reduced. If V; is monsingular, then f 1is
a submersion. If p <mn — 1, then R; is normal.

Proof. f finitely determined implies that f is a submersion at
each nonzero point of its zero set V,;. In particular V, is of
dimension % — p. As shown on page 141 of [5], this implies that
fy, +++, f» is an O,-sequence (i.e., for each 7, f,;, is not a zero-divisor
of 0,/(fy, -+, f)O,). Since x,, ---, 2, is a maximal O,-sequence, and
all maximal O,-sequences are of the same length (Theorem 18 of [5])
and p<m, f, -+, f, is not a maximal O,-sequence. Thus there is
a 6e€m, which is not a zero-divisor of R;. It follows easily from
Proposition II. 3.6 of [8] that R, is reduced. By the Nullstellensatz,
I(Vy)=(fy -+, f2)0.. If V;is nonsingular, then I(Vy)=(gy, -+ -, 9,)0,
where g = (g, --+, 9,) is a submersion. By Proposition 2.3 of [6],
there is an invertible matrix A with entries in O, such that f = Ag.
It follows that f is a submersion.

A variety whose ideal is generated by an O,-sequence is called
a complete intersection. By Corollary 1 to Theorem 15 of [5], a
complete intersection is normal iff its singularities are of codimen-
sion at least two. By the first paragraph, if f is finitely determined,
then V; is a complete intersection. Since the singularities of V;
are of codimension n — p, the theorem is proved. O

This theorem shows that there is no nontrivial theory of finite
jets with regular zeros in the complex analytic category. (There is
still an unanswered question: must the complex zero set of a critical
oo- % -determined analytic mapgerm be singular?)
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PROPOSITION 6. If the zero set V of a finitely F7-determined
germ fem,, 18 a positive-dimensional manifold, then either f is
a submersion or p=n — 1 (and V is a curve).

Proof. If p =mn, then (fy, -+, fo)E, D m: for some k, so the
zero set is zero-dimensional. Suppose p < % — 2. We may as well
assume f is analytic. The complex zero set V. is normal and hence
(by definition) irreducible, and is of dimension » —p. If V is a
positive-dimensional manifold, necessarily of dimension % — p, its
complexification is a manifold M of ‘complex dimension % — p, and
is contained in V.. Since V. is irreducible, it must equal M. Thus
f must be a submersion. O

PROPOSITION 7. A finitely delermined germ in m, has zero set
o l-manifold iff it is FH-equivalent to f(x, y) = xg(x, y¥), where g is
finitely determined and vanishes only at 0.

Proof. A function in m, has zero set a 1l-manifold iff it is .=2-
equivalent to some f(z, y) = xzg(x, ¥), with g # 0 if £ 0. We may
as well assume g is analytic. Note that grad f = (xdg/ox + g, x09/0y).
Working now in C% if x # 0, then f=0 iff ¢ =0 and, along this
zero set grad f =+ 0 iff gradg #0; if x =0, then ¢ =0 iff f is
critical. Ij

If Fem,s,,+r is of rank », it is ¢ -equivalent to a germ
(f®y, -+, Tn)y Tutsy ***» Tuip) OY [7]. The zero set of F' is a manifold
iff that of f is. F' is finitely .2#~determined iff f is. The corank
of F'is p. Thus Proposition 7 yields a characterization of all corank
1, finitely .2#~determined mapgerms with zero set a 1-manifold.

EXAMPLE 8. The finitely .%¢-determined real valued germs
having simple singularities (see [1]) and zero set a l-manifold are
F-equivalent to one of the germs f(z,y) = x(@* + y?), with k =
2,4,6, ---. Damon in [3] studies the topological type of V, for
finitely .9#~-determined germs f having stable unfoldings in the nice
range of dimensions, with # > p. These are all simple and of corank
1 or 2. He shows that, of the corank 2 germs, only those with
normal form (xy, 2 + «* + %*), k odd =3, and (xy, 2* + z* + ¥"), &k
even =4, I odd =38, have V; a topological 1-manifold. But V, for
these germs is not a C= l-manifold. Thus the only stable maps in
the nice range of dimensions whose zero sets are positive-dimensional
manifolds are those represented by normal forms (x(x* + %) + sy +
te + ua?, 8, t, u), which is known as the hyperbolic umbilic, and
(x(x* + ¥») + sy + to + ux® + va® + wat, s, ¢, u, v, W).
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ExXAMPLE 9. There are finitely .9#-determined germs of arbitrary
corank having zero set a 1-manifold, as can be seen from the follow-
ing example. Let F = (x.fi(x, 2), -+ -, . [u(®,, 2)). Assume each f;
is finitely .9#-determined and vanishes only at 0 in R:. Then F is
finitely .9#~determined and vanishes only along the z-axis in R**.
As a particular example we have (x(a® + 2%, ¥(¥* + 2%)).

ExaMPLE 10. Let f(z, v, 2) = (wy — (¥* + 29z, vz + (¥* + 2)y).
Unlike the above rank 0 examples, this map has quadratic terms.
It is finitely 2#-determined and only vanishes in R® along the z-axis.

Suppose 2z is an o-jet with regular zeros. Recall that every
representative f of z is co-9%-determined, that V, has dimension
n —p or 0, and that V, has dimension 0 iff f is o-Z-determined.
Thus every representative f of z has V,; of the same dimension. Say
that a finite jet with regular zeros has strictly regular zeros if the
zero sets of its representatives are all of the same dimension. I
conjecture that every jet with regular zeros has strictly regular
zeros (I ean prove this for p = 1).

THEOREM 11. Suppose f 18 a critical oo-¢-determined germ
m m,, with nonsingular zero set. Then some finite jet of f has
strictly regular zeros iff V; has dimension 0 or 1.

Proof. Suppose 2z = j7f(0) has strictly regular zeros. By
Proposition VII. 6.2 of [8], some representative g of z is finitely
% -determined. By Proposition 6, V, has dimension 0 or 1. Thus
V, also has dimension 0 or 1.

Now we prove the converse. Suppose dim V; = 0. Then f is
~-%-determined, hence satisfies a Lojasiewicz inequality of order
r, for some positive integer ». Then every representative of j577(0)
also satisfies a Lojasiewicz inequality of order ». Thus j°f has
strictly regular zeros.

Now assume that dim V; = 1. Necessarily » = n — 1. We may
assume, without loss of generality, that V, is the line x = 0, where
©=(®, -+, 2,). Then f(x,y) = xg(x, y), where g is p X p matrix
valued with entries in E,. Any representative F' of j7f(0) can be
expressed as Fl(x, y) = xG(z, y) + h(y), where the entries of G — ¢
are in m. and the components of h are in m]*.

We are going to apply Tougeron’s Implicit Function Theorem
(see [9]). The normal derivative of f along its zero set is the n X n
Jacobian matrix (9f/0x)(0, ¥) = ¢g(0, ). Since f is co-_F-determined,
there is some positive integer d such that det g(0, y) = (unit)y? (note
if d =0, f would be a submersion). (3F/ox)(0, y) = G(0, ) and, if
r > d, then d(y) = det G(0, y) = (unit)y®. If » = 2d, then F(0, y) =



JETS WITH REGULAR ZEROS 477

h(y) € @, é*m, so, by Tougeron’s theorem, there exists x(y) e @, mi+
such that F(x(y), y) = 0.

In [10] it is shown that each co-J¢-determined germ f is finitely
v-determined, i.e., for some finite ¥ each representative of j*f(0) has
its zero set homeomorphic to V,;. Thus if » =k, the zero set of
the above F' is a topological 1-manifold. Since V, contains the C*
1-manifold (z(y), %), it is itself a C~ l-manifold. Thus if » = 2d and
r = k, then j57f(0) has regular zeros. N

We have not in general computed the smallest » for which
77f(0) has regular zeros in the above proof. However, consider the
following example.

ExAMPLE 12. Let f(x, y) = 2(@* + ¥°)’; f is oo-%-determined but
not finitely .2#-determined. We will show that 5°/(0) has regular
zeros. Any representative of j°f(0) is of the form F(x,y) =
x((x® + ¥°)* + h(x, ¥)) + ¥°k(y) where kem, and hem). We search
for a solution of F' = 0 of the form « = yw(y), wem,. By cancell-
ing y* from both sides of the equation F(yw, y) = 0, we see the
desired solution exists iff there is a solution w(y) of I(w, y) =
w((w?* + 1)* + y*h(w, 1)) + k(y), where s=1. Since at (0,0) f=0
and of/ow = 1, the solution w(y)e€ m, exists.

By the Kuiper-Kuo Theorem (see [2]), j°(x(x®+ y»)?) is C°
sufficient. Hence the zero set of F' is a topological 1-manifold and,
since it contains (yw(y), ¥), a C* l-manifold. So j%x(x?* + ¥*)?) has
regular zeros as claimed.
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