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CONCERNING THE MINIMUM OF PERMANENTS
ON DOUBLY STOCHASTIC CIRCULANTS

GERALD E. SUCHAN

Let Pn be the permutation matrix such that (Pn)tj — 1 if
j = i + l(mod n). Mine [2] proved that the minimum of the
permanent on the collection ofn'Xn doubly stochastic
circulants aln + βPn + γPl is in (1/2M/2"-1], and if n ^ 5
then the minimum is not achieved at (1/3)In + (U3)Pn + (l/3)Pπ

2.
This paper proves that if n ^ 3 then the minimum of such
permanents is less than l/2"-1, and if n e {3,4} then this
minimum is uniquely achieved at (1/3)Jn + (l/3)Pn + (1/3)PTC

2.

Introduction* Let w be a positive integer, let In denote the
n x n identity matrix, and let Pn denote the full cycle permutation
matrix such that (Pn)tj = 1 if j = i + l(modw). Mine [2] studied
the permanent of circulants aln + βPn + ΊPI and proved the follow-
ing three theorems:

THEOREM 1. If n^S then

per (aln + βPn + yPξ) =

THEOREM 2. // a, β, 7 are nonnegative then

— < min per(α/.

THEOREM 3. // a, β, 7 are nonnegative, n^h, then

min per (α/. + /3PM + γP*) < per ( i-/ . + -|-P. + i -

MAIN RESULTS. Let S = {(α, 7) |0 ^ α, 0 ^ 7, α + 7 ^ 1}, and let

/„ denote the function on S such that

Λ(α, 7) - per (al, + (1 - a - 7)P, + ΎPS) .

THEOREM 4. If n ^ Z then fn is not minimum on the boundary
of S.

LEMMA TO THEOREM 4. The minimum of fn on the boundary of
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S is Ij2n~ι. If n is even this minimum is achieved only on
{(1/2, 0), (0, 1/2)}, and if n > 1 and n is odd this minimum is
achieved only on {(1/2, 0), (1/2, 1/2), (0, 1/2)}/

Proof. The lemma is clearly true is case ne {1,2}. Suppose
n ^ 3. Since

Λ(i/2, o) = Λ(0,1/2) = -JL < l = /.(l, o) = /.(o, o)/.(o, l ) ,
Δ

then it is sufficient to consider only points belonging to the interior
of the boundary of S. The only real number α satisfying
A / (α, 0) = 0 is 1/2. Therefore, since fn(a, y) = Λ(τ, a), then the
minimum of f% on {(α, y)\ay = 0} is 1/2*"1. Let g(a) = fjβt, 1 — α).
If n is even, put & = n/2 and observe that g(a) = (αfc + (1 — α)fc)2.
If w is odd then g(ά) = α% + (1 — α)\ In either case, 1/2 is the only
real number a such that #'(α) = 0. If n is even then Λ(l/2, 1/2) =
1/2*-2 > 1/2-1, and if n is odd then Λ(l/2, 1/2) = 1/2—x.

Proof of Theorem 4. By the lemma it is sufficient to show
there is a point g of S so that fn(q) < Λ(l/2, 0). Observe that
A / (α, 7) is

- a - 7 + τ/(l - α - τ)2 + 4ατ \ V _ 1 ,\-V _
/ \ 1/(1 - a - 7)9 + 4ατ

n /I - α - 7 - τ/(l - a - 7)2 + 4«7"V"Y_ j, _ - l + α + 37
2\ 2 /

Thus A/ (l/2, 0) = 0 and therefore, since AΛ(α, 7) = AΛ(τ, α), then
(1/2, 0) is a critical point for fn. Now observe that Dltl(a, 7) is

r-2/__χ - l + α + 37 V
/ V v

/ ( l - α - 7 ) 2 + 4α7/2L 2 V 2 / V v

/ ( l - α - 7 )

/l-o:-

^ Γ ( ^ l ) / l α 7 V ( l α : 7 ) + 4 α 7 y Y λ l + α + 37 V
2L 2 \ 2 / \ / ( l ) 2 + 4 /2L 2

((1 - a - τ) 2 +4ατ) 8 / 2
/l-α-7-V / ( l-α-7) 2 + 4α7y-γ-(l-α-7) 2 +4α7+(-l+α + 37)2\Ί
V 2 / \ ((l-α-7)2+4α7)3/2 /J

Thus A.i/ (l/2, 0) = n(n - l)/2-8, and since A,2/.(α, 7) = A,i(% α)
then A>8/«(l/2, 0) = 0. Finally, observe that Dlt2fn(a, 7) is
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nY(n-l)f l-«-Ύ+V/(l-α-Ύ)2+4άΎ\'>-γ_χ - l + 3α: + 7
2L 2 V 2 ) \ Va-a-j

V
Ί - l + α + 37

\ τ / ( l - « - 7 ) 2 + 2

V ((l-α-7)2+4«7)8/2 λl

γγ 1
2L 2 V 2 / V V{l-a-7f+Aa7'

- l + « + 37
v/(l-«-7)2+4«7>

V v /(l-«-

3/2
(( l-α-7) 2 +4α7)

Thus A,,/.(l/2, 0) = TO/2"-8 = A.iΛd/2, 0).
Let if denote the Hessian matrix for /„ at (1/2, 0). H has

characteristic values

λα = -^(n - 1 + V(n - I)2 + 4 )

and

λ 2 = _£_(„ _ 1 _ V(n - I)2 + 4 ) .

Since λ2 < 0 < λx then (1/2, 0) is a saddle point for /„. Let x = (λ2, 1)
and put \x\ = l/λ2 + 1. By Taylor's theorem there is a positive
number δ so that if \x\ < δ then there is a number R(x) so that
Λ((l/2, 0) + x) is

A-Λ(l/2, 0) + i | (x)A/.(l/2, 0) + ̂ -4Σi(»)*(»)iA.yΛ(l/2, 0) + R(x)

and therefore, since (1/2, 0) is a critical point for fn, and since
iia?77 = X2x

τ, then

Λ((l/2, 0) + x) - Λ(l/2, 0) + λ 2M 2 + Λ(a?) .

Since λ2 < 0 then there is a positive number ω < δ such that if
I x | < ω then λ21 x |2 + J2(a?) < 0, and therefore /w((l/2, 0) + x) <Λ(l/2, 0),
Let q = (1/2, 0) + ω | a; l"1^, observe that q e S and that fn{q) < Λ(l/2, 0).

THEOREM 5. If ne {3,4} ίfcβ^ / . is minimum, uniquely, at
(1/3, 1/3).

Proof. In [1] Marcus and Newman proved the van der Waerden
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conjecture true in case n = 3, and hence this theorem is also true
in this case. Let (α, 7) be a point of S at which /4 is minimum.
Observe that /4(α, 7) is

2α4 - 4α3 + 6α2 - 4α + 274 + 672 - 47 - 2O72

+ 8α73 + 16αV + 8α37 - 20α27

that AΛ(α, 7) is

8α3 - 12α2 + 12α - 4 - 2O72 + 87s + 32α72 + 24α27 - 40α7 + I67 ,

and that D2f4(a, 7) is

87s - 1272 + 127 - 4 - 40α7 + 24α72 + 32α27 + 8α3 - 20α2 + 16α .

By Theorem 4, (α, 7) is not on the boundary of S and so Dxf4(af 7) =
0 = DJSa, 7). Thus DJtia, 7) - AΛ(α, 7) = 0 and therefore

(1) (a - 7)(2(α + 7) - 1 - 2α7) = 0 .

Since AΛ(«, α) = (α - l/3)(18α2 - 12α + 3) then the only critical
point on the diagonal of S is (1/3, 1/3). Suppose

(2) Λ^)<

and observe from (1) that

(3) 2(« + 7) - 1 - 2«7 = 0 .

Let β = 1 — a — 7. It follows from (3) that β* = a2 + 72 and from
(2) and (3) that

Λ(α, 7) = /34 + 2/S
2(2«7) + (α2 + 72)2 = 2/32(l - ^) 2 < -^ .

Hence ^(1 - β) < l/3τ/~2~ and therefore

(4) either β < — or β >

It also follows from (3) that 2τ* — 2(1 - /3)7 + 1 - 2/3 = 0 and there-
fore, since 7 is a real number, then

(5) β ^ VΊF - 1 .

Finally, (3) implies that 1 — 2/3 — 2α7 = 0, and therefore since
ay ^ 0, then

(6) 3 ^ 1 / 2 .
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Inequalities (4), (5) and (6) constitute a contradiction.

I would like to thank Professor Sinkhorn for his assistance and
suggestions in the preparation of this paper.
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