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EXTENDING WHITNEY MAPS

L. E. WARD, JR.

The following theorems are proved, (1) If X is a contin-
uum then any Whitney map for C(X), the space of subcontinua
of X, can be extended to a Whitney map for 2Σ, the space of
nonempty closed subsets of X. (2) If Y is a continuum and X
is a subcontinuum of Y then any Whitney map for C(X) (resp.,
2X) can be extended to a Whitney map for C(Y) (resp., 2F). The
proofs entail recasting these problems in the more inclusive
setting of partially ordered spaces and then employing results
of Nachbin.

1* Introduction* In this paper a continuum is a compact con-
nected metric space. If X is a continuum then 2X (respectively,
C(X)) is the hyperδpace of nonempty closed subsets (respectively,
subcontinua) of X, endowed with the Hausdorff metric. If i c 2 z

and if A contains all of the singleton subsets of X, then a Whitney
map for A is a continuous function ω: A -> [0, + °o) such that ω({x}) = 0
for each xeX and co(A) < ω(B) whenever A and B are members of
A and A is properly contained in B.

Among the many interesting and heretofore unsolved problems in
the theory of hyperspaces are the following. Nadler ([4], 14.71.5) has
asked if every Whitney map for C(X) can be extended to a Whitney
map for 2Σ. A related question (due to Bruce Hughes and commu-
nicated to me by Professor Carl Eberhart) asks whether a Whitney
map for C(X) can always be extended to a Whitney map for C(Y)
if X is a subcontinuum of Y. We shall answer these questions in
the affirmative. The keystone of our approach is to recast the
problem in the more general setting of partially ordered spaces,
whereupon Nachbin's order-theoretic analog of Tietze's theorem [3]
provides an essential ingredient of the proof.

At this point it is worth recalling that in [6] we promoted the
notion—certainly not new—that some problems concerning hyper-
spaces become more tractable if the hyperspace is regarded as a
special type of partially ordered space. There is a substantial litera-
ture dealing with the latter which can then be utilized. The present
paper constitutes further evidence in support of this view.

2* Definitions and known results* A partially ordered space
is a topological space P endowed with a partial order <L whose graph
is a closed subset of P x P. It is known (see, for example, [2], p.
167) that if X is a regular Hausdorff space then 2X is a partially
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ordered space with respect to inclusion. If P is a partially ordered
space and x e P, we write L(x) = {p e P: p 5g x} and M(x) = {peP:x^ p),
and if A c P then

L(A) = U {L(x): x e A},

An element m of a partially ordered space P is minimal (maximal)
if, whenever cc 6 P and as <[ m(m ^ sc), it follows that a? = m. The
set of minimal elements of P is denoted Min P; the set of maximal
elements is denoted Max P. It is known [5] that if P is compact
and xeP then L(x) meets Min P and M(x) meets Max P.

A Whitney map for a partially ordered space P is a continuous
function ω: P—> [0, 1] which satisfies

( i ) if x 6 Min P then α>(a?) = 0,
(ii) if # e M a x P then ω(x) = 1,
(iii) if α? < y in P then ω(x) < α>(j/).

It is obvious that if P = 2X for some continuum X and if co satisfies
(i), (ii) and (iii), then ω is a Whitney map in the hyperspace sense.
Moreover, if X is a continuum then a Whitney map for 2X is, up to
a constant factor, a Whitney map in the sense of partially ordered
spaces.

It is well-known (for example, see the discussion in [4], pp. 24-
27) that 2X admits a Whitney map whenever X is a continuum. In
a recent note [6] the author generalized this result to an appropriate
class of partially ordered spaces, as follows.

THEOREM 2.1. If P is a compact metric partially ordered space
such that Min P and Max P are disjoint closed sets, then P admits
a Whitney map.

At this point it is helpful to take cognizance of several results
of Nachbin [3] for partially ordered spaces. The statements given
here for Nachbin's results differ slightly from those in [3], but they
follow easily. In particular, Nachbin's order-theoretic version of
Tietze's Theorem (2.4) is stated here only for compact partially ordered
spaces, whereas the original result was established in the more
general setting of "normally ordered" spaces.

THEOREM 2.2. If K is a compact subset of a partially ordered
space, then L(K) and M(K) are closed sets.

THEOREM 2.3. // x and y are elements of a compact partially
ordered space and if M(x) Π L(y) = 0 , then there are disjoint open
sets U and V such that x e U = M(U) and y e V = L(V).
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If A and B are partially ordered sets then a function / : A —> B
is said to be order-preserving if, whenever x <; y in A, it follows
that f{x) ^ /(?/).

THEOREM 2.4. If Q is a closed subset of the compact partially
ordered space P and if f:Q —> [0,1] is a continuous order-preserving
function, then there exists a continuous order-preserving function
g: P-> [0, 1] such that g\Q = f.

3* Extending Whitney maps for partially ordered spaces* Our
main result is the following theorem.

THEOREM 3.1. Let P be a compact metric partially ordered space
such that Min P and Max P are disjoint closed sets and let Q be a
closed subset of P such that MinQcMinP and Max Qc Max P. Then
a Whitney map for Q can be extended to a Whitney map for P.

The proof of (3.1) depends on a delicate application of (2.4). To
facilitate this we first obtain a lemma.

LEMMA 3.2. Suppose P is a compact partially ordered space
such that Min P and Max P are disjoint closed sets, Q is a closed
subset containing (Min P) U (Max P), and suppose A and B are disjoint
nonempty closed subsets such that A — M(A) andB = L(B). If / : Q—>
[0, 1] is a continuous order-preserving function such that f | (Min P) =
0 and /|(MaxP) = 1, then f admits a continuous order-preserving
extension f: P —> [0, 1] such that f(a) ^ inf /1(A f] Q) for each aeA
and f(b) ^ sup /1 (B n Q) for each beB.

Proof By (2.4) the function f\(Af]Q) admits a continuous order-
preserving extension

and the function f\(Bf]Q) admits a continuous order-preserving
extension

UB >[0,sup/|(BnQ)].

The mapping / U /0 U fx is a continuous order-preserving function
defined on the closed set Q U A U B, and another application of (2.4)
yields the desired function / : P—> [0, 1].

We turn now to proof of (3.1). Let ωQ be a Whitney map for
Q. We may extend ωQ at once to (Min P) U (Max P) by letting
ωQ I (Min P) = 0 and ωQ | (Max P ) Ξ 1 , SO there is no loss of generality
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if we assume Q contains (MinP) U (MaxP), and hence (3.2) may be
applied. We employ a variation on an argument due to Carruth [1].
Suppose ^ is a countable base for the topology of P, and let &
denote the family of all pairs (U, V) of members of <%f such that
M(U)Γ)L(V) = 0 . Then & is also countable and we may enumerate
its elements:

& = {&„ Vn):n = l,2, . . . } .

By (2.2) the sets M(Un) and L(Vn) are closed, so by (3.2), for each
positive integer n there is a continuous order-preserving extension
fn: P -> [0,1] of ωQ such that

Q) if aeM(Un) ,

Q) if beL(Vn) .

Define ωP: P -> [0,1] by ωP — Σ 2~nfn. Obviously ωP is continuous
and ωP is an extension of ωQ. Since each fn is order-preserving, so
is o)p. Thus it remains to show that if x < y in P then a)P(x) <
coP(y). Clearly, it is sufficient to verify the existence of a positive
integer n such that fjx) < fn(y).

Let tx == sup ωQ \ (L(x) Π Q) and ty = inf α)ρ | (Λί(i/) Π Q). Since ωQ

is a Whitney map it follows that tx < ty. Let 0 < ε < (ty - tβ)/2.
By (2.3) there are disjoint open sets U and V such that x e V = L(V)
and yeU— M(U), and by a straightforward compactness argument
we may assume that ωQ(Vf)Q)c:[0, tx + ε) and α^ϊ/nQJcζt, — ε, 1].
It follows that there is a positive integer n such that ί c e F ^ c ^ c F
and ye UnaUnc:U, from which we conclude that

fn(x) ^tx + ε<ty-ε^ fn(y) .

The proof is complete.

COROLLARY 3.3. If X is a continuum then any Whitney map
for C(X) can be extended to a Whitney map for 2X.

COROLLARY 3.4. If Y is a continuum and X is a subcontinuum
of Y, then any Whitney map for C(X) (resp., 2Z) can be extended to
a Whitney map for C(Y) (resp., 2F).

Proof. We give the proof for C(X); the proof for 2X follows
similarly. Clearly C(X) is a closed subset of C(Y) and MinC(X)c
MinC(Y). However, MaxC(X) = {X} is not a subset of MaxC(Γ).
This deficiency is readily corrected by defining Q = C{X) U {Y) so
that MaxQ = {Y} = MaxC(Γ). If ωx is a Whitney map for C(X)
with ωx{X) = 1, let ωQ: Q -> [0,1] be defined by
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ωQ\C(X) = ±ωx ,
Δ

Theorem 3.1 now applies and ωQ extends to a Whitney map ωγ for
C(Y). Clearly, 2ωγ is the desired extension of ωx.

It is worth remarking that the family of mappings fn: P —> [0,1]
does not, in general, distinguish points of P and hence does not
generate an order homeomorphism of P into the Hubert cube. However,
Carruth [1] has shown that such order homeomorphisms exist for all
compact metric partially ordered spaces. The following question
arises naturally.

Problem 3.5. Let ωP be a Whitney map for the compact metric
partially ordered space P. Under what conditions does there exist
an order-homeomorphism φ: P—> H, the Hilbert cube, so that ω\φ{P) =

, where ω: H -»[0,1] is the Whitney map defined by ω(x) =
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