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INVARIANT SUBSPACE LATTICES FOR A
CALSS OF OPERATORS

BOON-HUA ONG

We study the invariant subspace lattices for a one
parameter family of operators {Ta}a on Lp(0,1), a a complex
number, where

Taf(x) = xf(x) + a [Xf(t)dt ,
Jo

and their adjoints TJ,

T*f(x) - xf(x) + a [f(t)dt .

The closed invariant subspaces for Ta are in one-to-one
correspondence with certain closed ideals of &a9 where &a

is a Silov algebra with unit and in which the range &a of
the Riemann Liouville operator Ja

Γ(a)

is embedded as a closed ideal. When n is a positive integer,
there is a complete lattice isomorphism between the closed
ideals of &n and the ^-tuples (EOf Elf , En-λ) of closed
subsets of [0, 1] where Eo Ώ E± Ώ Ώ. En-X Ώ. derived set of
Eo. Every closed ideal of &n is the intersection of closed
primary ideals. Similar results carry over to a where the real
part of a is an integer and also to the adjoint operators.

l Introduction* Not many operators have had their invariants
subspace lattices completely described. To name but a few, the in-
variant subspace lattice for the (simple) Volterra operator on Lp(0, 1)
was completely determined by Donoghue [4] and a more general result
by Kalisch [7], that for the (simple) shift operator on I2 by Beurling
[1]. Further investigation of the invariant subspaces for the weighted
shift operators have been made by Donoghue [4], Korenbljum [12],
NikoPskii ([14], [15]) and many others.

The main object of this paper is to characterize the invariant
subspace lattices for a one parameter family of operators {Ta}a on
Lp(0, 1) (in general 1 < p < <*>, but in some cases 1 ^ p < °o) where

Taf{x) - xf(x) + a \Xf{t)dt ,
Jo

/ 6 Lp(0,1), x e [0,1] and a is any complex number with integer real
part. (And hence for their adjoints, namely {Γ*} where T*f(x) =

385
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xf(x)+a[f(t)dt.)
We convert the invariant subspace problem into an equivalent

problem where we characterize the closed ideals of certain Silov
algebras. Sarason [18] had employed this approach to characterize
all the closed invariant subspaces of 2\. Our result is a generalization
of his. The equivalence of the two problems is established by using
analysis of Kantorovitz [10] on the functional calculus of the opera-
tors Ta.

We prove that there is a complete lattice isomorphism between
the closed invariant subspaces of Tn(n e N, the natural numbers) and
certain closed ideals of a Silov algebra &n where &n = {/: f{n-χ) is
absolutely continuous, / ( w )eLp(O, 1)} with norm |/|» = ||/(W)IL +
Σ?=ox l/(ί)(0)| (Theorem 4.1). This correspondence is induced by the
Riemann Liouville operator Jn on 1 (̂0, 1) where

Jaf(x) = _L_( x (a - ty-'fφdt, Re a (the real part of a) > 0 ,
Γ(a) Jo

Γ is the gamma function.
There is a complete lattice isomorphism between the closed ideals

of &n and the n-tuples (JSΌ, Elf , EΛ-t) of closed subsets of [0, 1]
with Eo 2 E1 2 2 2£»_i 2 derived set of Eo (Theorems 3.19 and
4.3). Every closed ideal of &n is found to be the intersection of
closed primary ideals. Several other algebras were known to have
this property. Stone [21] proved it for the algebra C[0, 1], Silov [19]
for C'fO, 1], Whitney [24] for Cn[0, 1], Snol [20] for some algebras
lying between C[0, 1] and C'tO, 1], Osadchii [16] for the algebra of
functions on the unit circle for which the nth derivatives are square
summable, Daly and Downum [3] for a subalgebra of C*"1^, 1] con-
sisting of functions whose (n — l)th derivatives satisfy a bounded
Lipschitz condition.

Similar results carry over easily to the more general parameter
a, where Re a is an integer, and also the adjoints of these operators.

When Re a is not integral, the situation is more complex. It is
not apparent that &af the range of Ja is an algebra. Via functional
calculus, we show that indeed it is, for Re a ^ 1. Moreover it can
be embedded as a closed ideal of a Silov algebra with unit, &a,
which is a natural generalization of &n. As is in the case of Tn9

there is a one-to-one correspondence between the closed Tα-invariant
subspaces and certain closed ideals of &a (and hence of &^. We
conjecture that all the closed ideals of &a(n < Re a < n + 1) are
completely determined as in the case of &%f by ^-tuples of closed
subsets of [0, 1] satisfying certain conditions. We have not succeeded
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in proving this and we hope to return to the problem on a later
occasion. Kantorovitz ([10], [11]) showed that the operator Ta has
(^-functional calculus if and only if |Reα | <L n. Imitating his argu-
ment, we found that for a, β eC (the complex numbers) with Re a ^
1 and 0 <; Re β <ί Re α, Tβ has &a-t unctional calculus.

Finally it should be remarked that Erdos [5] and Waterman [23]
had independently found all the invariant subspaces for the operator
Tf on 1/(0, 1) where Tf is defined as

Tfg(x) = f(x)g(x) ~ \'f'(t)g(t)dt
Jo

g e 1/(0, 1), x e [0, 1] and / is a function with some suitable conditions.
The particular case when f(t) = t gives Tf = T_λ. Furthermore,
Waterman, in [23], claims to have found all the closed invariant
subspaces for the operators {Γ_J, n a positive integer, by using
recent results on l/-approximation by splines. However, our work
is conducted independently of his work which was not available to
us1.

2* The Silov algebra ^ * The range &n of the Riemann
Liouville operator Jn,

JJ{x) = j ~ \\x ~ t)^f(jt)dtf f 61/(0, 1), x e [0, 1] ,

where n e N, 1 ̂  p < c°, is given by

• ^ = {β' g{n~1] is absolutely continuous, g{n) e 1/(0, 1) ,

g{i)(0) = 0, 0 ̂  i ^ n - 1} .

Clearly , ^ is a subalgebra of the well known Banach algebra
Cn~ι\Q, 1], the space of all complex valued functions with (n ~ 1)
continuous derivatives. But we will endow &n with its own norm.
As &n has no unit, it is convenient to embed it in a larger algebra
. ^ with unit, namely

<&» = ̂ nθCx"-10 Cxn-2 φ - . © Cx φ C

where the sum is direct. Thus

.^» = {9- g{n~1] is absolutely continuous, g{n] e 1/(0, 1)} .

Define a norm | \n on , ^ Λ as follows: for g e rζ^nf

Still unable to locate this reference.
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where || ||p denotes the Lp-norm and | | the absolute value. It is
easily seen that (^C, | | J is complete and &n is a closed ideal of
^ . The norm ||| |ll» defined as

(where || |U *s the supremum norm) is equivalent to
Since for any g, he&n, \hg\n ^ c\h\n\g\n for some constant c

independent of g, h and n, &% can be made into a Banach algebra
by the equivalent norm | \'n where \g\'n = c\g\n. Moreover &n is a
Silov algebra. (A commutative semisimple Banach algebra 9ί is a
Silov algebra if for any closed subset F of the maximal ideal space
Φa of 9ί and xeΦa,x$F, there is an element h e 5ί such that h(x) =
1 and h(F) = {0}.) Henceforth we shall use the norm | \n on &nf

but the arguments used work for both norms.
Observe that for any fixed i and α, 0 ^ i ^ n — 1, a e [0,1], the

evaluation map Eita: &n-+C defined as Ei>a(g) = g{i) (a), g e &n, is
continuous.

It will be seen that the collection ^ of all the closed ideals of
&n which are closed under multiplication by the function x are in
one-to-one correspondence with the closed invariant subspaces of
Tn. ς^f consists of precisely those closed ideals of &% which lie in
,^ n . The collection c^?n of all the closed ideals of &* (and hence
^o*) can be neatly characterized and every closed ideal of ^ Λ is the
intersection of closed primary ideals.

3. THE MAIN THEOREM. Characterization of the closed ideals

of &%.
For any closed ideal ^ in ^ Λ , we define

^ and for 0 ^ i ^ n - 1 ,
= {xe [0, 1]: /">(&) - 0, VO ̂  j £ i, V/ 6

Whenever there is no confusion, we abbreviate Z^^) as Zif 0 ^ i ^
Λ - 1.

REMARK 3.1. For any closed ideal ^ in ^ , deriv ZQ £ ZΛ_! C
Zw_2 £ £ Zo, where deriv Zo is the derived set of Zo.

Each closed ideal J? not only determines an w-tuple of sets Zo,
Zu , Zn_u but in fact is completely determined by these sets. We
shall now state the main theorem.

MAIN THEOREM 3.2. For any n-tuple of closed subsets (Eo, Elf -,
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-δ -̂i) with deriv EQQEn^ιQEn^Q £JE7O£[O, 1], there exists a unique
closed ideal J? in &n such that Zt = Ei9 0 £ i t£ n — 1.

The following remark will be useful in establishing the uniqueness
part of the main theorem.

REMARK 3.3. Let E, F be any closed subset of [0, 1] such that
deriv F £ E £ F. Then F\E consists of at most countably many
isolated points.

The existence of a closed ideal of &n satisfying the required
properties is easily established. There is an obvious candidate.

THEOREM 3.4. Given Eo 2 Ex 2 2 En_u closed subsets of [0, 1]
such that En__! 2 deriv Eo, there exists a closed ideal J? in &% such
that Z, = Et, 0 ^ i ^ n - 1.

Proof. J? - {/ 6 &n\ / = / ( 1 ) = .. = / ( ί ) = 0 on Eu 0 ^ i ^
w — 1}, has all the required properties.

There are some special ideals which play an important role in
the proof of uniqueness. For any w-tuple (Eo, Eu , En_j) of closed
subsets of [0, 1] such that deriv WQ £ En_x Q En_2 £ S EQ, define

on Eif 0 ^ i ^ n - 1} .

We shall abbreviate ^T(E, E, ••-,£?) by ^£{E). Let

^ r o ( ^ o , J^, ---, ί U ) = {/e^r(£; 0 , ^ ..., ^ _ , ) : / - o

in some neighborhood of Έn_^ ,

and for any closed set F in [0, 1],

= {/ e ^ : / = 0 in some neighborhood of F} .

0, Elf , JEUO is clearly a closed ideal but

and ^(F) are ideals which may not be closed.
Two general results quoted below will be useful.

THEOREM 3.5. ([13], p. 225, Thm. 4). Let %be a Silov algebra
and F a closed subset of the maximal ideal space of Sί. Let ^
be an ideal such that hull J? = F. Then ^(F) £ J* and hull

F.

In other words, ^(F) is the smallest ideal with hull F.
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PROPOSITION 3.6. Let X be a Banach space and Y a dense sub-
space of X. If M is a closed subspace of X which is of finite
codimension, then Mf] Y is dense in M.

Briefly, the process of establishing that every closed ideal of &n

is uniquely determined by the closed subset Zif 0 ^ i ^ n — 1, consists
of three major steps. First we analyze the structure of the closure
~J?W) of ^/(F) where F is any closed subset of [0, 1]. We then
prove that ^Ό(ZQ(^)9 , Zn_x{^)) £ ^ and lastly we prove

, En_i) = *s#(EOf - , 2£»_i). It is immediate from the last

two steps that J? = ^ ( Z o ( ^ ) , •••, Zn_x{^)) =

PROPOSITION 3.7. In &%, ^({λ}) = ^({x}), λ e [0,1].

Proof. Clearly ^({λ}) £ ~ f̂ ({λ}), so it suffices to show

Let / e ̂ ^({λ}), then fU){x) = 0,0^i^n~l. Define

m m

and

dr19

where m is a positive integer. Then fm e ^f({X}) and fm -> / in &%f

since /£ }(ί)->/ ( i )(ί) uniformly for 0 ^ j ^ n - 1, and fin)-> fίn) in
Z,p(0, 1). Thus / e ^({λ}). This completes the proof.

As a consequence, the closed primary ideals of &n are easily
identified. (An ideal is primary if it is contained in a unique maximal
ideal.) Indeed, they have simple structures.

COROLLARY 3.8. Any closed primary ideal J? of &n is of the
form ^^({λ}, {λ}, , {λ}, φ, " 9φ) where {λ} = Hull ^ and the multi-
plicity of λ whithin the parenthesis is i + 1 for 0 ^ i ^ n — 1.

Proof. By Theorem 3.5, ^({λ}) £ ^ Since
and ^^({λ}) has finite codimension, it follows that ^ also has finite
codimension. Thus 3P Π ^ is dense in ^ since the set & of all poly-
nomials is dense in ^ n . This implies that Hull ( ^ Π <J") = Hull ^Λ
Further- more ^ Π ^ " is an ideal in & and thus is a principal ideal
whose generator must be of the form (x—X)i+1 for some O^i^n — 1.
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Hence ^ = {/ e ^ : /(λ) = . . . = /(ί)(λ) = 0}, that is J*

REMARK 3.9. The argument used in Proposition 3.7 still holds
when the point λ is replaced by an interval [a, b] £ [0, 1],

LEMMA 3.10. Let F1} F2 be disjoint closed subsets of the maximal
ideal space of a Silov algebra 31. Let ^J\, ̂ J% be closed ideals with

= ^ i = 1, 2. Then J'iF^ (J F2) =

Proof Clearly ^ ( F x U F2) £ ^ ( ^ ) n J" (F2) = ^ Π ^ To
show the reverse inclusion, let / e ^ n ^ . Choose gi e Sί, i = 1, 2
such that

(/ in a neighborhood of JFί
Q\ — \

(1 in a neighborhood of _F2

and

(/ in a neighborhood of F2(1 in a neighborhood of

Then / = g,g2 + h where ft e ^(F1 U F2). Observe that gte^ (by
a property of Silov algebras ([13], p. 224, Thm. 3")), so we can choose

t) such that Ϊ7 M -* & as fc->oo. Then Uk>1Uk,2 + h-> f.
Moreover, t / * , ! ^ + Λ e ^ ( F x U F2), thus / 6 ^ ( F , U F2).

REMARK 3.11. The above result, which holds for a general Silov

algebra, enables us to conclude that, in ^ n , ^(F) = ^(F) for any
closed F which is a finite disjoint union of points and closed intervals.

The following observation will be used.

Observation 3.12. Let {[aif 6J} be a countable disjoint collection
of intervals in [0, 1] such that /, /(1), , f{n-1] vanish at all the α/s
and δ/s. Then clearly the truncated function /Z&uiujiCa,.̂ ] e .^Λ,
where Z^ is the characteristic function on £7.

We can now describe ^(F) for any closed subset F £ [0, 1],
for this general case can be reduced to the situation of Remark 3.11.

THEOREM 3.13. In &„ ^{F) = ^/S{F) for any closed F £ [0, 1].

Proof We only need to show ^έ{F) Q ^(F). Let / 6
The set F% the complement of F in [0, 1], being open, is a disjoint



392 BOON-HUA ONG

union of a countable number of open intervals (with the possible
exception that the interval with end point 0 or 1 might be closed
at that end). Let Fc = (JΓ=I iβi9 δ<) (the union may be finite).
There exists N>0 such that H/^Zu^^cβi^llp *s v e r y small. Let
G = U^i (ai> &<)• (Here G includes the interval with end point 0 if
there is one.) Define f = fXG; then by Remark 3.11 /

and it approximates /, therefore / e jf(F) and we have the
result.

COROLLARY 3.14. Let ^ be a closed ideal of &n, then ^ 2

Proof.

LEMMA 3.15. Let ^ be a closed ideal of &n and let h€J?r be
such that h{ί\a) Φ 0 for some 0 ̂  i < n and some αe[O, 1]. Then
for any neighborhood Na of a, there exists He^ such that support
(if) £ Na and H{l)(a) = 0 for 0 ̂  I < n, I Φ i, but H{i)(a) Φ 0.

Proof. Let k be the smallest positive integer <J i such that
h{k){a) Φ 0. Define

and g(x) = Q(x)-(1 + ΣίΞ""* Cs (x — a)3'), where the C/s are constants
yet to be determined. For I < i, g{ι)(a) = 0 while gιi)(a) Φ 0. The
fact that Q{i\a) Φ 0 and Qm(a) = 0 for m < i, enables the C/s to be
suitably chosen successively so as to make gω(a) = 0 for i < I < n
while gw(a) remains unchanged for ϊ ^ i. Let / be a C°° function
on [0, 1] such that support (/) £ Na and / = 1 in some neighborhood
of a. Evidently H — gf has all the required properties.

For any arbitrary / in any ideal ^ of ^ n , the above lemma
annihilate its derivative (of any order ^ n — 1) at any point a e [0,1]
by the addition of some appropriate function in ̂  but simultaneously
leaving all the other derivatives at a undisturbed.

LEMMA 3.16. For any closed ideal ^ of £

Proof. Let / 6^T 0(Z 0(^), - , Zn^{^))\ then / = 0 in some
neighborhood U Ώ, Z^J?). Since Z%^{^) 2 deriv ZQ{J^), the
closed sets Zό{J?)\U must be finite for all 0 ̂  j ^ w — 2. Using
Lemma 3.15, repeatedly if necessary, we can find Ge J ^ such that
the function K = f + G has the property that K{i) vanishes on
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, 0 ^ i <: n - 1. Thus Ke^ by Corollary 3.14, and hence

The simple well behaved function given below is worth noting,
for it makes the calculation on annihilation work very neatly.

LEMMA 3.17. Let

\ I Ά a . p i d t d r n _ x -•• d r l f

o Jo Jo

where [a, β] £ [0, 1]. Then

Q(x) =z 0 for x <: a

and

(n — i)l — — > — —

In the process of establishing ^ ( 2 £ 0 ,
several reductions occur but the chief and final burden is shouldered
by the miniature case described in the main lemma.

MAIN LEMMA 3.18. Let

K(x) =
o Jo

where feLp(0, 1). Suppose {^ }Γ is a sequence of distinct isolated
zeros of K such that xx < x2 < and Xj-+1. Given e > 0, there
exist consecutive points α, b e {Xj}™ and a function G such that

G(x) = K(x) for x^a

G(x) = 0 for b g x ^ 1

and

\K-G\Λ<ε.

Proof. We may assume K to be a real function (for otherwise
we can write K as Kλ + iK2 with Kl9 K2 real). Given ε > 0, there
exist alf α2, , an 6 {x^Γ such that 0 < αx < α2 < < an < 1, the
α/s are consecutive points in {^ }Γ, and ||JfiΓ

(Λ)Z[αi,1]||J) < ε.
Denote the largest interval of {[alf α2], [α2, α3], , [an_u aJ} by

[α, 6]. Since iΠ^i) = K(a2) = = JBΓ(αn) = 0, there exists ί3 e (αlf αΛ)
such that £ : % ) = 0,1 g j ^ n - 1.

= IΓ
- 1)(6 - α)]1/9 (for p > 1) .
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Similarly \K^(b)\ ^ ε[(n - l)(δ - α)](-«-i+v^ 0 ^ j ^ w - 2. When
p = 1, the estimates are

| i ί ( i ) (δ) | < ε[(w — l)(δ — α)]**"1*""5' 0 < j < n — 1

We shall confine ourselves to the case p > 1, for the same argument
works for the case p = 1. Denote the length of the interval [α, δ]
by nδ, δ > 0. Let sx, s2, , sn be w equally spaced points in [a, δ]
such that Sί > s2 > > sw = a and δ — sd — jδ, 1 ^ j ^ n. Let

L(x) = jfiΓ(α?) — Σ*=iQi(aO> where

and where the C/s are constants yet to be determined.

Let G = LXί0,bl. We need L(δ) - L(1)(δ) = . . . = L(w

that Ge&n and we want \K — G\n< s. Now

= 0 so

and

Observe that L(x) — K(x) for x ^ α,

L(δ) = - Σ - ^
5=1

Hence we require

i=ΐ (^ —
1 < ,; < ^ __ i

Σ

Σ
5=1

Σ Cy(jδ) = o
ί=l

and {CjKjδ)1^ < ε, 1 ^ j ^ n. Treating the C/s as unknowns, (*) is
a system of simultaneous linear equations which can be solved by
Cramer's rule. The determinant
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and

D =

1

D

K

2E

( » -

δ 2δ

δ2 (2δf •

δn (2δ)Λ

nδ

••(nδY

5(2δ) • • (nδ)^πjfc-

- - ' ( 6 )

1)! Kw(b)

0

2δ

(2δγ

•

(2δ)κ

nδ

(nδf

(nδy

Since K{i)(b) ^ ε[n(n - l)δ] -w+1'«, 0 g j g n - 1, it is clear that,

where dt is a positive constant which depends only on n. Therefore
IC11 δ1/p ̂  dxε. Similarly there exist constants d5 > 0 such that

where the d/s depend only on n and are independent of the choice
of b. Thus \K—G\n< Be, where B is a constant dependent only
on n.

We are now ready to prove that ^f is completely determined
by the sets

THEOREM 3.19. For any closed ideal J? of &n, J^ —

Proof. Clearly ^€a(Za(J?), ••-, Zn_l^)) £ ^ Q

) . So i t suffices to show ^€(Zl^\ ••-, Zn_^)) Q

= ψ.Case A.

Since ZΛ S) = Φ,
definition. Hence ^£IZIJ?), ••-,

Case B. Zn_x(J?) Φ 0 .
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Let / e ^ r ( Z 0 ( ^ " ) , •••, Zn_,{^)). Being open,
UΓ=i(̂ i, δi), a countable (possibly finite) disjoint union of open intervals.
Given ε > 0, there exists N > 0 such that l l / ^ Z u ^ ί β ^ l l * < e.
Also /Xu^^u^) e ^ . Let Λ = /*[.*,.*], 1 ^ k ^ N. It suffices to
show that each of the functions fk lies in
Note that each interval (akf bk) contains at most a countable subset of
ZQ{^) whose only possible limit points are end points ak, bk (by Remark
3.3). By a linear transformation, we can assume without loss of
generality that ak — 0 and bk — 1. Now there exists points s, t e [0, 1]
such that 0 < s < t < 1 and [s, t] Π Zo(^) = 0. We can find C°°-
functions j ^ , y2 such that 1/1 + 1/2 = 1 and yx is supported in [0, t] while
2/2 is supported in [s, 1]. Let ^ = fky± and ^2 = fky2; trivially fk =

Φi + &• It suffices to show ^ e J J ^ f / ) , , Z^^)) for ^ can
be similarly dealt with by applying the affine transformation x —>
1 — x. It should however be noted that for any He&n, the com-
position function defined as G(x) = H(l — a?) also belongs to &n since
G(ί)(a;) = (-1)ΌW )(1 - a?), 1 ^ i ^ w.

For ^2, there are two subcases:

Subcase 1. FQ = (ZlJ?)\Zn_γ(^)) Π [t, 1] is finite. Let Fά =
(Zji^Z^i^)) n [ί, 1], 1 ^ i ^ n - 2, and F ^ - Z ^ P O Π [*, 1],
then Fj Q FQ, 1 ^ j ^ n - 2 and ί7..! £ {1}. Recall that by Theorem

3.13, ^T(Z) - ,^0^) for any closed ZQ [0, 1]. Take Z = [0, s] U
•FY_!. Since ^(Fo, Fly , F%_2, 0) is of finite codimension in .^?Λ and
is closed, then by Proposition 3.6, ^f (Z) Γ\ ^€(Fo, -- ,Fn_2,φ) is

dense in ^ {Z U Fo, , Z U F._2, Z). Thus φ2 e^to(Zo(^)f

2. Ĵ o = (Z 0 (^)\Z,_ 1 (^)) Π [ί, 1) = fe, x2, •}, where

^ -> 1. Note that Zn_,{^) n [ί, 1] = {1}. A(0) = ^1](0) = = ̂ ~ x ) (0)-

\

\ Άfydr^"- dr19 for some /eL p (0, l) . The Main Lemma ° 3.18

implies that φ2 e ^£IZ\^), , Zn_x{J^)). This completes the proof.

COROLLARY 3.20. Every closed ideal J? in &n is the intersec-
tion of closed primary ideals of &n.

Proof.

= n n
where the multiplicity of λ within the parenthesis is ί + 1.
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REMARK 3.21. All the ideals in ^ Γ are of the form
En_x) with O e ^ O ^ i ^ ^ - 1 and deriv Eo £ En^ g g £ 0 , where
the Ei's are closed subsets of [0, 1].

4* Invariant subspaces of Tn and closed ideals of &n: Their
correspondence and lattice structures* Jn is a homeomorphism from
1/(0, 1) onto ^ w . Its bounded inverse, J~\ is naturally the differen-
tiation operator of order n on .^ n , namely

ax

Moreover, by Leibnitz's rule and Fubini's theorem,

J~ιMJnf = TJ for / e Z/(0, 1), where Mf{x) = xf(x), x e [0, 1] .

This similarity relation achieves the following correspondance:

£f is a closed Tn-invariant subspace of 1/(0, 1) <=* J * ^ e <g%* .

(From here onwards c^ will include the improper ideal &n and the
trivial ideal {zero function}, similarly for the collection <&*.) We
have thus proved the following result.

THEOREM 4.1. The map Jn establishes a one-to-one correspondence
between all the closed T^-invariant subspaces and all the ideals in
^ Γ via the relation J~xMJn — Tn. Thus the closed T^-invariant
subspaces are in one-to-one correspondence with the n-tuples (Eθ9 Eu

- , En_Ί) of closed subsets of [0, 1] where Eo 2 Eλ 2 2 2?»_i 2 deriv
£Ό and 0 e Eif 0 ^ i ^ n - 1.

Observation 4.2. We note an interesting observation that falls
out immediately of our above discussion without further effort.

Let Tf = TiTΊ Tx (k times, A; eN), then Γf - J^M(xh)Jly where
M(φ)f(x) -= Φ(x)-f(x) (since ϊ\ - Jϊ'MJJ. So

*f{t)dt, f 6

The linear span {xk~\ x2k~\ x3k-\ •} is dense in Lp(0, 1), therefore
the linear span of {xk, x2k, x3k, •} is dense in the range of . ^ of Jx.
Thus

S^ is a closed Γί-invariant subspace <=> ^ ^ is a closed
ideal of ^ .

Hence all the operators in {Tϊ}ΐ=1 have exactly the same closed
invariant subspaces.
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The set Lat Tn of all the closed invariant subspaces of Tn is a
complete lattice under ^ where Si ^ Si it SiQSi. Theorem 3.19
puts ^ * in a one-to-one correspondence with the collection of all
^-tuples {(Eθ9 Eu , JEW): E/S are closed subsets of [0, 1] such that
Eo 2 23ί 2 2 f?»_i 2 deriv 23Ό}. Define an ordering on <if * by
(j&o, Elf , ^ _ 0 < (Fo, ί\, .., Fn^) if S y 2 f f , 0 ^ i ^ ^ 1. This
makes (^*, <) into a lattice.

To show completeness of the lattice, consider any subset of <&*,
?, Έΐ, -, EZ-0: α e / a n index set}. It is clear that V* {CE?, Eϊ, -,

•£*-i)} = ( Π α f i , , Π α ^ α - i ) e ^ w , and since the smallest element
([0, 1], -, [0, 1]) eίf", (9f , <, Λ, V) is a complete lattice ([2], p. 49).
However, it can be checked that

= (\J~Eϊ, \JW U deriv (\JW), , U #*-i U derivfϊjl?)) .
\ a a \ a / a \ a / /

Similarly the subcollection ^ Γ is also a complete sublattice of <^\

THEOREM 4.3. The map J% induces a complete lattice isomorphism
ψ: Lat Tn —> ^ Γ which is defined as

^ 6 Lat Tn and S? =

The proof is left to the reader.

5* The operators Λf ± aJx and M± aJ* with Re a = w* We
extend our results on ΓΛ to the operator Un: L

p(0, 1) -> Lp(0, 1) where

/ e L'(0, 1), n e N ,

and their adjoint operators Γ* and C7* on L?(0, l)(l/p + 1/g = 1) where

T*f(x) - xf(x) + n [f(t)dt , / 6 L*(0, 1) ,

!/.*/(») = */(x) - n [f(t)dt, f e L"(0,1) .

Furthermore, the parameter can be allowed to be complex with
integral real part.

Let us first deal with the operator £7*. We shall work with
1 ^ q < °° instead of 1 < q <Ξ ©o.

Define an operator Wn on Lq(0, 1), which is analogous to Jn, as
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\\x - tγ-*f{t)dt, f e L'(0,=f
1 (n)

The same argument used in §3 can be applied with slight
modification and we have the following result which is analogous to
Theorems 4.1 and 4.3.

THEOREM 5.1. (l<>q< °o). Via the similarity relation W
13%, there is a complete lattice isomorphism between Lat(J7£) and the
lattice of all n-tuples (EQf Eu , En_2) of closed subsets o/[0, 1] where
Eo 2 Ex 2 2 En_x 2 deriv Eo and 1 6 Ei9 0 ^ i ^ n - 1.

REMARK 5.2. The closed invariant subspaces of T* (respectively
Un) on 1/(0, 1)(1 < p < oo) are {*5^x: ̂  is a closed invariant subspace
of Γw (respectively £/*)}, where

^^ = \φe 1/(0, 1): JW)/G»O<fc - 0 , V/ 6 ̂ } .

Now we turn to complex parameters with integral real parts.
The resulting operators are not more complex than those we have
investigated. In fact the real part of the parameter is the similarity
invariant of these operators. Kantorovitz ([10], [11]) and Kalisch
([8L [^]) h a (i investigated the similarity invariants of the operators
M + aJx and M + aJf where aeC. We shall quote their result.

THEOREM 5.3. For β,jeR (the real numbers), the operators
M + βJι and M + (β + iτ)Λ (respectively M+ βJt and M+ (β + iy)Jf)
acting on Lp(0, 1)(1 < p < oo) are similar.

Through Theorems 4.1, 5.1, 5.3 and Remark 5.2, we have now
obtained a complete characterization of all closed invariant subspaces
for the operators M± aJ1 and M± aJΐ in the spaces Lp(0, 1), 1 <
p < oo f for those complex values of a where Re a is a positive
integer.

6* The case of the parameter with nonintegral real part*
When the parameter has nonintegral rerl part, the functions in the
range &a of Ja cannot be easily identified. Using results on func-
tional calculus, we establish that ^?α, for Re a ^ 1, is an algebra
without unit, and that it can indeed be embedded as a closed ideal
of a Silov algebra with unit in the same manner as have done for

For n < a < n + 1, n e N, it is clear that xj g &a for j ^ n — 1,
but the situation of xn is governed by the values of p of the Lp

spaces.
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P R O P O S I T I O N 6.1. For n<a<n + l,neN,
(a) if 1 ^ p < l/(α - n), then xn e &af

(b) if p :> l/(α - n), then xn g &a.

Proof. Observe that Jax~i<χ-n) = cxn, for some constant c.
(a) is trivial since x~{a~n) eLp(0, 1).
When p^l/(a-n)f then a r ( M ) £ Lp(0, 1), but for any q<l/(a-n),

χ-(«-n) e Z,«(0, 1). Hence the fact that Ja: Lq(0, 1) -» L*(0, 1) is injective
implies that xng&a.

We shall now define &a accordingly: If 1 ^ p < l/(α — w), define

^ « = .^« θ Cx*-1 0 C^-2 0 . 0 C; for p ^ l/(α - ri), define ^ =

^ α 0 Cx* 0 C ^ - 1 0 0 C. We will show that for some natural

norm, &u is a Silov algebra with &a as a closed ideal.
There are some known properties of Ta and the Riemann Liouville

holomorphic semigroups {Ja: aeC and Re a > 0} which are useful to
us. We shall quote them without proof and refer the reader to Hille
and Phillips [6], Kalisch [8], [9] and Kantorovitz [10], [11].

Recall that Jaf(x) - 1/Γ(a)\\x - tγ^ftftdt, feLp(0, 1). These
Jo

operators are injective and bounded on 1/(0, l ) ( l ^ p < ©°) with
|| Ja\\ ^ l/(/SIΓ(α)I), where a = β + iy, 7 eR and β > 0. The inverse
J-1 (which will also be denoted by JLα), with domain &a, is thus a
closed operator. We also have the identity (d/dx)Ja+1f(x) — Jaf(x).
&a is invariant under M; more precisely, MJa = JaTa.

For 1 < p < oo, the semigroup {Ja: aeC. Re a > 0} admits a
boundary group of bounded operators {Jir: y e R} on 1/(0, 1) with
purely imaginary parameters and || Jir \\ ̂  eπlrU2. For β,yeR,

ir = ϊ7^; and for /5 > 0, J^+ir = /p/ r̂ which implies that

In the papers of Kantorovitz [10], [11], it was shown that the
operator Ta is of class Cn if and only if | R e α | ^ n. We say that
Ta is of class Cn if there is a continuous representation τ: Cn[0, 1] —>
^(L p (0, 1)) where &(Lv(09 1)) is the set of bounded operators in
Lp(0, 1), such that τ(l) = I (the identity operator) for the function
l(ί) = 1, ίe[0, 1], and τ(x) — Ta. Imitating the argument of Kan-
torovitz for the C-functional calculus, we shall establish the &n-
functional calculus for Ta, denoting the map by rβ>Λ. (When there
is no confusion, we shall just abbreviate τUt% by τ). We will then
use this &%-tunctional calculus to prove that &a is a Banach algebra
under a norm | |β which is a natural generalization of the norm | \n

of , ^ .

For 1 ^ p < oof neN, Tn has .^-functional calculus.

PROPOSITION 6.2. The map r: . ^ Λ -> ̂ (L p (0, 1)) defined by τ(Φ) =
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J~1M(φ)Jn9 φ 6 &n9 is a continuous representation such that τ(l) = /
and τ(x) = Tn, where M(φ) is the multiplication operator on Lp(0, 1)
by φ.

Proof. That r is a representation is trivial.

τ(Φ) = Σ \M(φ{ύ))Jά (by Leibnitz's rule), and therefore
*=° \ 3 I

where lnΛ = n\/j\(n — j)l and c is some positive constant depend-
ing only on n. Thus τ is continuous and .^-functional calculus is
established.

REMARK 6.3. It is trivial but useful to note that the operator
JΓ0 which is just M also has an &%-ίunctional calculus for n e N, 1 ^
p < co, namely τ(φ)f = φ-f,φeέin,feLp(0, 1).

The next lemma is an imitation of an argument of Kantorovitz
[10].

LEMMA 6.4. (1 < p < °o). Suppose that for some integer n ^ 1
αm£ some aQ e C, Re α0 ^ 0, Γαo is o/ class &JX < p < co), then Ta is
of class ,&n for all a in the strip 0 ̂  Re a ^ Re a0.

Proof. Let Re α0 = β0 ^ 0 and α = /9 + IT, β,7eR. For any
fixed polynomial ^ and vectors / e P ( 0 , 1), fireL9(O, l)(l/p + 1/q = 1),
define

Φ(α) - (e™2φ(Ta)f, g} , α e C ,

where ^(ΓJ is the polynomial ^ in Γα. Observe that for Re a <:
Re α0 = /30, || TJI ^ 1 + (βl + 72)1/2 and |e™2| ^ e^l Since ^(Γβ) is a
polynomial in α, with operator coefficients, we thus have for any
ε > 0,

\Φ(a)\ = 0(eεlr{) as | τ | >°°

in the strip 0 ̂  Re α ̂  /50. Furthermore,

\\e™2.φ(Ta)f\\p - 2

therefore

\Φ(a)\ ̂  e^

Now 7Ό and TV are of class &n, so there is some constant K > 0



402 BOON-HUA ONG

such that

\\φ(TQ)\\^K\φ\n a n d \\φ{Th)\\^K\φ\n.

Thus

+ i7)\^A\\f\\p\\g\\q\φ\n,

where A = Ke{β°+m). By the Paragman-Lindelof Principle ([22], p.
180),

\Φ(a)\^A\\f\\p\\g\\p\φ\n9 for all 0^Rea^β0.

Therefore for 0 ^ Re a S β0,

Since the polynomials are dense in &nf the homomorphism φ->Φ(Ta)

can be extended continuously to a homomorphism τ on &n. Thus

Ta is class ^ .
An immediate consequence of Proposition 6.2 and Lemma 6.4 is:

COROLLARY 6.5. For neN, 0 ^ Re a ^ w(l < p < <»), Γα

^^-functional calculus.

The ^%-functional calculus of Γα is explicitly determined below.

PROPOSITION 6.6. (1<2><OO). For 0<*Re a<in, &a is invariant

under M(φ), where φ e &n9 and the &n-functional calculus τ: &„ —>

, 1) for Ta is given by

Proof. First let φ be any polynomial. Clearly M(φ)Ja = Jaφ(Ta);
therefore 0(Tα) = J_aM(φ)Ja. Since ^ is a polynomial and τ defines
the functional calculus, τ(#) = ^(Γβ), and hence τ(φ) = J_aM(φ)Ja.

Now let φ 6 ^ Λ . There exists polynomials {φk} such that φk-> Φ
in ^ n ; in particular, φk-^φ uniformly in [0,1]. Therefore τ(φk)-+
τ{φ) and for any g e 1/(0,1),

(1) φk J«g >Φ Jag in MO, 1) ,

( 2 ) J-aφkJag = φk(Ta)g >τ(φ)g in 1/(0, 1) .

The graph of J_α is closed in &a x Lp(0, 1). Thus (1) and (2)

imply that φ-JaQ€&a and J-aφ-Jag = τ(̂ )flr.

This proves that τ(^) = J_aM(φ)Ja, for all 0 e &%.
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COROLLARY 6.7. For Re a ^ 1(1 < p < °°)^f£ is an algebra.

Proof. Without loss of generality, we may assume a to be real,
since &a = ^?R e α. It suffices to consider only non-integral values of
a and we only need to show that &a is closed under multiplication,
since &a is invariant under M.

Write a = n + r where n is an integer ^ 1, 0 < r < 1. Let /, g e
L>(0, 1).

Proposition 6.6 implies that for 0 ̂  j ^ n,

Thus Ja(f) Ja(g)e Jn+r(Lp(0, 1)) = Jα(Lp(0, 1)) and hence the result.
On ^ β , Reα > 0, let us define | J"α/|α - | | / | | w feL,(0, 1). Then

Jα is an isometry from LP(Q, 1) onto ̂ ?α.

PROPOSITION 6.8. (1 < p < ©o). For Re a ^ 1, ίfeerβ eα isίs a
constant ca > 0 swc& ίAαί /or αW /, g eLp(0, 1),

Proof. We need to consider only real nonintegral a. Write
a = w + r where w is an integer ^ 1 and 0 < r < 1. By Leibnitz's
rule,

Therefore | Λ+ r(/) JΛ+r(flf) |α ^ Σ;=o ( j ) | Λ+,_X/) Λ+ifo) Ir For 1

i ^ >̂ by Proposition 6.6,

Now

therefore

Γ(r + 3) (n - Λ, ll/L
3)1

Similarly there exists a constant Ka > 0, dependent only on a, such
that
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I Λ + Λ Λ Λ C f l O l ^ Ka\\f\\p\\g\\p.

Thus there exists a constant ca > 0 which depends only on α, such
that

I Jn+r(f) Jn+M\a^ca\ Jn+r(f)\a\Jn+r(g)\a , for all f,geL*(0, 1) .

Now we can norm &a a Banach algebra. Our attention will be
restricted to the case when 1 ^ p < l/(α — n) since the same argument
holds for the complementary case.

Every element F of &a is of the form JJ + Σi=ϊ etxi9 f e Lp(0,1),
c4 6 C. We extend the norm | \a on &a to &a, namely,

1^1.= 11/11,+ Σ I ^ I ,

then &a is a Banach space with &a as a closed ideal. Furthermore,
I |β is equivalent to some Banach algebra norm, i.e., for any F, Ge
&a, there exists a constant Ka, dependent only on a and p, such that

\FG\a£Ka\F\β\G\a.

The map F"—> Fiύ)(ά), 0 ^ i ^ α — 1, is continuous on ^?«.
As it would have been expected, the maximal ideal space of &a

is [0, 1] and it is then evident that &a is semisimple. With C°°
being contained in &a, it is clear that &a a Silov algebra.

By carrying out the same argument used previously for ^ Λ

functional calculus, we can establish the ^.-functional calculus,
Re a ^ 1.

THEOREM 6.10. (l<p<oo). For α, βeC, R e α ^ l and 0<,Reβ<>

Re a, Tβ has ^-functional calculus τ: &u —̂  &(Lp(0, 1)),

τ{φ) = J_βM(φ)Jβ, φe^a.

We conclude our discussion with the following remark.

REMARK 6.11. By virtue of the identity J_aMJa = Γα and the
fact that the polynomials are dense in ^?α, Re a > 1, the closed Γα-
invariant subspaces are in one-to-one correspondence with the closed
ideals of &a which are closed under multiplication by the function x.
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