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ON THE SPECTRUM OF CARTAN-HADAMARD
MANIFOLDS

MARK A. PINSKY

Let I be a simply-connected complete ^-dimensional
Riemannian manifold of nonpositive sectional curvature K.
If K^—k2<0, then the infimum of the L2 spectrum of the
negative Laplacian is greater than or equal to (d—1)2&2/4
with equality in case K-^—k2 sufficiently fast at infinity.
This general result is obtained by analyzing a system of
ordinary differential equations. If either d=2 or the mani-
fold possesses appropriate symmetry, the result is obtained
under weaker conditions by analyzing a Riccati equation.
Finally the case k=0 is treated separately.

1* Description of results* The infimum of the L2 spectrum
is defined by

ί
(1.0) λx = inf -Is

Φ° \

when the infinum is taken over H}, the closure of CS°(M) in the

norm \ (φ2 + \dφ\2). Let KJJP) be the sectional curvature of the

two-plane P £ Mx, the tangent space at x. Let y(t) = y(t; 0, ξ) be

the unit-speed geodesic emanating from O e J ί and having initial

velocity ξ e Mo. Let

e(ί) - sup sup |J5Γr(t)(P) + k2\
]ξ\lPSM

where k is a positive constant. Our main result is the following
upper bound.

THEOREM. Suppose that

(1.1) Vε(t)dt < oo .

Then

0 < λx ^ (d - l)2&2/4 .

This immediately implies

COROLLARY 1. Suppose that outside of some compact set M has
constant sectional curvature K— — ¥ < 0. Then
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Finally, we have the result stated in the first paragraph.

COROLLARY 2. Suppose that (1.1) holds and that K^ —k2<0
everywhere on M. Then \x = (d — l)2&2/4.

2* Proofs* We will study Jacobi fields J(t) along a geodesic
{7(t), * ^ 0} where J(0) = 0, J(t) •£ 0, (J(ί), 7') = 0. For this purpose,
let {Ei(t)f 2 ^ i ^ d} be a parallel field of orthonormal vectors along
7 with (Eif 7') = 0. Write

(2.0) J(t) = Σfi(t)Ei(t).
<=2

From the Jacobi equation we have the following system of equations

[2]

(2.1) fl'{t) + Σ (R(Eit Ύ')Ύ', ES)W) = 0 (2£i£d).
i=2

By the representation of R in terms of sectional curvature, we
have

where \εiό\ ^ ε(ί).
We use the following result from ordinary differential equations.

PROPOSITION. Consider the system

(2.2) fl\t) - Vflt) = Σ en(t)fj(t) (2^i^d)

i=2

wΛere Γ \etί(t)\dt < 00. Tfeβ^ (2.2) has solutions fix\fl2) with

fa) ^eut9 ft"' ~kekt (ί >oo)

fi2) - e-kt, fr - -ke~kt (t > 00) .

For the proof see Hartman [5, p. 381] for the case d = 2. To
apply this to (2.1) we recall that from the Rauch comparison theo-
rem [2] \J(t)\—*oo when £—>oo. Now let

(2.3) /<(*) - Σ K Λα)(ί) + d,^(2)(i)]
y=2

We claim that ci3- Φ 0 for at least one value of (i, j). Indeed,
if ctj = 0, then fit) = ^(e~kt)9 t-^00 which implies that |J(ί) |->0, a
contradiction. Now
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d

(J'(t),J(t)) _ §/<(*)//(*)
(J(t), J(t))

Thus we have proved the following proposition.

LEMMA 1. Let J(t) be a Jacobi field along 7 with J(0) = 0,
(J(t), 7') = 0, J(t) Ξ£ 0. If (1.1) is satisfied, then

(2.5)

LEMMA 2. Lβί r be the geodesic distance from OeM. Then
(1.1) implies that

(2.6) Δr(rt(t)) > (d - l)fc (ί > 00)

where the convergence is uniform over Sd~1.

Proof. Let j(t; 0, ξ) be the geodesic emanating from OeM with
initial velocity ξ. Let {J,(ί), 2 ^ i ^ d} be Jacobi fields along 7 with
/.(0) = 0, J/(0) = Ei where (7;(0), E2, , £7̂ ) is an orthonormal basis
of Mo. Then from the second variation of arclength [1], we have

(2.7)

Using Lemma 1 the result follows.

LEMMA 3. Lβί m = (ώ — 1)&, 0 < JR0 < Hi < °°,

(2.8) ^(r) = j R,- Ro ~
I 0 otherwise.

Then

(2.9) m2 , τr 2

φ ~ {Ar — m)φ'{r) .

Proo/. Calculus and the formula Aφ = φ" + {Ar)φf [1, p. 134].
Now let B be the annular domain Ro <L r tί Ri
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L E M M A 4.

(2.10) - ί (φΎ + -?£- + π ' lί ^2 = f (Jr - m)#' .
Js 4 (i?! ~ ico)

2l JB Js

Proof. Multiply equation (2.9) by φ, integrate by parts and
use the boundary condition φ — 0.

Proof of the theorem. Let X— | |^ ' | | |2 ( 5 ) , 1= | |^| |i2 ( B ), c = m2/4 +
π2l(R1 — R0)

2. Applying Schwarz's inequality we have

ί (Ar - m)φφf ^ ε^Ro
}B

where S^RQ) —> 0 when i20 —> oo.
Applying this to (2.10), we have

\Δ.LL) \ u\. — 01 I ^

But this implies that X is smaller than the largest root of the
corresponding equation, i.e.,

A glance at the definition (1.0) shows that Xι ^ X/L This holds
for all Rx > Ro; letting R1—>ooy we have

Finally letting Ro—> °°, we have the result λ : ^ m2/4.
To prove the lower bound, we first note that for some δ

(2.12) Ar ^ δ < 0 .

Indeed, outside of some sufficiently large compact set we can use
Lemma 2. On the other hand, the proof of the Rauch comparison
theorem implies that for any Jacobi field along 7 with J(0) = 0,
(J(t), 7') = 0, J(t) φ 0, we have (J\t), J(t))/(J(t), J{t)) ^ 1/r. Hence

Ar ^ d ~ 1 > 0 (0 < r < 00)
r

Ar > (d - ΐ)k (r > 00) .

H a v i n g proved (2.12), we can use t h e m e t h o d of McKean. For th i s
purpose let G(t, ξ) = | J 2 (ί) Λ Λe/ d (ί) | . F r o m (2.12) we see t h a t
Gt/G ^ d. Now Λί is t h e image of Rd u n d e r exp 0 . I n t e g r a l s over
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M can be computed over Rd according to the following:
For any φeffi, feL1

(2.13) [ / = ( dω[°f(exvotω)G(t,ω)dt
)M JSd-1 JO

(2.14) ί \ d φ \ 2 ^ ί \dφ{3ldr)f .
JM JM

But

( φ*G(t, ω)dt ^ M
ό

\ΦΦt
0 Jo

l/2

Thus

S oo ^ 2 poo

ΦlGdt ^ ±-\ φ'Gdt .
0 4 Jθ

Integrating this inequality on Sd~1 and referring to (2.13)-(2.14), it
is clear that we have proved

\ \dφ\^^-\ 4?
JM 4 JM

Thus λj ^ δ2/4 > 0, as required.

3* On condition (1*1)* In certain cases one may relax the
technical condition (1.1). These are the following

(3.1) d = 2

(3.2) M is a model [4] .

The latter means that for every orthogonal transformation φ in MOf

there exists an isometry Φ: M-> M such that Φ(0) = 0, Φ*(0) = φ.

PROPOSITION. Suppose that the CH manifold M satisfies either
(3.1) or (3.2) and in addition

(3.3) ε(t) >0 (t > o o ) .

Then

0 < λi ^ (d - l)2A;2/4 .
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Proof. Following the proof of the theorem, the result will
follow once we prove Lemma 1. In case (3.1), the Jacobi equation
is a single scalar equation

(3.4) J"(t) + K(t)J{t) = 0

where K(t) is the Gaussian curvature. Let h(t) = J'(t)/J(t). Then

(3.5) fc'(ί) + h(t)2 = -K(t) .

Recall the following asymptotic result [7] concerning solutions of

(3.5).

(3.5a) lim inf V-K(t)<Ά\m inf Λ(ί)^lim sup h(t) ^ lim sup V-K(t) .

Thus (3.3) implies that h(t) —> k, which proves Lemma 1 in this case.
To treat the case (3.2), we use the following result of Greene-

Wu [4, p. 25]: every proper Jacobi field J(t) along a geodesic 7
which is orthogonal to 7' and vanishes at 0 has the form

J{t) = f{t)E{t)

when E(t) is a parallel vector field along 7 and fit) is a real-valued
function. The Jacobi equation then takes the form

(3.6) /"(t) + K(t)f(t) = 0

where K(t) is the sectional curvature of the 2-plane spanned by
(τ'(ί), E(f)). Observing that (3.6) is of the same form as (3.4), we
can copy the above proof for d — 2 to conclude Lemma 1 in this
case also, thus completing the proof of the proposition.

Finally, using the method of Gage [3], we can obtain results
using only Ricci curvature. Indeed, Gage has proved that

(3.7, «?„ + J^G = - -JtfcyXK ~ Hf

where G = \J2Λ AJd\ιnd~1\ BU is the Ricci curvature in the
direction γ(ί) and (μ2, , μd) are the eigenvalues of the second
fundamental form relative to the geodesic sphere. Ignoring the
right hand member of (3.7) gives an inequality. Letting h = G'/G,
we have the Riccati inequality

h\t) + ^
d — 1

Let h^t) be the solution of the corresponding equation, with the
same initial behavior. Then standard comparison methods yield

h{t) ^ h^t) .
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But the asymptotic result (3.5a) now applies to the hx{t). Combining
all of the above, we have the following

PROPOSITION. Suppose that for the CH manifold M

RiMt)) >-(d- 1)¥ (t > oo)

then

4* Asymptotic flatness* The previous results are all formulated
under the hypothesis k Φ 0, which we now remove.

DEFINITION. The CH manifold M is asymptotically flat if k = 0
and either (1.1) holds or (3.3) holds with d = 2 or (3.3) holds where
M is a model.

PROPOSITION 4.1. Suppose that the CH manifold M is asympto-
tically flat. Then Xλ = 0.

Proof. In this case Δr —* 0 when r —• °o. Using the trial func-
tion / = sin π(r — i20)/(i2i — Ro) i n ^ e definition of Xly the previous
proof remains unchanged, with the conclusion λx = 0.

Conversely, we have the following negative result.

PROPOSITION 4.2. There exists a CH manifold with x1 = 0 and
curvature function K which satisfies lim infr_oo K < 0.

For the proof we will construct a 2-dimensional CH manifold M

with metric

ds2 = dr2 + Girfdθ2

where G" + KG = 0, G(0) = 0, G'(0) = 1. The curvature function
K{r) is

— 1 r G (ak, ak + εk)

where ak9 εk are to be specified below.
Let h — Gf\G. Then h satisfies the Riccati equation hf + h2= —K,

with h(r) — 1/r for 0 < r < αx. Note the following facts:
( i ) On any interval (ak9 ak + εk), hf = 1 — h2 ^ 1 and thus

h(ak + εfc) ^ fe(αfc) + εk.
(ii) On any interval (ak + εk, ak+1), the Riccati equation has

the explicit solution h(r) = (ak + εk)h{ak + εk)jr.
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Now let ek = l/2k+1(k ^ 1), αx = 4, ak+1 > 4(αfc + ek). Such a
choice is clearly possible, we will show that h(r) —> 0. First we
show inductively that fe(α7. + εfc) < l/2&.

On the interval 0 < r < au h(r) = 1/r and thus /^αO < 1/4.
Using (i) above, we have h{aι + s j ^ h(aλ) + εx < 1/4 + εx = 1/2. Now
if Λ(αfc + εk) < l/2k, then on the interval ak + εk < r < αfc+1, /&(?•) =
&(% + e^Cα* + εk)/r and thus fe(αfc+1) < (l/4:)h(ak + sA) < l/2fc+2. Using
(i) again, h(ak+1 + εk+1) £ h(ak+1) + ek+1 < 1/2Λ+1.

Finally, we check that h(r) ->0 as r —> oo. Indeed, on the
interval (αfc + εfc, ak+1)h is decreasing, and thus Λ,(r) ^ jt(αfc + εfc) <
l/2fe. On the interval (ak+1, ak+1 + ε/c+1) we have hr ^ 1 and thus
Λ(r) ^ ^(αfc+1) + {r - ak+1) ^ l/2fe + l/2^+2.

We can now prove that λj. = 0. Indeed, from earlier work [8]
we know that (4λO1/2 <£ limr_oo Gr/G. Thus λx = 0, as required.

REMARKS 1. By modifying the above example, it is possible to
find a metric for which XL = 0 and lim infr_oo K(r) — — ̂ , Indeed,
it suffices to replace — 1 by a sequence going to — oo and choose
εk —> 0 sufficiently fast.

2. It would be interesting to find a necessary condition for
λi = 0, expressed in terms of the curvature function. From our
previous paper [8] we know that λx = 0 implies lim in f r ^ h(r) = 0.
But we do not know what this says about K{τ).
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