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CARTAN SUBALGEBRAS OF A LIE
ALGEBRA AND ITS JDEALS II

Davip J. WINTER

Cartan subalgebras H of a Lie algebra I and Cartan
subalgebras H of its p-closure I, are related. This is used
to prove that [(ad H.I) is a Cartan subalgebra of I if
p=0 or (ad;I)*cad;l, by reduction to the known ecase
(ad L)»cad L.

In Winter [3], the following theorem is proved about a Lie
algebra L with Cartan subalgebra H over a field of characteristic
p=0.

THEOREM 1. Let I be an ideal of L. Then I(ad(HNI)) is a
Cartan subalgebra of I if either » = 0 or (ad L)*Cad L and (ad, I)*C
ad, I.

The purpose of this note is to relate Cartan subalgebras of L
and those of the p-closure L of L, in Theorem 2 below, and use
this to show in Theorem 3 that the hypothesis (ad L) cad L in
Theorem 1 can be dropped. This result is used in Winter [5].

We refer the reader to Jacobson [1] for preliminaries on Lie
p-algebras (restricted Lie algebras) for p > 0.

THEOREM 2. Let L be a subalgebra of a Lie p-algebra M and
let H be a Cartan subalgebra of L. Let L be the p-closure L=, L*
of L in M where L* is the span of {x*'|xe L}. Then

(1) every ideal I of L is an ideal of L and [L, I|CI,

(2) L= H+ L for any Cartan subalgebra H of L;

(8) for any Cartan subalgebra H of L, L has a Cartan
subalgebra H such that [H, Hlc H and H N L c H.

Proof. Statements (1) and (2) are proved in Winter [2], §7.1.
For (3), note that T'= H?" = (), H*" is a torus and L,ad T) = H,
as proved in Winter [4]. Letting T be a maximal torus of I
containing T, and letting H = L,(adT), H is a Cartan subalgebra
of I, by Winter [4]. Since TCT, we have H = Lyad T)C Ly(ad 7).
Thus, H normalizes L,(ad T) N L = H in the sense that [H, H]C H;
and HNLc L(d T)n L = H. O

THEOREM 3. Let I be an ideal of L and suppose that either p=0
or (ad; [)*cad; I. Then H,=I(ad(HNI)) is a Cartan subalgebra of I.
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Proof. If, furthermore, (ad L)’ Cad L, this is Theorem 1. In
order to bypass this additional assumption, let M be a Lie p-algebra
containing L as subalgebra. Then, by Theorem 2, there is a Cartan
subalgebra H of L such that [H, Hlc H and HNLCH, and L =
H+ L. By the Theorem 1, H, = I(ad(AN1I)) is a Cartan sub-
algebra of I. But H, = I(ad (N LN I)>Iad(HnNI) = H, since
HnNLcH. Thus, H,cH, and H, is nilpotent. Since H, =
I(ad(HN1I)), H, is also selfnormalizing in I and is therefore a
Cartan subalgebra of I; e.g., zel and [z, H,]C H, implies xz¢
I(ad(HNI)) = H,. ]

Note that H,; in the above proof is also maximal nilpotent in
I, so that H, = H, = I(ad (H N I)).

We can now consolidate and supplement some of our conclusions
as follows.

THEOREM 4. Let L be o subalgebra of a Lie p-algebra M, let
H be a Cartan subalgebra of L and choose (using Theorem 2) a
Cartan subalgebra H of L such that [H, HlC H. Then

(1) L=H+L and Hn LC H;

(2) if Iis an ideal of L and p =0 or (ad,I)*» Cad;I, then
I(ad HN I), I(ad HN I) are equal and are Cartan subalgebras of I,

(8) if p=0 or (ad, L)* cad, L, then H = Lad H N L).

Proof. For (1), note that L =H + L by Theorem 2 and
Hc L(ad H) since [H, Hlc H, so that ANnLcLfadH)NL=
L(ad H) = H. And (2) follows from the observation following
Theorem 3. Finally, (38) follows from (2), taking L = I. N
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