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REPRESENTATIONS OF GAUSSIAN PROCESSES BY
WIENER PROCESSES

C. PARK

Let {X(t), a^tSb} and {W(t), 0g£<oo} be a Gaussian
process and the standard Wiener process, respectively. In-
vestigating covariance structure of X(t), the paper gives
various representations of X(t) in terms of W(t), including
stochastic integral representations. Some of these repre-
sentations are useful in finding hitherto unknown barrier-
crossing probabilities of X(t).

1* Introduction. Let X(t) be a Gaussian process on some
interval I with covariance function

22(8, ί) - E{X(s) - μ(s)}{X(t) - μ(t)} ,

where μ(t) is the mean function, μ(t) = EX(t).
It is well-known that a Gaussian process is uniquely determined,

up to the mean function, by the covariance function R(s, t).
The Gaussian process which has been studied most extensively

is, of course, the Wiener process {W(t); t ^ 0}. Therefore, it is
natural to seek representations of Gaussian processes in terms of
Wiener processes.

( i ) A classical result by Doob [3, pp. 401-402] shows that: If
a Gaussian process X(t) has mean zero and the covariance function
in the form

R(s, t) = u(s)v(t), s ^ t

for 8, t in some interval, and if the ratio u(t)/v(t) = a(t) is continu-
ous and increasing with its inverse function αL(ί), then

XiaMKa^t)) = W(t) ,

where W(t) is the standard Wiener process (or the Brownian motion
process).

Another well-known result is the following:
(ii) If a Gaussian process X(t) with zero mean has a factorable

covariance function on [0, T]2, i.e.,

r(s, u)r(t, u)du ,
0

where for each ίe[0, T] r(t, )eL2[0, Γ], then X(t) has a stochastic
integral representation
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X(t) = Γ r ( ί , u ) d W ( u ) , O^t^T .
JO

(iii) More recently Berman [1, p. 32] gives stochastic integral
representations of Gaussian processes with biconvex covariances:

X(t) = VR(a, b)Z + t VR1(uf b)dW1(u) H
Ja

+ ί \ l/-J212(%, v)dW(u, v) for α ^ t ^ 6 ,

where Z ~ N(0, 1).
Wi(t) and W2(t) are standard Wiener processes on [a, b] W{s, t) is

a standard Wiener process on [a, b] x [α, 6] with Z, TΓi(t), W2(t), and
W(s, t) all mutually independent. Biconvexity guarantees that the
partial derivatives satisfy: R(a, b) ^ 0, Rx{uf b) ^ 0, —R2{a, u) ^ 0,
—R12(uf v) ^ 0 on respective domain.

By definition a covariance function R(s, t) is symmetric. It is
also nonnegative definite, for

n n
Σ Σ *««(««, *i)*i = Σ Σ XiE[X(Si) -
3=1 i = l 3=1 i=l

It is also known that for each symmetric nonnegative definite func-
tion R(s, t), there exists a Gaussian process whose covariance func-
tion equals R(s, t). (See Doob [2, p. 72, Theorem 3.1] for reference.)

Investigating covariance structures of Gaussian processes, the
paper gives numerous representations of Gaussian processes, in
terms of standard Wiener processes, including stochastic integral
representations. Some of these representations are demonstrated
to be useful in finding hitherto unknown barrier-crossing probabilities
of some Gaussian processes.

2* Main results and proofs* In application it is often more
convenient to restate the Doob's theorem in the following form:

THEOREM 1 (Doob). // X(t) is a Gaussian process with covar-
iance function

(2.1) R(8, t) = u{s)v{t) {s ^ ί)

for s, t in some interval, and if the ratio u(t)/v(t) is nondecreasing9

then

X(t) = v(t)W[u(t)/v(t)] + μ(t) ,
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where μ(t) is the mean function of X(t).

The theorem follows immediately by checking the covariance
function. Another version of Theorem 1 can be stated as follows:

THEOREM 2. If the covariance function of a Gaussian process
X(t) satisfies (2.1) and if the ratio v(t)/u(t) is nonincreasing, then

X(t) = u(jt)W[v(f)/u(t)] + μ(t) .

While Theorems 1 and 2 are very useful, they have some
drawback in assuming the monotoneness of u(t)/v(t). To remedy
this situation, we give the following:

THEOREM 3. // X(t) is a Gaussian process with covariance
function

(2.2) R(s9 t) = u(s)v(t)9 u(s)/v(s) ^ u{t)jv{t) ,

for s, t in some interval, then

X(t) = v(t)W[u(t)/v(t)] + μ(fi)

= u(t)W[v(t)/u(jb)] + μ(t) .

Proof. Since R(s, t) is symmetric, the condition (2.2) is equi-
valent to:

R(s, t) = u(s)v(t), u(s)/v(s) ^ u{t)/v(t)

= u(t)v(s)9 u(s)lv(s) > u(t)/v(t) .

Now

E{v(s) W[u(s)/v(s)]v(t) W[u(t)/v(t))}

= v(s)v(t) min {u(s)/v(s), u(t)/v(t)} ,

which agrees with the R(s, t). The second expression of X(t) gives
rise to the same covariance function.

It should be noted that if u(t) or v(t) vanishes at some point
to, then Ufa, ί0) - E[X(tQ) - μ(tQ)]2 - 0. Thus X(t0) = μ(tQ) with pro-
bability one. Hence we regard v(tQ)W[u(tQ)/v(to)]=u(tQ)W[v(tQ)/u(to)]==O.

THEOREM 4. Let X(t) be a Gaussian process with covariance

function

where
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t) = uk(s)vk(β), uk(s)/vk(s) ^ uk(t)/vk(t)

= uk{t)vk{s), uk(s)/vk(s) > uk(t)/vk(t)

for each k — 1, 2, . Then

X(t) = Σ vk(t) Wk[uk(t)/vk(t)] + μ(t)

= Σ>uk(t)Wk[vk(t)/uk(t)] + μ(t) ,
1

where [Wk{t)} is a sequence of independent standard Brownian
motion processes.

Proof. First of all, let us establish the L2-convergence of the
series ΣΓ vk{t) Wk[uk(t)/vk(t)] with respect to the probability measure:

E {tvk(t)Wk[uk(t)/vk(t)]}2

= Σ v\(t)uk{t)lvk{t) = Σ uk(t)vk(t)

which converges to 0 pointwise as m, n —> °o. Therefore,

E j Σ vj(s) WAu^/vjis)]^ Σ vk(t) Wk[uk(t)lvk(t)] }

= Σ vk(s)vk(t) min {uk(s)/vk(s)f uk(t)/vk(t)}
1

Similarly the second expression of X(ί) also holds.

COROLLARY 4.1. Let X(t) be a Gaussian process with covariance
function

R(s, t) = Σ t*ί(βK(ί) ,
1

^ίί/i {uΛ(s)} αwd {̂ (̂s)} satisfying the same conditions in Theorem
4 /or k = 1, 2, •••, w.

COROLLARY 4.2. Let X(t) be a Gaussian process with covariance
function
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R(s, t) = Σ Xkuk(s)uk(t), Xk ^ 0 (fc = 1, 2, -) .
i

Then

X{t) = f>Vl^uk{t)Wk{l) + M*)
1

THEOREM 5. Lei α Gaussian process {X(t)9 0 ^ t ^ T} Z&ave α
square integrable covariance function R(s, t) on [0, T]2, αw<2
letR(s, t) = l.i.m.^oo ΣΓ^Ά(s)Λ(*) &e *Λe Mercer's expansion {see [12])
mίft ΣΓ λ^|(ί) = R(t, t) on [0, Γ]. Then X(t) has a stochastic
integral representation

X(t) = ίΓλ(ί, u)dW(u) + /ι(t) a.e. o^ [0, 3Γ] ,
Jo

h(t, s) =

Proof. As covariance functions jfί(β, ί) are always nonnegative
definite, the eigenvalues λ4 of R(s, t) are nonnegative. Observe now
that

1

which converges in the mean to R(s, t), we conclude that

(2.3) X{t) = JLVxΓφk(t)Wk(l) + μ{t) a.e. on [0, T] .
1

Since the φk(t) are eigenfunctions of Jϊ(s, t), they are orthonormal
on [0, Γ]. Therefore, we may write

Wk(X) = \Tφk(β)dW(8), & - 1 , 2 , . . . .
Jo

Therefore, (2.3) may be rewritten as

X(t) = Σi/λΓ&ωΓPφu{s)dW{s) + μ(t) .
i Jo

But the last expression, other than μ(t), is exactly the Paley-
Wiener-Zygmund stochastic integral (see [6] and [7])

[Th(t, u)dW{u) ,
Jo
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because h(t, s) = ΣΓ V λfc φk(t)φk(s) converges in s in the mean-square
sense on [0, T].

Although Paley-Wiener-Zygmund stochastic integral and the Ito's
stochastic integral are defined quite differently, they agree almost
surely for functions h(t, )eL2[0, T],

COROLLARY 5.1. If a Gaussian process {X(t), 0 ^ t ^ T] has
continuous covariance function R(s, t) on [0, T]2, then

X(t) = [Th(t, u)dW(u) on [0, T] ,
Jo

where h(t, u) has the same expression as in Theorem 5.

THEOREM 6. Let {X(t), 0 ^ t ^ T} be a Gaussian process, and
let μx and μw be the probability measures generated by {X(t),
0 ^ t ^ T) and {W(t), 0 ^ t ^ Γ}, respectively. Then ux — uw

(mutually absolutely continuous) iff there exists a complete or-
thonormal system {ak(t)} on [0, T] and a positive sequence {ak} with
Σ (1 ~ akY < °° such that

X(t) = [h(t, u)dW(u) + μ(t) ,
Jo

where

ct

h(t, u) = Σ V ak ak(u) 1 ak(v)dv .
Jo

Proof. According to Shepp [12, p. 322], μx — μw ift X{t) has
ΓsCt

covariance function R(s, t) = min (s, t) — \ \ K{u, v)dvdu for a sym-
JoJo

metric kernel K(s, t) e L2[0, Tf and the spectrum

σ(K) = {λ: ^K(tf u)β(u)du = λ/3(ί), /3eL2[0, T] } c ( - o o , 1) .

Let Σ ^ A W f t W be the Mercer's expansion of K(u, v). Then

JB(S, t) = min (s, ί) — \ 1 K(u, v)dudv
JoJo

= Σ \^βk{u)βk(v)dvdu - Σ \\xkβk{u)βk(v)dvdu
JoJo JoJo

= Σ α*\ βk(u)du\ βk(v)dv, αfc = 1 - λfc .
Jo Jo

Hence by Corollary 4.2,

V Vβk(v)dvWk(l) + μ(t) .
o
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βk(v)dv.

0

Λ X(t) = [hit, u)dW(u) + μ{t) ,
Jo

where

h(t, u) = Σi/^7/3,(%) [βk(v)dv .
Jo

Now, since Xk < 1, we have ak = 1 — λ̂  > 0, and Σ (1 ~ akf =
I J5Γ(tt, vfdndv < c>o. Thus the conditions are necessary.

0 JO

The converse follows by reversing the steps.

3* Examples and applications*
A. The standard Wiener process X(t) has covariance function

R(s, t) = min (s, t). Therefore J2(β, ί) = β, β ̂  ί. Thus, by Theorem
1, Wit) = tW(l/t), t > 0. Now, consider the tied-down Brownian
motion: {X(t\ 0 ^ ί ^ 1} - {fl^ί), 0 ^ ί ^ 11 TΓ(1) = 0̂} Using the
above expression, one can express:

{Xit\ 0 ^ t£ 1} - {ί{TΓ(l/t) - W ) } + «a?o, 0 ^ ί <£ 1} ,

where we use the convention that ί"PΓ(l/ί) = 0 at t — 0. Thus, the
covariance function of X(t) is i2(s, ί) — s(l — ί), s <; ί. Hence,
Theorem 1 gives

X(t) = (1 - *)W Γ ( 1 ^ ) + *»o, 0 ^ ί <

— ^o> ί " J- >

while Theorem 2 gives

^1 * ) tα?0, 0 < t ^ 1 ,

= 0, ί = 0 .

Other well-known representations are:

X(t)= W(t) - tWQ) + tx0,

and

X(t) - W*it, l-f) + tx09

where TF*(s, t) stands for the standard two-parameter Yeh-Wiener
process (see [11] and [14]). Malmquist [5] and Park and others

]> [9], [10]) used these representations extensively to obtain their
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results.
B. The Ornstein-Uhlenbeck process X(t) has covariance function

R(s, t) = σ2 exp {~β(t - s)} for s < t and β > 0 with μ(t) = 0. There-
fore by Theorems 1 and 2,

X{t) = σ

These representations enable us to evaluate the barrier-crossing
probabilities of the type

P{ sup X(t) - fit) ^ 0}
0%tT

for sectionally continuous functions /(ί). (See [9] for reference.)
C. Consider the Gaussian process {X(t), 0 <i £ ̂  1} with zero

mean and covariance function

R(Sf t) = (-3s3 + 4s2)ί if -3s2 + 4s ^ -3ί2 + 4ί .

Then by Theorem 3,

Jf(t) = ίTF(-3ί2 + 4ί), 0 ^ t ^ 1 .

Suppose we want to find the probability

(3.1) P, = P{ sup X(t) - f(t) < 0}

for a sectionally continuous function f(t) on [0, 1] with /(0) > 0.
Then by the representation, we get

P1 = P{ sup ίT^(-3ί2 + 4ί) - /(ί) < 0}

sup W(-Zt2 + 4t) - — f{t) < 0 ,
<ί̂ 2/3 t

isupi W(-Zf + it) - —f(t) < θ]

= P i sup W(s) f -f(2
 ~Λ/A~ ZS\ < 0 ,

lo< s S4/3 2 - i/4 - 3β \ 3 /
up ϊ F ( β )

sί/3 w 2 - l/4 - 3s

sup 1F(.) « _
is.sίίs w 2 + l/4 - 3s

Let

-™<—~κ't=ψu
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2 + l / 4 - 3 s

Then

Px = P{ sup ί7(β) - g(s) < 0} .
0 t f

This can be evaluated by the method in [9]. Until now we were
unable to find probabilities of the type (3.1) mainly because the
covariance function of X(t) does not satisfy the Doob's condition in
Theorem 1.
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