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CARTAN SUBALGEBRAS OF A LIE
ALGEBRA AND ITS IDEALS II

DAVID J. WINTER

Cartan subalgebras H of a Lie algebra L and Cartan
subalgebras H of its p-closure L are related. This is used
to prove that 70(adϋΓu/) is a Cartan subalgebra of / if
p~0 or (ad//)pcad/i, by reduction to the known case
(ad Lye ad L.

In Winter [3], the following theorem is proved about a Lie
algebra L with Cartan subalgebra H over a field of characteristic
P ^ 0.

THEOREM 1. Let I be an ideal of L. Then J0(ad (iΓ Γ)/)) is α
Cαrtαn subalgebra of I if either p = 0 or (ad L)V(Z ad L and (adi J ) p c
ad,/.

The purpose of this note is to relate Cartan subalgebras of L
and those of the ^-closure L of L, in Theorem 2 below, and use
this to show in Theorem 3 that the hypothesis (ad L)2* c ad L in
Theorem 1 can be dropped. This result is used in Winter [5].

We refer the reader to Jacobson [1] for preliminaries on Lie
p-algebras (restricted Lie algebras) for p > 0.

THEOREM 2. Let L be a subalgebra of a Lie p-algebra M and
let H be a Cartan subalgebra of L. Let L be the p-closure L = X^=0 Lpe

of L in M where Lpe is the span of {xpe\xe L}. Then
( 1 ) every ideal I of L is an ideal of L and [L, I]czl;
(2 ) L — H + L for any Cartan subalgebra H of L;
( 3 ) for any Cartan subalgebra H of L> L has a Cartan

subalgebra H such that [H, H]aH and H f)LaH.

Proof. Statements (1) and (2) are proved in Winter [2], § 7.1.
For (3), note that T = Hp°° = Γϊ7=o Hpe is a torus and L0(ad Γ) = fl,
as proved in Winter [4]. Letting f be a maximal torus of L
containing T, and letting J ϊ=L 0 (adT), H is a Cartan subalgebra
of L, by Winter [4J. Since Γ c f , we have ίϊ - L0(adf )cL0(ad T).
Thus, H normalizes L0(ad T) Π L = H in the sense that [H, H]czH;
and ίϊ Π L c L0(ad Γ ) n L = H. Ώ

THEOREM 3. Let I be an ideal of L and suppose that either p = 0

or (ad //) pcad J/. Then flJ = /0(ad(fίn/)) is a Cartan subalgebra of I.
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Proof, If, furthermore, (ad L)p a ad L, this is Theorem 1. In
order to bypass this additional assumption, let M be a Lie p-algebra
containing L as subalgebra. Then, by Theorem 2, there is a Cartan
subalgebra H of L such that [H, H]c.H and HpiLaH, and L =
H + L. By the Theorem 1, i/7 = J0(ad (if Π /)) is a Cartan sub-
algebra of J. But HI = /0(ad ( # n L Π /)) => /0(ad (iϊ Π I)) = Hj since
H Π LczH. Thus, if, c fl"f and J9Γ7 is nilpotent. Since if/ =
70(ad (H Π /)), -if/ is also self normalizing in / and is therefore a
Cartan subalgebra of /; e.g., xel and [x, H^czHj implies xe
J 0 ( a d ( i / n / ) ) - # , . D

Note that HI in the above proof is also maximal nilpotent in
J, so that Hj = Hj = /0(ad (H Π I)).

We can now consolidate and supplement some of our conclusions
as follows.

THEOREM 4. Let L be a subalgebra of a Lie p-algebra M, let
H be a Cartan subalgebra of L and choose (using Theorem 2) a
Cartan subalgebra H of L such that [H, H] c H. Then

(1) L = H + L and HΠLczH;
(2) if I is an ideal of L and p — 0 or (adf Tf c adz J, then

70(adίf Π/), / 0 (adJϊn/) are equal and are Cartan subalgebras of I;
( 3) if p = 0 or (sidL L)p c adL L, then H = L0(ad H Π L).

Proof. For (1), note that L = H + L by Theorem 2 and
iJcL 0 (ad i ϊ ) since [H, H]czH, so that if n L c L 0 ( a d i ί ) Π L =
L0(ad if) = if. And (2) follows from the observation following
Theorem 3. Finally, (3) follows from (2), taking L = /. Q
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