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COMPLETELY REGULAR ABSOLUTES
AND PROJECTIVE OBJECTS

R. F. DICKMAN, J R . , J. R. PORTER, AND L. R. RUBIN

The absolute (EX, πx) is constructed for an arbitrary
space X and is shown to be unique with respect to EX
being extremally disconnected and completely regular and
τcx being a ^-continuous, perfect, separating irreducible
surjection. A function /: X —> Y is said to have a continuous
^-lifting if there is a continuous function F: EX—> EY such
that πγ o F = f° πx. A class of functions, called ^-continuous,
is introduced, shown to contain the class of continuous
functions and the class of /̂ -continuous, closed surjections,
and proved to have continuous E-liftings. Functions which
have continuous ^-liftings are completely characterized as
being the composition of ^-continuous functions.

1* Introduction and preliminaries* In 1963, Iliadis (see [7])
constructed, for a Hausdorff space X, an extremally disconnected
Tychonoff space EX and an irreducible, perfect ^-continuous surjec-
tion πx: EX —> X and showed that (EX, πx) is unique in this sense:
If Y is an extremally disconnected, Tychonoff space and /: Y —> X
is an irreducible, perfect, /^-continuous surjection, then there is a
homeomorphism g: EX^ Y such that f°g — πx. In 1969, Mioduszewski
and Rudolf [9] modified this construction to obtain a space aX which
has the same underlying set as EX and the topology of aX is
generated by the topology of EX plus {πx\U): U open in X}. The
function ax: aX-+ X is the same as the function πx. The space aX
is extremally disconnected and Hausdorff, and the function ax is an
irreducible, perfect continuous surjection. Also, (aX, ax) is shown
to be unique in the sense similar to the uniqueness of (EX, πx). So,
there is a trade-off — the Tychonoffness of EX is reduced to
Hausdorff for aX, but the 0-continuity of πx is strengthened to
continuity for ax. Both EX and aX are called absolutes of X.

More recently, Sapiro [11] and UΓjanov [13] extended the con-
struction and uniqueness of (αJ, ax) (aX is denoted in [11] by qX)
for an arbitrary topological space X. In this case, aX is extremally
disconnected and ax is a separating, irreducible perfect continuous
surjection. Also, they showed if f:X-+Y is a continuous function
between spaces X and Y, there is a continuous function F: aX —>
a Y such that aγ o F — /o ax.

In the second section of this paper we characterize the projec-
tive objects in the category of spaces and perfect separating con-
tinuous functions as morphisms. As a cosequence, we obtain the
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result by Sapiro and UΓjanov [11, 13] that continuous functions can
be lifted to a continuous function between their α-absolutes. For
an arbitrary space X, {EX, πx) is constructed and proved to be
unique in the fourth section.

In the third section, we introduce the class of ^-continuous
functions and show that this class contains several large and interest-
ing classes. In the final section, a necessary and sufficient condition
for a function /: X —> Y to be lifted to a continuous function between
their ϋ7-absolutes is developed in terms of a homomorphism between
the Boolean algebras of regular open sets of Y and X. It is shown
that an ^-continuous function can be lifted to a continuous function
between their ^-absolutes. A function between spaces is shown to
be liftable between JS'-absolutes if and only if it is the composition
of ^-continuous functions. An example is given of a non-57-continu-
ous function which is the composition of ^-continuous functions.

In the remainder of this section some necessary definitions and
preliminary results are presented. The concept "completely regular"
does not necessarily include Hausdorff whereas "Tychonoff" means
"completely regular and Hausdorff." A space is said to be extremally
disconnected if disjoint open sets have disjoint closures; thus, an
extremally disconnected space is not necessarily Hausdorff.

Let / : X —> Y be a function between two spaces X and Y. The
function / is irreducible if / is onto and for each closed set A £ X
and A Φ X, f{A) Φ Yy is perfect if / is closed and compact (i.e.,
f~\y) is compact for each yeY), is 6^-continuous (respectively,
weakly continuous) if for each x e X and open neighborhood U of
f{x), there is an open neighborhood V of x such that /(cl V) £ cl U
(respectively, f{V) £ cl 17) and is separating if whenever f(x) — f(y)
and x Φ y, then x and y are contained in disjoint neighborhoods
of X. Clearly a continuous function is ^-continuous, a ^-continuous
function is weakly continuous, and a ^-continuous function into a
regular space is continuous. Also, composition of ^-continuous (resp.
continuous separating) functions is /^-continuous (resp. continuous
separating). If AQX, then /#(A) is used to denote {y e Y: f~1{y)QA}.
Note that f%{A) = Y\f{X\A). Thus, if A is open and / is closed,
then f${A) is open.

PROPOSITION 1.1. Let f:X->Y be an onto function where X
and Y are spaces.

(a) Then f is irreducible if and only if for every nonempty
open set U £ X, /#(f/) Φ 0 .

(b) / / / is closed and U £ X is open, then int/(ϊ7) 2 / # ( # ) .
(c) If f is irreducible, closed and weakly continuous and U £ X

is open, then f{U) £ cl/#(?/).
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(d) [12] / / / is compact, there is a closed subspace S Q X such
that f\s: S —> Y is irreducible.

(e) [7] // / is irreducible, closed, θ-continuous and separating
and Y is extremally disconnected, then f is one-to-one; in particular,
if f is also continuous, then f is a homeomorphism.

Proof. The proof of (a), (b), and (c) are straightforward. •

Let X, Y, Z be spaces and f: X-*Y and g: Z-* Y be functions.
Let P = {(x, z)eXx Z:f(x) = g{z)}, pz\ P-+Z: (x, z)-+z and px: P->
X: (x, z) —> x. Then (P, pz, px) is the pullback of /: X—> Y and
g.Z—*Y, and the pullback square is the following commutative
diagram (see [5]):

Vx\ \9
/

•i

j, > XT-

Note that px and pz are continuous.

PROPOSITION 1.2. Let (P, pz, px) be the pullback of f: X-> Y and
g: Z -*Y where X, Y, Z, are spaces.

(a) If / is onto, then so is pz.
(b) // / is compact, then so is pz.
(c) // / is separating, then so is pz.
(d) // / is perfect and g is continuous, then pz is closed.

Proof. The proof is left to the reader. •

The category of all topological spaces with separating continuous
functions as morphisms is denoted by TOPS; the subcategory of all
spaces with perfect separating continuous functions as morphisms is
denoted as TOPsp. If jzf is a class of morphisms of a category &,
then an object P in cέ? is called Jzf-projective if for X, Yeob(^),
and fe Mor (X, Y) Γ) *%f, and g e Mor (P, Y), there is a h e Mor (P, X)
such that foh = g, i.e., this diagram commutes:

P

h/
9

If jtf is the class of onto functions, then j^/-projective objects are
called protective, and & is used to denote the class of perfect,
onto functions. An excellent survey about ^-projective objects in
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categories of topological spaces has recently been written by Woods
[15].

Let X be a space and LX the set of all open ultrafilters on X
that converge. Let EX = {(^, x) e LXx X:xe ad^} where ad^r =
Π{cl U: Ue^S}, and for each open set U of X, let oil = {(^, x) e
#X: Z7e^}. For open sets £7 and F i n X, we have oC7noF=o(ί7(Ί F),
oU U oF = o(U U F), o(0) = 0, oX = £X, #X\oi7 = o(X\cl U), and
oZ7= o(int (cl U)). Thus, {oZ7: J7 open in X) forms an open basis
for a topology on EX. Define the function πx.EX->X by
πz{&f x) = x. Also, {oUΠ TΓxXF): U, V open in X} is closed under
finite intersection and is an open basis for a topology on EX; EX
with this topology is denoted as aX. The function aX —> X: p —> π x(p)
is denoted as α x. If X is Hausdorff, then EX and αX can be
identified as spaces with LX as the underlying set. So, aX and i?X
extend the construction of Iliadis [7] and Mioduszewski and Rudolf
[9]. Note that for open U in X, πx(oU) = clz Z7 = ax(oU).

PROPOSITION 1.3. Lei X be a space.
(a) [11] αX is extremally disconnected and ax:aX—>X is a

separating, perfect, irreducible continuous surjection.
(b) EX is extremally disconnected and completely regular and

πx:EX—*X is a separating, perfect, irreducible θ-continuous
surjection.

Proof. The proof of (b) parallels the proof of part (a) (see

[Π]). D

An open set U in a space X is called regular-open if U =
int (cl U). The set of all regular-open sets is a basis for a topology
on the underlying set of X; Xs is used to denote this new space.
A space X is said to be semiregular if X = Xg; in particular, it
follows that Xs is semiregular. If A £ X, then int3 A(resp. cls A) is
used to denote the interior (resp. closure) of A in Xs.

PROPOSITION 1.4.

(a) For a space X, ( c l ) , = EX.
(b) An extremally disconnected, semiregular space is completely

regular (not necessarily TΊ).
(c) A space X is extremally disconnected if and only if Xs is

extremally disconnected.

Proof. Part (a) follows from this easily proven result: If U
and F are open sets in X, then ax\U f] V) Q oUΠ ax\V) Qo(UnV)
by Proposition 1 of [11], and c[aXax\U) — oU. Part (b) follows since
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a regular-open set in an extremally disconnected space is cl open.
The proof of (c) is easy. •

Thus, for a space X, the identity function sx:aX — > EX is a
continuous Injection and sx

ι is ^-continuous. So, a function F: aX -^
aY induces the same function G: EX —» EY such that sγ°F = Gosx

and conversely, a function G: EX—>EY induces a function F: aX—>
aY such that sγ ° F — Go sx. If /: X —> Y is a function, then /° αΓ =
dyoF if and only if πγ°G — f°πx. If f°aγ = aγoF, F is called an
a-lίfting of /, and if /°ττγ = πγ°G, G is called an E-lifting of /.

PROPOSITION 1.5. Le£ X and Y be spaces and F: aX—> aY and
G: EX —> EY be functions such that sγoF = G°sx. Then

(a) F is θ-continuous if and only if G is continuous.
(b) If f: X—> Y is continuous, and G is a continuous E-lifting

°f f> then F is also continuous.

Proof. If G is continuous, then F = sΫ^G^Sγ is the composition
of /^-continuous functions and, hence is ^-continuous. If F is θ-
continuous, then G = sY°FoSχ1 is the composition of ^-continuous
functions and so is ^-continuous. Since EY is completely regular,
then G is continuous. To prove (b), suppose / and G are continuous
and U and V are open sets in Y. Now, oil Π aY\V) is basic open
set in aY and F~\oUC\ aY\V)) - F~\oU) Π F~\ay\V)) = G~ι(oU) Π

is open. Hence, F is continuous. •

2* Projective objects* In this section, we show that the projec-
tive objects in TOPsp and the ^-projective objects in TOPS are
precisely the extremally disconnected spaces and use this result to
obtain Sapiro's results [11] about α-liftings. First, a preliminary
result is needed.

PROPOSITION 2.1. Suppose f: X —>Y is a perfect separating sur-
jection, E is extremally disconnected and g: E —> Y is a continuous
function. There is a continuous function h: E-* X such that
foh = g.

(a) I/, in addition^ g is separating, then h is separating.
(b) If, in addition, f is continuous and g is perfect, then h is

perfect.

Proof. Let (P, pE, px) be the pullback of f: X—>Y and g: E—>Y.
By 1.2, pE is a perfect, separating, continuous surjection and px is
continuous. By 1.1, there is a closed set C S P such that pE\C is
irreducible. Let qE — pE\G and qx = px\C. Since C is closed, qE is
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perfect, separating and continuous. By 1.1, qE is a homeomorphism.
Thus, h = qxofe)"1 is continuous and foh = g. If, in addition, g is
separating, then by 1.2, px is separating. So, qx and h are separat-
ing. If / is continuous and g is perfect, then by 1.2, px is perfect.
Since C is closed, then qx is perfect. So, h is perfect. •

The conclusion of Proposition 2.1 is very interesting. Even
though a continuous function h is obtained in 2.1, continuity of /
is not required in the hypothesis.

THEOREM 2.2. The projective objects of TOPS2J are precisely the
extremally disconnected spaces.

Proof. Let X be a projective object in TOPsp. Let U be an
openset in X, V — X\d F, Y the topological sum of cl U and cl F, and
/: Y~-+ X: t-+t. Now, / is perfect, separating, continuous and onto.
Also, the identity function 1X:X—>X is a perfect, separating con-
tinuous function. So, there is a perfect, separating continuous
function h: X-> Ysuch that f^h — lx. It easily follows that h(x) = x
for x e U U F, h(clx U) £ clx U, and h(c\x V) S clx F. Since clx U Π
clx F = 0 in Y, then it follows that clx U Π cl r F = 0 in X. Thus,
X is extremally disconnected. Conversely, suppose E is an extremal-
ly disconnected space. Let f:X-^Y be a perfect separating con-
tinuous onto function and g: E —>Ybe a perfect separating continuous
function. By 2.1, there is a perfect separating continuous function
h:E->X such that foh = g. •

COROLLARY 2.3. The έ^-projective objects of TOPS are precisely
the extremally disconnected spaces.

Proof. The proof of one part of this corollary uses the same
proof as in the first part of 2.2. The other part of this corollary
follows from 2.1. •

The sufficiency part of the next result was established by
UΓjanov [13] and Sapiro [11] by entirely different methods; they
failed to record the reverse implication.

PROPOSITION 2.4. [11] // X and Y are spaces and φ: X-> Y is
a function, then φ has a continuous a-lifting if and only if ψ is
continuous.

Proof. Suppose ψ is continuous. Let/ — aγ and g — φ°ax. By
1.3, / is a perfect separating continuous sur jection. Since g is con-
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tinuous, then by 2.1, there is a continuous function h:aX—>aY
such that f°h = g, i.e., aγoh = φ°ax. So, φ has a continuous α-
lifting. Conversely, suppose h:aX-^aY is a continuous function
such that aγoh — φoax. To show φ is continuous, let A be a closed
set in Y. Since ax is onto, then φ~\A) = ax(h~\aγ\A))); since ax

is a closed map, φ~\A) is a closed set. Thus, φ is continuous. Π

A function φ\ X —> Y" is called a c-function if int <p-1(bd £7) = 0
for each regular-open set ί7. Sapiro [11] showed that a continuous
function has unique α-lifting if and only if it is a c-function. He
proved that being a c-function is sufficient for uniqueness in a straight-
forward manner but needs his multifunction technique to prove it
is necessary. We now use the technique developed in the proof of
Proposition 2.1 to prove the necessity for the following result.

PROPOSITION 2.5. [ll] Let X and Y be spaces. A function
φ: X—» Y has a unique a-lifting if and only if φ is a continuous
c-function.

Proof. Assume φ is continuous and there is a regular-open set
U QY such that int ^ ( b d U) Φ 0 . Since ax is continuous and onto,
then int g~\bά U) Φ 0 where g = <p°ax. Let / = aγ. To show φ
has distinct α-lif tings, it suffices by the proof of 2.1 to find distinct
closed sets C and C" of P such that paX \ C and paX \ C are irreducible.
Thus, it suffices to find closed sets P± and P2 of P and some zeaY
such that p-Yiz) n P t Π P2 = 0 and paZ(Pύ = V*x(P*) = aX. Let P1 =
P\(oU x int g~\bd U)), and for V = Y\cl U9 let P2 = P\(oV x
mtg~\bάU)). The closed subsets Pt and P2 of P and any zeaY
such that aγ{z) e gr(int ^"^bd C7)) have the desired properties. •

3* ^-continuous functions* In this section we introduce the
class of 77-continuous functions and show that several important
classes of functions are ^-continuous. At the end of this section,
we develop a characterization of ^-continuous functions that will
be used in §5 to show that ^-continuous functions have continuous
E-liί tings.

For a space X, RO(X) is used to denote the set of all regular-
open sets of X and for UeRO(X), X\c\ U is denoted by Uc. Thus,
RO{X) is an open basis for the topology on X8.

PROPOSITION 3.1. Let f: X—*Ybe a function and U be open set
in Y. Then

(a) cl int f~\bd U) Π int cl f~\U)= 0,
(b) int /-2(cl C7)\cl int f~\bd U) £ int cl f~\ U), and
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(c) if f is weakly continuous, /(cl f~\ U)) £ cl U.

Proof.

Ad(a). Since /"'(bd U) Π /"'(U) = 0 , then int /-ι(bd £/) n
cl /-'( C7) = 0 . Thus, cl int /-'(bd U) n int cl /-'( U) = 0 .

Ad(b). It suffices to show int /-'(cl U) £ cl /-χZ7) U int /~'(bd U).
Now, int /-'(cl Z7)\cl /-'( U) £ /-'(cl *7)\/-'( t/") = /-'(bd CΓ). Thus,
int /-'(cl C/)\cl /-'(Z7) £ int /-'(bd U) and int /-'(cl 17) £ cl / "W) U
int /-'(6<Z Z7).

Ad(c). Let a e e l / ^ i / ) . If J\x) e V = Y\cl U, then a; 6
int /-'(cl F) S X\cl /-'(C/"), a contradiction. So, /(x) e cl U.

PROPOSITION 3.2. Lei /: X—>- Ybe a weakly continuous function.
The following are equivalent:

(a) f~\U) £ intc\f~\U) for every UeRO(Y),
(b) /(cl int /-'(bd f/)) £ bd ί7 /or every C76 72O(F),
(c) /(cl int /-'(bd [/)) £ cl U for every UeRO(Y), and
(d) /(cl int /-'(cl U)) £ cl [7 /or every ί7 e BO( Y).

Proof. To show (a) implies (b), let x 6 cl int /"'(bd U) and assume
/(») 6 bd U. Then a; e /-'(UϋU°). By (a), x e int cl /-'(U) U
int cl /-'(Ue). So, x e cl int /-'(bd ϋ") Π (int cl /-'(U) U int cl /-'(U')),
a contradiction by 3.1(a). Hence, /(x)ebd ί7.

Clearly, (b) implies (c); since bd U = bd Uc = cl U f] cl Z7% then
(c) implies (b). To show (b) implies (a), let UeRO(Y). Since / is
weakly continuous, f-\U) ^ int f~\cl U)\f-\hdU). By (b) and
3.1(b), f-\U) Q int c\f-\U). Thus, (a), (b), and (c) are equivalent.
Clearly, (d) implies (c). It remains to show (b) implies (d). Let
z e cl int /-'(cl U). If z e cl /-'(U), then by 3.1(c), f{z) e cl U. So,
suppose z $ cl /-'(17). Then i ϊ = int /-'(cl C7)\cl /-'(U) £ int /-'(bd ϋ")
and z 6 clif as z e cl int/-'(cl t/"). So, f(z) 6/(clίf)£/(cl int/-'(bd C/))£
bd U, by (b). Thus, /(cl int /-'(cl i/)) £ cl U and (d) is true. •

DEFINITION. A function /: X —»• F is ^-continuous if for £/, F 6

ΛO(Γ),
( i ) /" ' ( [/)£ int cl /-'([/).
(ii) int cl /"'(UΓ)V) = int cl /-'(U) n int cl /- '(F).
T. Husain called functions satisfying condition (i) almost con-

tinuous functions [6]. An 37-continuous function satisfies (b), (c) and
(d) of 3.2 if we can show 57-continus functions are weakly continuous.
More in shown in the next proposition.

PROPOSITION 3.3.
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(a) A continuous function is rj-continuous.
(b) // /: X —> Y is a function and f~\ U) is open for all U e

RO(Y), then f is Ύ]-continuous.
(c) An ^-continuous function is θ-continuous and hence weakly

continuous.

Proof. Clearly (a) follows from (b). A function satisfying the
hypothesis of (b) satisfies (i) of 77-continuity; part (ii) of ^-continuity
follows from the well-known result that if A and B are open, then
int cl (A Π B) = int cl A Π int cl B. To show (c), let /: X -> Y be η-
continuous, $eXand W be an open neighborhood of f(x). Let U =
int cl W and V= Uc. Then ψ = int cl f-\UΠ V) = int cl f~\U) Π
int cl f-\V). Since x e f~\W) Q f~\U) £ int cl f~\U), then x e P -
X\c\intc\f-\V). So, clP-X\intcl/-1(F)^X\/-1(V r), and/(clP)S
Y\V= cl 17= cl TΓ. •

So, by 3.3, the class of continuous functions is a large class of
^-continuous functions. The next lemma is used to develop another
class of ^-continuous functions.

LEMMA 3.4. Let f:X—>Y he a weakly continuous function
satisfying these two conditions:

(a) For each UeRO(Y), f~\U) £ int cl f~\U).
(b) For each nonempty open set W in X, int/(W) Φ φ.

Then for U, VeRO{Y), int cl f~\Un V) = int cl f~\U) flint clf~\V).

Proof. It is straightforward to show int cl / - 1(ί7n V) £
intcl/-W) Π mtclf-\V). Let R = [intcl/^ί/) Π int cl f~\V)]\
clintcl/^CC/n V). It suffices to show that R = 0. Since f{R) Q
f{clf-\U))nf{clf-\V)), then by 3.1(c), f(R) Q cl Uf] cl V. By (a),
RΠf-1(Uf]V) = 0. So,/OR)C(cl£/nclF)\(C/nF). But(clC7nclF)\([/n
V) £ bd U U bd F which is nowhere dense. So, int/CR) C int (bd J7 U
bd V) = 0 . By (b), R = 0 . Π

PROPOSITION 3.5. Let f:X—>Ybe a weakly continuous, closed,
irreducible surjection. Then

(a) / is "η-continuous,
(b) i/ Ϊ7 is o^e^ m Y, then intclf-\U) = int/^Ccl Ϊ7), αwd
(c) i/ 1^ is open in X, int cl W= int cl f-\MW)).

Proof

Ad(a). Let Fei20(Γ) and a e / ^ F ) . Then there is an open
subset U of X containing x with /(U) £ cl V. Suppose W is a non-
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empty open subset of U. Now f$(W) Φ 0 and f${W) £ cl F. So,
f\W)f)Vφ0 implying Wnf'1(V)Φ0. Thus, f'\V) is dense
in U, i.e., f / S c l / ^ F ) . Hence, #e U £ int cl / ^ ( F ) . This shows
/ - 1 ( F ) £ i n t c l / - 1 ( F ) . By 1.1 and 3.4, it follows that / is ^-con-
tinuous.

Ad(b). Let P = int cl f-\U) and Q = int /-'(cl U). By 3.1(c),
P £ Q. To show Q £ P, it suffices to show cl Q £ cl P since P is
regular open. Assume, clQ\clP^ 0 , then Q\clP= W is a non-
empty open set. But by (s),f-\U) £ P; so, TF£ f-\cl U)\f~\U) =
/- 1(bd 17) implying /(W) has empty interior. This contradicts 1.1;
so, P = Q.

Ad(c). It suffices to show that cl W = cl/-*(/#( TF)). Clearly,
cl TF2 cl/^GftfW)- Suppose ^ ̂  Γ £ W where Γ is open. Then
φ Φ MT) and φ Φ f-\f${T)) £ Γ Π / " ^ ^ ) ) . Thus, f-\MW)) is
dense in W implying TF£cl/~1(/#(Wr)). So, clTΓScl/^ί/ftί^))- •

Using 3.4 again, we obtain another large class of ^-continuous
functions.

PROPOSITION 3.6. A weakly continuous, open function is TJ-

continuous.

Proof. Suppose /: X —> Y is open and weakly continuous, and
let UeRO(Y). Clearly, 3.4(b) is satisfied. By weak continuity,
f-\U) £ mtf-\el U). Now, /(int f-\bά U)) is open and contained in
bd U. Since int (bd U) = 0 , then int f-\bά U)=0. Thus, /"1(ί7)£
int/-1(clf7)\clint/-1(bdί7), and by 3.1(b), /-1(i7)£intcl/-1(Z7). D

LEMMA 3.7.

(a) // U is open and A is closed in a space Y, then ds U — cl U,
ints A = int A, and int8 cl3 U = int cl U.

(b) For a space Y, RO(Y) = R0(Y8).
(c) Let τ and σ be topologies on a set X. Then RO(X, τ) —

RO(X, σ) if and only if the identity functions i: (X, τ) -» (X, σ) and
ί"1: (X, σ) —» (X, τ) are η-continuous.

(d) If f: X —> Y is a Θ-continuous, closed bijection, then for
open U in Y, f~\intγ c\γ U) = intx c\x f~\U); in particular, for
UeRO(Y), f-\U)eRO(X).

Proof. The proof of (b) follows from (a); the proof of (a) is
straightforward and left to the reader.

Ad(c). The necessity of the conditions follows from 3.3(b). To
prove sufficiency, suppose i and i"1 are ̂ -continuous. By Proposi-
tion 1 in [3], i is a homeomorphism between (X, τ$) and (X, σs). So,
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RO(X, τ8) = RO(X, σ.). By (b), it follows that RO(X, τ) = RO(X, σ).
Ad(d). Let τ be the topology on X. We can assume Y = X

with the topology σ and / = i is the identity function on X. Since
/ is closed, then τ £ σ. By (c), τ8 = 0 s. Since σβ £ τ £ σ, then by
(a) for U 6 σ, it follows that int, cl, U = intΓ clΓ 27 = int. cls Ϊ7.

Let /: X-> Γ be a function. Now, {TF(Ί f'\U): W open in X,
£7eϋ?O(Y")} is closed under finite intersection and forms a basis for
a topology on the underlying set of X. Let X* denote X with this
new topology and /*: X* -> Y be defined by /*(#) = /(#). Note that
the identity X* —>X is continuous. Now /* is ^-continuous because
it satisfies the hypothesis 3.3(b). For A £ X, let cl*A (resp. int* A)
denote the closure of A in X* (resp. interior of A in X*).

THEOREM 3.8. Let f: X-+Y be weakly continuous. The follow-
ing are equivalent:

(a) / is Ύ]-continuous,
(b) the identity function h:X—>X* is weakly continuous,
(c) (X*)s - Xs, and
(d) ΛO(X*) = BO(X).

Proof. The equivalence of (c) and (d) follows from 3.7(b). By
3.7(c), (d) implies (b). Suppose h is weakly continuous. Since
h"1: X* -> X is continuous, then h is also closed and irreducible. By
3.5, h is ^-continuous, and by 3.7, RO(X) = RO(X*). So, (b) and
(d) are equivalent. Suppose (c) is true. Since topology of XQ
topology of X* and (X*)S = X8, then by 3.7(a), it follows that for any
open set W in X*, cl* TΓ=cl W=cls W and hence int* cl* W=int cl W==
int scl s W. If UeRO(Y), then (f*)-\U) is open in X* and/"1(t7) =
(/*)-W)£int*cl*(/*)-W) - int elf-\U). Also, if U, VeRO(Y),
then int cl f-\Un V) = int* cl* (f*)-\U n TO = int* cl* (f*Y\U) Π
int* cl* (/*)-1(F) = int cl /^(I/) Π int cl / ^ ( F ) . Thus, (c) implies (a).
To show (a) implies (b), suppose / is ^-continuous. Let xeX and
W f] f~\V) be a basic open subset of X* containing h(x) — x. Since

/ is 77-continuous, we may assume that WQ intQ\f~\V). We will
show that h(W) £ cl* (W n /-'(F)). Let 2 6 TF and S n /"'(Λ) be a
basic open subset of X* containing h(z) = z; again, we may assume
that S £ int cl f~\R). We will show that S n f'\R) Π TFΠ /- '(F) ^ 0 .
Now, ^ e S ί l TF£int cl f~\R) n int cl /-^ F) = int cl/-1 (Λ n F). Thus,
φ Φ S n W n /-x(i2 n F) = S Π TF n f-\R) n /-^ FT). This completes
that the proof (a) implies (b). Π

COROLLARY 3.9. A function f is ^continuous if and only if f
is a composition sogoh where g is a continuous function and both
s and h are θ-continuous, closed, bisections.
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Proof. Let/:X—>Ybe ^-continuous. As noted in the proof of
3.8, h:X->X* is weakly continuous, closed and irreducible. By 3.5
and 3.3(c), h is ^-continuous. Now, f = f*°h. Let g: X* —> Ys be
defined by g(x) = f*(x) for a e Γ , and let s: Y8->Y be identity
function. By the definition of /*, it follows that g is continuous.
By 3.7(a), s is ^-continuous; since s*1 is continuous, then s is an ψ
continuous, closed irreducible surjection. So s is ^-continuous by
3.3(c). Now, /* = so0. Hence, f=sogoh where g is continuous
and s and h are (^-continuous, closed, bisections. Conversely suppose
f=sogoh:X->Y where g: R —> T is continuous and both s: T -> Y"
and h:X-+R are ^-continuous, closed bisections. Let £7, FeίJO(F).
By 3.7(d), β-̂ CΓ) is open in T. Since flr-1(s-1( 17)) is open, then
intΛ clΛ g-\s~\ U)) 2 g~\s-\ U)); it follows that int* clx f~\ U) =
Λ-Xint^claflr-Xβ-X^)))^*-1^-^-^^))) = f~\U). Since ^(s-^C/n F))
is open, then mtBdBg-\s-\Un V)) = intΛclΛflf-1(Z7)nintΛclBflF--1(8-1(y)).
Thus, int x clx f~\Un V) = h-ι{ιntB dΛg-^-KU))) Π fc-^intβ clΛ^^(s-1

(F))) = int x clx /-1(ϋ') Π int x clx / ^ ( F ) . So, / is ^-continuous. Π

4* Uniqueness of (EX, πx). In this section, we prove that the
absolute (EX, πx) as constructed in § 1 for an arbitrary space X is
unique with respect to EX being extremally disconnected, completely
regular and πx being perfect, irreducible, separating and ̂ -continuous.

A major advantage of using the absolute EX as opposed to aX
is that when X is Hausdorff, EX is Tychonoff (see [7]) and has
Hausdorff compactifications. In particular, the Stone-Cech compacti-
fication β EX is the Stone space of the Boolean algebra of regular
open sets on X; thus, a natural link between a Hausdorff space X
and the Stone-Cech compactification of the extremally disconnected
space EX exists. In [2], this link is utilized to give a characteriza-
tion of Martin's Axiom in the class of if-closed spaces.

For a function /: Y-^X, Y' is used to denote the underlying
set of Y plus the topology generated by the basis {f~\V) Π U: V
open in X and U open in Y}. Define / ' : Y' -+ X by f(y) = f(y) for
all y e Y\ Clearly, / ' is continuous. For A £ Yf, int' A(resp. cΓ A)
is used to denote the interior (resp. closure) of A in Y'. Note that
Y' is slightly different from F* as developed in §3 for 3.7.

PROPOSITION 4.1. Let f: Y-+X be a closed irreducible, θ-con-
tinuous surjection.

(a) If W is open in Y and V is open in X, then int' cΓ (W Π

(b) (ro.= Y..
(c) If f is compact and separating, then f is a perfect irredu-

cible separating continuous surjection.
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Proof. Part (b) follows from (a), and part (c) is straightforward
(even through many details must be checked). To show (a), first
note that by using the proofs of 3.5(a) and 3.4(b), we can show that
/ is slightly stronger than ^-continuous, i.e., for arbitrary open
sets U, V in X, f satisfies:

( i ) fΛ U) £ int cl f-\ U) and
(ii) int cl f-\UΠ V) = int cl f~\U) Π int cl f~\V).

Now, we will show for an open set W in Y and open set V in X,
cl' (W n f~\V)) = cl (W n f~\V)). Clearly cl' (W n f~\V)) £ cl (W n
f~\V)). Let yecl(WΠf-\V)) and yeTnf~\R) where T is open
in Y and # is open in X. Since /^CR) £ intcl/-*(#), then ΓίΊ
int cl f~\R) n TΓ ΓΊ /-'( F) ^ 0 . Assume /#(Γ) Π R Π /#( TF) Π F = 0 .
Then by (ii), int cl f~\MT)) n int cl f~\R) n int cl /-^/^TF)) Π
int cl f~\V) = 0 , and by 3.5(c), int cl Γ Π int cl /-χ(i2) Π int cl W Π
int cl f~\ V) — 0 . This latter equality contradicts the fact that
T Π int df-\R) ΓΊ TΓΠ f~\V) Φ 0. To complete the proof of (a), it
suffices to show that int' (cl (Wn f~\V))) Q int (cl (Wn /"'(F))).
Suppose φΦTΓ\ f~\R) £ cl ( f n / 1 F ) ) where T is open in Y and
i? is open in X. By (i), T Π Z" 1 ^) £ Γ Π int cl /-'(Λ) £ int cl (T Π

£ int cl (TF n /~x( F)). Thus, int' (cl (W Π f~\ V))) £ int cl (W Π

THEOREM 4.2. Lei X be a space. If Y is extremally discon-
nected, completely regular and if f: Y-+X is a perfect irreducible
separating θ-continuous surjection, then there is a homeomorphism
h: EX-^ Y such that f°h — πx.

Proof. By (4.1), / ' : Yf —>X is a perfect irreducible separating
surjection and (Y')t = Y8. Since Y is completely regular, then
Ys = Y. By 1.4, Yf is extremally disconnected. By 2.1, there is a
perfect separating continuous function h:aX—> F ' such that / Ό
h = ax. Since α x is irreducible, then it follows that h is onto and
irreducible. By 1.1, h is a homeomorphism. Thus, h: (aX8) -> (F') s

is a homeomorphism. But EX = {aX)? and Γ = (Γ').. So, h:EX-^Y
is homeomorphism, and since /Όfe = α x, it follows that f°h = πx. •

REMARK. 1. The Stone-Cech compactification βY can be con-
structed for a completely regular space Y which is not necessarily
Hausdorff. This can be accomplished by using the same construc-
tion in 3.8 in [7]. This extension βY will be compact, completely
regular, and Hausdorff except for Y (i.e., if a, beY, aφb, and
α ί 7, then a and b are contained in disjoint open sets in βY— see
[8]). Now, βY has this maximal property: If bY is a compact,
completely regular extension of Y, there is a continuous function
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/: βY->bY such that f(y) for y e Y. This maximal property shows
that βY is the usual Stone-Cech compactifίcation of Y when Y is
Tyehonoff. Also, if b Y is Hausdorff except for Y, then / is onto.
Thus, for a non-Hausdorff space X, βEX is compact, completely
regular and Hausdorff except for EX.

Let GX be used to denote the Stone space of the complete
Boolean algebra R0(X) of regular open sets of X. Then EX can
be enlarged by defining ΘX = {(^, x): ^ e GX and x e ad ^ } u
{(^, O O ) : ^ / G G I and a d ^ = 0} with the topology generated by
{oil: U open in X) where o£7 = {(^, 2) 6 0X: t / e ^ } . Now ΘX is an
extension of EX, and ^EAΓ and 0X are equivalent extensions of EX,
i.e., there is a homeomorphism between βEX and #X which fixes
the points of EX.

Also, if Y is a completely regular space, there is an equivalence
relation on Y and a topology on the induced partition Yt such that
Yt is Tyehonoff and Y and Yt have the same ring of real-valued
continuous functions via the induced quotient function σ: Y—>Yt,
i.e., if / is a real-valued continuous function on Y, then there is a
unique real-valued continuous function g on Yt such that g°σ — f
(see 3.9 of [4]). It follows that (ΘX)t = GX, and by the previous
paragraph, (βEX)t = GX

Thus, when X is not Hausdorff, there is a theory of completely
regular, compactifications of EX which is similar to the Hausdorff
compactifications of (EX)t and there is a natural link between βEX
and GX.

2. We are indebted to the referee for noting that another ap-
plication of Proposition 4.1 is that the existence and properties of
(aX, ax) follows from the existence and properties of (EX, πx); in
particular, in the notation of 4.1, aX — (EX)'. This construction
of aX seems more natural even though aX was discovered first.

5* Continuous ^liftings* In this section, we give a necessary
and sufficient condition for a function /: X -» Y to have a continu-
ous E-lif ting in terms of a Boolean algebra homomorphism ψ: RO( F)—>
R0(X).

We show that every ^-continuous function has a continuous E-
lifting and that a function has a continuous uplifting if and only
if it is a composition of ^-continuous functions. Also, we give an
example of ^-continuous surjections whose composition is not ψ
continuous. Finally, we prove that a necessary and sufficient con-
dition for an ^-continuous function to have a unique continuous up-
lifting is being a c-function.

For a space X, let R0(X) denote the set of all regular-open sets
in X and O(X) the set of all open sets in X. Let S(RO(X)) denote
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the Stone space corresponding the Boolean algebra RO(X) (see [14]).
The elements of S(RO{X)) are regular-open ultrafilters on X; the
topology on S(RO(X)) is generated by {λ(C7): Ue RO(X)} where
X(U) = {%S e S(RO(X)):

LEMMA 5.1. Let X and Y be spaces and f:X—>Y be a func-
tion. If there is a continuous function F: S(RO(X)) —> S(RO(Y))
such that for ^ e S(RO(X)) and xe&d^, f{x) e ad Fi^f), then f has
a continuous E-lifting.

Proof. For <%f eS(RO(X)), <&' = {UeO(X): intcl Ue^} is an
open ultrafilter; for each open ultraίilter ^ on I , F ίl RO(X) is
a regular-open ultrafilter and {W~ V\RO{X))' = <W (see [10]). Define
G:EX-^EY by G(5T~, x) = (Fφr Π R0(X))', f{x)). G is a well-
defined function since ad <%s = ad^r ' for ^ eS(i20(-X")). It is left
to the reader to show that G is continuous and πγoG = f°πx. •

LEMMA 5.2. Lβί X and Y be spaces. If φ Φ S £ R0(Y) such
that Y\cl UeS whenever UeS and <p: S —> R0(X) satisfies:

(1) UeS implies φ(Y\cl U) = X\clφ{U) and
( 2 ) /or I7lf , Un 6 S, Z7i Π * Π Un = 0 ίmpίώs φ(C7x) n Π

φ(Un) = 0 , ί/^β^ 9? &αs α unique Boolean algebra homomorphism
extension to the Boolean subalgebra generated by S.

Proof. This follows from 2.15 in [1].

THEOREM 5.3. A function f:X—>Y between spaces has an E-
lifting if and only if there is a function φ: R0(Y) —> 0{X) such
that for UeRO(Y),

(1) f(c\φ(U))QclU,
(2 ) φ(U)Π φ(Y\cl U) = 0 and cl (φ(U) U φ(Y\cl U)) = X, and
(3) for Ul9 - ,UneR0{Y), U1Π- nUn=0 implies

= 0 .

Proof. Suppose/ has a continuous ^/-lifting G: EX-> EY. Let
UeRO(Y). Then oZ7 is clopen in i?Yand there is a unique regular-
open set V in X such that oV = G~\oU). Let φ{U) = V. Then 9
satisfies (1), (2), and (3). Conversely, suppose there is a function
φ: R0(Y)-> 0(X) satisfying (1), (2), and (3). Define ψ: R0{Y) -»
R0(X) by ψ<ϊ7) = intcl?>(l7). By (2), it follows that ψ(Y\c\ U) =
X\c\ψ(U). If ϋ 1 n Π t 7 n = 0 , then ^ = intcl(^(ί71)n Π^(i7 )) =
int cl (p(Ux) Π Π int cl φ(£7J = ̂ (Ϊ7i) Π Π ψ(Un). By Lemma 5.2,
ψ i s a Boolean algebra homomorphism. By Stone's Duality Theorem,
there is a continuous function F: S(R0(X)) -> S(R0(Y)) such that for
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<& 6 S(RO(X)), {f(W)\ WeF(^)} £ %r. Suppose <& e S(RO(X)) and
xead^. For UeRO(Y), clψ(U) = c\φ(U) £ f-\cl U). So, xe
Π {clφ(W): WeF(^)} £ n {/"'(el W): We F(^f)\ = /-'(ad F(<%r)). By
Lemma 5.1, / has a continuous uplifting. •

COROLLARY 5.4. Suppose f: X-*Y is a function. Then f has
a continuous E-lifting if and only if there is a Boolean algebra
homomorphism ψ: RO( Y) -» RO(X) such that for U e RO{ Γ), f~\ U) £
ψ(U) £ clψ(U) £ f-\c\ U).

Proof Let φ\ RO{ Y) —> O(X) be the function generated in
Theorem 5.3. Then as in the proof of 5.3, ψ: RO(Y) -> RO(X) given
by ψ{U) — intclφ(?7) is a Boolean algebra homomorphism. It then
follows that for Ue RO(Γ), f~\U) Qψ(U)Q cl ψ(U) £ f-\cl U). Π

The Boolean algebra characterization in 5.4 is used to develop
a corresponding characterization for ^-continuous surjections.

THEOREM 5.5. An rj-continuous function has a continuous E-
lifting.

Proof. Let /: X —» Y be Ty-continuous. Since the composition of
functions each with a continuous uplifting has a continuous up-
lifting, then by 3.9, we need to check when / is continuous and
when / is a ^-continuous, closed, bisection. By 2.4 and 1.5, a con-
tinuous function has a continuous uplifting. So, suppose / is a Θ-
continuous, closed, bijection (so, / is irreducible and perfect). Then
foπx:EX-*Y is ^-continuous, perfect, irreducible surjection. So,
(foπz)':(EXy-*Y is continuous. By 2.1, there is a continuous
function h: (EX)' -> EY such that πγ o h = (/o πx)\ By 4.1, {(EX)')8 =
(EX), = EX since EX is completely regular. Thus, the identity
function j : EX —> (EX)' is ^-continuous; hence, hoj;EX-+EY is θ-
continuous. Since EY is completely regular, then ho j is continuous.
So, πγohoj = (foπx)Όj. But, (f°πz)Όj = foτcx. This shows that
πγ°(h°j) = f°7cx and / has a continuous £?-lifting. •

COROLLARY 5.6. A function f: X—> Y has a continuous E4ifting
if

(a) f is a weakly-continuous, closed irreducible surjection,
or

(b) / is weakly-continuous and open.

Proof. The proof follows from 3.4 and 3.5.
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If X and Y are spaces, then 1 0 7 is used to denote the
topological sum of X and Y; the underlying set of J φ Γ i s I x
{1} U Y x {2}. If /: X-> Z and g: Y->Z are functions, then f + g:
1 0 7 - ^ Z i s defined by (/ + g)(x, 1) = f(χ) and (/ + g)(y, 2) - g(y).
If h: Y-+W, then f®h:X@Y-*Z@W is defined by (/®Λ)(α, 1) =
(f(x), 1) and (f®h)(y, 2) = (ft(i/), 2). The next lemma is used in the
proof of the characterization theorem for continuous i?-liftings.

LEMMA 5.7. Let f: X->Ybe a function, j : Y->Ybe the identity
function, and g = / + j : X + Y-+Y. Then

(a) / is ^-continuous if and only if g is η-continuous,
(b) / is the composition of ^-continuous functions if and only

if g is the composition of ψcontinuous functions, and
(c) / has a continuous E-lifting if and only if g has a continu-

ous E-lifting.

Proof. The proof is long but straightforward and left to the
reader.

It is important to note that the function g in 5.7 is a sur-
jection.

THEOREM 5.8. Let f:X—*Y be a function. The following are
equivalent:

(a) / has a continuous E-lifting,
(b) / is the composition of ^continuous functions, and
(c) / is the composition of continuous functions and θ-continuous,

perfect, irreducible surjections.

Proof. By 5.5 and 5.6, (c) implies (a), and, by 3.9, (b) implies
(c). To show (a) implies (b), suppose / has a continuous l£-lifting.
By 5.7, we can assume that / is onto. By 5.4, there is a Boolean
algebra homomorphism φ: EO(Y) -> RO(X) such that for UeRO(Y),
f-\U) Zφ(U)Q cl φ(U) £ f-\cl U). Let X+ denote the underlying
set of X plus the topology generated by the basis {φ(U): UeRO(Y)}.
Let i+:X-*X+ be the identity function and f+:X+-*Y be defined
by f+(x)=f(x). For AQX+, let cl+ A (resp. int+A) denote the
closure of A (resp. interior of A) in X+. Clearly i+ is continuous.
Next we will show that / + is ^-continuous. Let UeRO(Y). To
show (/+)- 1(ϊ7)£int+cl+(/+)- 1(ϋ r), it suffices to show <p(U) £
cl+ (f+)~\U). Let xeφ(U) and let φ(W) be a basic open set contain-
ing x where WeRO(Y). Then xeφ(U) n φ{W) = φ(UΠ W). So,
Un WΦ 0 implying φ Φ (f+)'\UΠ W) £ (f+)-\U) Π <p(W). Thus,
<p(JJ) Q cl+ (f+)~\U) and (f+)~\U) S int+cl+ (f+)-\U). Also this



294 R. F. DICKMAN, JR., J. R. PORTER, AND L. R. RUBIN

shows that cl+ φ(JJ) = cl+ (f+)-\U) and int+cl+ <p(U) = int+ cl+ f'\U).
Now, if U, V RO( Y), then int+ cl+ (f+)~\ UnV) = int+ cl+ <p( U n V) =
mt+c\+φ(U) Π int + cl + 9(F) = int+cl+ (f+y'iU) Π int+cl+(/+)-1(Vr).
This completes the proof that / + is ^-continuous. Since f = f+o i+,
then (a) implies (b). •

By 3.9 and the proof of 5.8, the composition of any finite
number of ^-continuous functions is the composition /io/2°/3o/4

where /2 and /4 are continuous functions and fx and /3 are ^-continu-
ous, closed bijections. However as shown by the next example, the
composition of ^-continuous functions need not be ^-continuous.

EXAMPLE. Let N denote the set of positive integers, and Y —
{(0,1)} U {(1/n, l/m): n, m e N} U {(1/n, 0):neN}Ό {(l/n, - l/m): n, m e N}.
The topology for Γ\{(0, 1)} is the topology inherited from the plane;
a basic open set of (0,1) is Up = {(0, 1)} U {(1/n, -l/m): n> p,meN}
where p eN. Let Y± = cl Ux and Y2 = Γ\£7Ί. Let X1 be the under-
lying set of Yx with YΊ\{(0, 1)} discrete and a basic open set of (0, 1)
is Vp = {(0, 1)} U {(1/w, 0): n ^ p} where p 6 N. Let X = X10 F2.
Let ix: YΊ —> YΊ and j 2 : Y2 —> Yg be the identity functions and # =
ii + Λ: Yi θ Y2 -> Γ. So, gr is continuous. Let s: (Yx)s 0 (Y2)s ->
Yi 0 Y2 be the identity function; since (Yx 0 Y2)s = (Y,)s 0 (Y2)8, then
s is a ^-continuous, perfect, irreducible bijection. The identity
function h: X —> (Yλ)a 0 (Y2)8 is continuous. Let / = g © s o h. By 5.8,
/: X —> Y has a continuous i?-lifting. Now, C/i is a regular open set
in Y and bd C7, = {(1/n, 0): n e N}. Now, int /^(bd E/x) - {(1/n, 0) e Xx:
neN) and (0, 1) 6 cl int f-\bά Ux). But /(0, 1) ί bd t/x, and by 3.2, /
is not ^-continuous. It follows from 3.8 that g°s is ^-continuous
since ((Yi), © (Y2)s)* = Yi 0 Y2. So, / = (gos)oh is the composition
of two ^-continuous surjections but is not ^-continuous.

This paper is concluded with a necessary and sufficient condition
for an ^-continuous function to have a unique continuous JS'-lifting.
This result parallels the corresponding result for α-liftings — see
Proposition 2.5.

THEOREM 5.9. An Ύ]-continuous function has a unique continu-
ous E-lifting if and only if it is a c-function.

Proof. The proof of the sufficiency is the same proof as for
unique α-lif ting. To prove the necessity, suppose f:X-> Y is an ψ
continuous with a unique continuous .^-lifting. By 3.9, f—sogoh
where g: X* —> Y8 is continuous and h:X—>X* and s: Y8-*Y are
^-continuous, perfect, irreducible bijections (and separating since
one-to-one). For UeR0(X*), intfc-^bd U) = intfa-^cl U)\h~\U)) =
int Λ-^cl U)\c\ h-\U). By 3.5, int fc-^cl 17) = int cl h-\U). So,
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int h-Xbd U) = 0 and h is c-function. Similarly, s is c-function.
By sufficiency portion of this theorem, h and s have unique con-
tinuous ϋMiftings H and S, respectively. By 4.2, H and S are
homeomorphisms. Assume Gλ and G2 are direct continuous α-liftings
of g. By 1.5, there are distinct continuous iMiftings Fλ and F2 of
g. Since S and H are homeomorphisms, SoF^H and SoF2oH are
distinct continuous uMiftings of /; this is a contradiction as / has
a unique continuous i?-lifting. So, g has a unique continuous α-lifting.
By 2.5, # is a c-function. Let UeRO(Y). Then ί7 is open in Ys,
and by 3.7, bd U = bd8 i7. So, int /^(bd Σ7) £ int* ( / ^ ( b d IT) =
int* g~\hά8 U) = 0 implying g is a c-function. Π
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