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A FIXED POINT THEOREM IN c0

E. ODELL AND Y. STERNFELD

It is proved that if K is the closed convex hull of a
weakly convergent sequence in c0 then each nonexpansive
mapping T: K —> K has a fixed point.

1* Introduction* The general problem with which we are
concerned is: classify the weakly compact convex subsets K of a
Banach space such that every nonexpansive mapping T of K into
itself must necessarily have a fixed point. (Γ is said to be nonex-
pansive if || Tx — Ty\\ <L \\x — y\\ for all x and y in K.) We study
this problem for the Banach space CQ.1

Section II is devoted to the proof of the theorem stated in the
abstract, and § III to some extensions of it. For the present we
wish to recall some known results in this area, and to explain why
the space c0 may be of special interest.

The problem posed above is of the following type: Let K be a
subset of a locally convex topological vector space and T: K-+ K a
mapping. Give conditions on K and T which insure T will have a
fixed point.

The Tychonoff fixed point theorem [14] says if K is compact,
convex and T is continuous then T has a fixed point. Banach's
fixed point theorem [1] says if K is closed and a subset of a Banach
space (more generally a complete metric space) and T is a strict
contraction (\\Tx — Ty\\ ^ a\\x — y\\ for all x, y in if and some a < 1)
then T has a unique fixed point.

Our problem may be viewed as combination of these two the-
orems. Note however that there is a strange feature in this com-
bination: the condition on K concerns the weak topology while that
on T concerns the norm topology. The seeming lack of connection
between these conditions is what makes the problem so interesting
and challenging.

From now on let us assume that K is a given convex weakly
compact subset of a Banach space X and T: K —> K is nonexpansive.
Of course by translation one may assume 0 e K. Then for all 0 <
r <l,rT: K^> K and rT is a strict contraction. By the Banach
theorem rT has a unique fixed point xr and it is easily seen that
||Γscr — xr\\ —> 0 as r—>1. Thus there always exists a sequence of
"approximate fixed points" for T. The points {xr}o<r<1(xo = 0) form
a continuous curve in K. In fact it can be seen that if 0 < r <

1 D. Alspach [0] has recently given the first example of a weakly compact convex
set K and a nonexpansive mapping on it without a fixed point.
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8 < 1 and d = diameter K then ||ccr — xs\\ ^ (s — r)d(l — r)"1. Of
course if {xr} were norm convergent as r —> 1 then its limit would
be a fixed point for T.

The most general positive result appears to be a theorem of
Kirk [10] which says if K has normal structure then T has a fixed
point. (See also [3], [4] and [8].)

A point x 6 K is said to be diametrizing for K if diameter K =
supyeχ || α; — 3/||. if has normal structure if each convex closed sub-
set H of K with a positive diameter contains a point which does
not diametrize H. It is known that if X is uniformly convex then
K has normal structure [2]. An interesting proof of Kirk's theorem
was given by Karlovitz [9] where he proved the following proposi-
tion: if K is minimal with respect to T (i.e., no smaller closed con-
vex subset is T invariant) and {yn} is a sequence in K so that
lim^oo \\Tyn — yn\\ = 0 then for all xeK, lim^oo \\x — yn\\ = diameter
K. In the same paper Karlovitz also showed that normal structure
is not necessary. He was able to renorm l2 so that the closed con-
vex hull of the unit vectors failed normal structure, yet still every
weakly compact convex set had the fixed point property for nonex-
pansive mappings.

However all known positive results depend in some way or an-
other on convexity properties of the norm. Our approach to the
problem has been to study the case X = c0, a space whose norm
fails any nontrivial convexity property. It is also easy to find
Kdc0 that fail normal structure; for example, let K be the closed
convex hull of the unit vectors of c0. (Note that our main result
shows that this set has the fixed point property for nonexpansive
maps.)

But the space c0 possesses another property which in a sense
compensates for the lack of convexity of the norm, and might in-
dicate that each weakly compact convex subset of c0 has the fixed
point property. Namioka [12] proved that in every weakly com-
pact convex subset K of a Banach space X the set D = {xeK; {xn}aK
and xn —> x implies ||ccn — a?|| —> 0} is a weakly dense Gδ subset of K.
We have noticed that if X = c0 then D is in fact norm dense in K.
Of course T is weakly continuous at each point of D. Thus, if one

could find {yn}aK with \\Tyn — yn\\ —> 0 and yn-*yoeD then y0 would
be a fixed point of T. Unfortunately we were unable to do this.

R. Hay don and the authors [5] have recently shown that an-
other class of weakly compact subsets of c0 have the fixed point
property for nonexpansive maps. Namely the "coordinatewise star
shaped" sets K. Say K is coordinatewise star shaped if there ex-
ists a point x 6 K so that if y e K and z lies coordinatewise between
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x and y then 2 e K. Of course such sets need not be convex.
For additional information on the fixed point problem we refer

the reader to [13] and the references listed therein.
We wish to thank the referee for his useful suggestions.

We use standard Banach space terminology as may be found in
[11]. Let us just mention some of the most frequently used nota-
tion. c0 is the Banach space of all sequences of reals converging to
0. For xecQ we denote by x{n) the wth coordinate of x i.e., x =
(x(l), x(2), x(β)9 •••)• II ||oo is the supremum norm on c0, i.e., ||#|l°° —
supJcφOI If x 6 4, II a; ||i = ΣH=i|β(ΌI If E is a subset of the posi-
tive integers N then x\E is the vector defined by x\E(n) = x(n) if
neE and x\E(n) = 0 if nφE. ~E is the complement N/E of E.
For p,qeN, [p, q) denotes the set {ieN: p<>i<q}. For r^>Q[x — r]+

is the vector so that [x — r]+(n) = x(n) — r if x(n) ^ r and

[x — r]+(n) = 0 otherwise. We write xn —> x(xn ^ί x) if (a?n)»=1 con-
verges weakly (weak*) to #.

By conv(Xi)ieF we mean the convex hull of {x^. ieF} and conv(Xi)
is the closed convex hull.

II* The main result*

THEOREM 1. Let K be the closed convex hull of a weakly con-
vergent sequence in cQ, and let T: K —> K he nonexpansive. Then T
has a fixed point.

The general plan of proof is as follows. First we may assume

that K = con{#JΓ=i where xi—>0 and H^H <; 1 for all i. Let {yn}n=i
be a sequence of approximate fixed points for T (\\Tyn — yn\\ —>0).

w
By passing to a subsequence we may assume yn -^ y0 and \\yn—yo\\ —>r.
If r = 0 we are done, so we assume r > 0. We shall construct a
new set {wε}ε>0 of approximate fixed points for T (limβ_»0 \\Twε — wε\\ =0)
so that wε is norm convergent to some z e K.

A special case. Before proceeding to the general case whose
argument is quite technical we briefly sketch the proof in the
special case where K = Kx is the closed convex hull of the unit
vector basis {en}^=1 of c0 (i.e., Kλ = {x = (xlf x2, •) e c0: xt ^ 0, Σ?=i %i ^

1}). An understanding of this easier case will make the sequel
much more comprehensible. Of course we have no intention of
giving all the details twice, and so we shall now take certain liber-
ties.

We shall show that [y0 — r]+ is a fixed point for T. First (since
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w - yQ) we shall assume (by passing to a subsequence) that y09 yt —
Vo, 1/2 — 2/o, are disjointly supported elements in K. (Of course
in the general case we shall need an argument to show they are in
K, and we shall only be able to assume they are "almost" disjointly
supported.) Also let us assume \\yn — yo\\ — r for all n.

Fix 0 < ε < r/2. Define zt = [{yt - y0) - (r - ε)]+ for ί ^ 1 and
z0 = [y0 - (r — ε)]+. Thus {sjΓ=o £ K and are disjointly supported in

FIGURE 1

c0 (see Figure 1). Of course z0 might be 0. Let wε = Σ
m is the largest integer such that wε eK. If we use \\x
the /[ norm of a vector xeK, this means that m is the largest
integer so that ||wβ||i = ΣΓ=o 11^ Ik ^ 1. It is easily seen that for

Γ=ô i where
j_ to denote

and so

Now for 1 ^ i ^ m

\yt - wε\\ = r - ε .

This is because we have divided yt into y0 and yt — y0 and we have
chosen wε to be of distance r — ε from each piece. Thus, by the
nonexpansiveness of T, \\Tyt — Twε\\ ^ r — ε, l ^ i ^ m . \\Tyt — yt\\
could have been made as small as we pleased, thus up to an error
which we can control we also have \\yι — Twε\\ ^ r — ε. Since wε

is the (coordinate-wise) small vector in K among all vectors x with
\\yi — a? II <£ r — ε, (i ^ m), we conclude that Twε Ξ> wε and hence
Twε ^ zt (coordinate-wise) for 0 <£ i ^ m. But the «/s were dis-
jointly supported and their /x norms summed to almost 1 (up to ε/r).
Thus Twε is essentially equal to wε (again up to ε/r). I.e.,
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\\Twε — wε\\ —> 0 as ε —> 0. On the other hand it is easily seen that
wε converges in norm to [y0 — r ] + . This concludes the special case.

The general case. The proof will be divided into two parts.
In the first part we shall study the structure of those weakly com-
pact sets in general Banach spaces which are the closed convex hull
of a weakly null sequence. In the second and more difficult part
we shall apply the results of the first part to prove the theorem
in c0. Our first lemma will enable us to assume yn — yoe K.

LEMMA 1. Let {an}™=1 c JB(/1)
+ = {xe/[:x^ 0, || x W, <: 1}. If no

subsequence of {an} converges in the /γ norm, then there exists a
subsequence {anή of {an}, a vector α°e£(/ 1 ) + and a sequence
-β(<)+ so that

( i ) a**^ a\

( i i ) H« * — /3*IU —̂  0 ,
(iii) βt - a0 e B«)+ for i = 1, 2, . .

Proof. By passing to a subsequence we may assume an —> α° e
II a* - α° \l -> r > 0 and || an \\1^>τ> 0. Clearly || α° ||x < τ (or

else || α n — a°\\1-+0). Let ε < min{r/10, (τ — •||α°||1)/10}, and choose iε

such that Σϊ^i ε «°(i) < ε Choose n£ large enough such that n ^ nε

implies \\(an — α o) | (^ ί £ } | | i<ε, and | | |α* | | i—τ|<ε. Let λε = max{α% α0} e
<. (The max is taken coordinate-wise.) We claim that \\anε — λ 6^ <
2ε. Indeed if / = {ί: i ^ i j and J = N/I, then \\(an* - V)L||i =
Σ J ' (α°(i) - αWt(Λ) < e where J' = {j e J: a\j) > anij)}, while

Σ |α" (i) - α°(i)l < e .

The only problem with λε is that it may happen |]λε | |i > 1. Of
course ]|X̂ ε IU < 1 + 2ε. We wish to perturb λε to get an element in
I?(<)+ which is still larger than α° (and close to anή. To see that
this is possible we must show that the mass of λε which lies above
a° is larger than 2ε. Now this mass is precisely ||λε — a0^ = ||λε||i —
[|̂ °|U, and \\X% - \\a% > Wa^W, - Wa0^ > τ - ε - Hα 0 ^ > lOε - ε -
9ε. Define βε as follows. Let δ = || >-β ||x - 1. We know δ < 2s. If
δ ^ 0 set βε = λε. If δ > 0 then we define βε to differ from λε only
in some coordinates j at which λε(i) > α°(i). Since Σ{i:rf(i)>«o(i)}(λε(i) —
«°(i)) > 9£ it is possible to reduce λε at some of these coordinates
to get βε which satisfies /3εe £(<)+, βε ^ α°, and ||/3ε - λ ε | | < 2ε (and
hence \\βε — an*\\ < 4s). The lemma follows by repeating this process
for ε, -> 0. D

Let X be a Banach space and let {xt}T=i be a weakly null sequ-
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ence in X with \\xt\\ ^ 1 for all i. Define / : < - > X by /(α) =
ΣΓ=i#(i)β< for α e ^ . Clearly / is linear and | | / | | <̂  1. Also it is
easily seen that / |JB(<) + is continuous with respect to the w* topo-
logy in 4 and the weak topology in X.

LEMMA 2. Let K be the closed convex hull of the weakly null
sequence {x%) in X. Let {wn} be a sequence in K. Then if no sub-
sequence of {wj converges in norm in X, there exists a subsequence
{wni} of {wn}, yoeK and a sequence {yn} in K so that

\ \ w

( I ) wn.->y0,

( i i ) \\wn. - yt\\ - > 0 ,
(iii) yt — y0 e K, for all i.

Proof. This follows directly from Lemma 1, the continuity pro-
perties of the function / defined above, and the fact that f(B(/[)+) =
K. D

For K as in Lemma 2 and y e K we define

12/1! = inf{|| α Ik: α 6 B(^)\ f{a) = y) .

LEMMA 3. [y^ has the following properties:

( i ) for each yeK there exists some aeB(^)+ so that f(a) = y

and Hαlli = \y\19

( i i ) \y\ι = 0 if and only if y = 0,

(iii) if y e K, t > 0 and ty eK then \ty\t = t\y \ί9

(iv) if y, z and y + z are in K then \ y + z \x ^ | y |i + I z \19

(v) liίL

Proof. If yeK, BK)+ Πf"\y) is a w* compact subset of /x and
the < norm attains its minimum on such sets. This proves (i) and
the other properties are equally easy to check. •

LEMMA 4. Let K be as in Lemma 2, and let H Φ 0 be a weak-
ly closed subset of K. Let τ — inf\\w\γ\ iv e H) and H' = {ze H:
Isl^r}. Then

( i ) H'Φ 0,

( i i ) H' is norm compact in X,

(iii) if H is convex then Hf is convex too.

Proof, (i) Let {zn}aH such t h a t \zjiiz and choose an <

w i t h \\an\\x = \zn\λ and f(an) — zn. By passing to a subsequence we

may assume an —> a0 and t h u s since H is weakly closed zn =

= zoeH. Clearly Hα 0 ^ <̂  lim | |α % | | i = τ and so |«oli ^ τ-
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By definition of τ , |2 0 | i = T a n d SO ZOGH'.

(ii) Let { z J c ί Γ , and let {an)<z.B{/^+ be so that f(an) = zn,

[la*]]! = l^li = r. Letα % ί —>α°. The argument in (i) shows z0 -
ΊJO

f(a°)eH', and zn.->zQ. We claim \\zn. - z o | | -• 0. But this follows
from t h e observation t h a t \\anί — α°J|i—>0 which is easily checked.

(iii) If y,zeHf and 0 < t < 1, t h e n \ty + (1 - t)z\, ^ t\y\λ +
(1 — £)|s | i = τ and so if i ϊ is convex then by the definition of τ ,
lίy + (1 - ί)«| x = r . D

Let us review the situation at present. T is a nonexpansive

mapping on K = con{#J, &< —• 0 and 11 a?< 11 ̂  1. Let wn be a sequence
of approximate fixed points for T(\\Twn — wn\\ —> 0). If some sub-
sequence of {wn} converges in norm its limit is a fixed point for T.
If not, then by Lemma 2 there exists a sequence {yn} a K so that

ΊJO

Vn -> 1/o, II ϊfyΛ - i/Λ|| -> 0, yn - i/0 6 K for all w, and \\yn - τ/0|| -^ r > 0.
For y e K and s > 0 define

and

ff'(!/, s) - {̂  6 fΓ(i/, 8): 12|x = inf{| w^.we H{y, s)}} .

Clearly H(y, s) is weakly closed and convex and so by Lemma
4, H'(y, s) is nonempty, convex and norm compact in X. The thrust
of the proof will be to show H'(y0, r) is invariant under T, and
hence T has a fixed point (in H'(y0, r)). Unfortunately we can
prove the invariance of H'(y0, r) under T only if we assume X — c0.
This begins the second stage of the proof. We shall henceforth
write || a; || for ||cc||oo.

LEMMA 5. H(y09 r) is invariant under T.

wProof. L e t zeH(y0, r). S i n c e y n -• y 0 a n d \\yH — yo\\->r i t fol-
lows that limsup% \\z — yn\\ ^ r. Indeed, if not then we may assume
without loss of generality that | |s — yn\\ ^ r + ε and \\yn — yo\\ <
r + ε/3 for all n and some ε > 0. Let 0 < δ < ε/3 and choose iδ so
that i > iδ implies \yo(i)\, \z(i)\ < δ (here we use y0, zec0). Choose
nδ so that n ^ nδ implies \yo(ϊ) — yj$)\ < δ for i ^ iδ. Fix n ^ n3.
If i^iδ then \z(i) - yn(i)| ^ |«(i) - yQ(i)\ + |yo(i) - vJ$)\ <r + δ<
r + ε and if i ^ iβ then \z(i) — yn(i)\ ^ \z{i)\ + I2/0WI + Ill/o — vA ^
2δ + r + ε/3 < r + ε, i.e., \\z — yn\\ < r + ε which is a contradiction.
Thus lim^oo \\z — yn.\\ ^ r for some subsequence {τ/%J of {yn}. Hence

ΊJO

r ^ lim \\z - y^H ^ lim \\Tz - Tyni\\ = lim \\Tz-yni\\. But Tz-yKi^
Tz - y0 and so ||Γz - yt\\ ^ r or Tz e iί(y0, r). Π
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It remains only to show that if zeH'(y0, r) (that is \z\x = τ =
inf{{w^: w e H(y0, r)}) then \Tz\± = τ too. The word "only" here is
misleading since this is the most complicated part of the proof. We
shall produce wε e K for ε > 0, so that limε_>o l|wε — z\\ = 0, and dε

oeK
so that lime_0 \\Twε - dε

0\\ = 0, and limε^0 |d;|i = τ. It follows that
Tz — limε̂ oc?o satisfies \Tz\λ ^ τ (apply the function /) and hence
\Tz\, = τ or Tz e H'(y0, r). Fix 0 < ε < (l/100)min(r, r2) and 0 < δ <
ε2/100.

We would like it if y0, yλ — y0, y2 — yQ, were disjointly sup-
ported in c0 (as in the special case). Of course this is not neces-
sarily true. But we may assume they are essentially disjoint. More
precisely we have the following lemma.

LEMMA 6. There exist integers 1 = pt < p2 < pB < and 1 =
Qo < Qi < Q2 < -" and a subsequence {y'n} of {yn} so that for all

( 1 ) If xeBΆ = convia;,},.!,.,,.^, then \\xUtu_v,Λ+l)\\ < — ,

( 2 ) ^

(3) \\(y'^-yo)Un,n+o\\<~

(4) WM - Vo\\ - r\ < £ ,

(5) \\Ty'n-y'n\\<l-n.

Proof. We indicate briefly how to do this. By passing to a
subsequence of {yn} we may clearly assume (4) and (5) hold. Set
q0 = px = 1. Choose q1 large enough so that (2) holds for n = 1.
Choose y[e{yn] so that for all je [q0, &), \{y[ - yo)(j)\ < δ/2. This

w

may be done since (yn — yo)^O. Then let p2 be large enough so
that for i ^ p2, \xt(j)\ < δ/22 for all je[q0, ?i). Let q2 be so large
that (i) if ie[plfp2) then \Xi(j)\ < δ/2 for j > q2; (ii) (2) holds for
n = 2 and (iii) if j ^ q2 then \{y[ — yo)(j)\ < δ/2. We have construct-
ed #0, Qit Qi\ Pu V2 and y[ so that (1) holds for n = 1, (2) is satisfied
for n = 1, 2 and (3) is true for n = 1. Moreover we have one half
of (1) for n = 2 (i.e., i ^ p2 implies | ^ ( i ) | < δ/22 for je[q0, q±)).
Clearly this process can be continued inductively—we omit the
simple details. •
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To simplify notation, we shall assume henceforth that {yn}, not
{y'n}, satisfies the conclusion of Lemma 6. Note that Lemma 6 has
actually blocked the xt'& into sets Bn so that vectors in different
B2n's are essentially disjointly supported in c0. This blocking trick
and the ideas for the more refined versions below come from recent
work in Lp theory. (See e.g., [6] and [7].)

Let 0 = m0 < mx < m2 < be integers so that

( 6 ) (mΛ - mn-1 - 2)"1 < δ/2n and 2~mi < r .

We shall use the following

Observation. Set In = [pn, pn+1), and let v = ΣΠ=i β&t e K with
ΣΓ=i βt ^ 1, βt ^ 0. Then for each n ^ 1 there exists an integer
un, mn-λ<un<mn so that ΣneiUnβt<δ/2" and thus if dn=E?=5ipA«i
for w ^ 1 and d0 - ΣXf ' A«o "then ||v - Σϊ=o d» II < 5.

To see this fix n and note

U Σ / 9 ^ Σ Σ βi ^ (m» - i » r l - 2)

min{ Σ A: mΛ-i + 1 ^ i ^ mΛ — 1} .
ielj

Thus 1 ^ (mΛ - m,-! - 2)Σ ί 6/ i o A for some i0, m»-i < io < wn. Let
uw = i0. Then by (6) Σ*ez A < <5/2\ The last statement of the
observation follows easily. Π

Our next goal is to define wε. This will require some prelimin-
ary work. For each k ^ 1 let zke H\ymh — yOf r — ε), and let βk e
B(/λy be such that zk = ΣΓ=iyβfc(i)^ with || /3* I|x = I^L Fix k. By
the observation we can find mk-γ < uk < mk and mk+1 < vk < mk+2 so
that

( 7) Σ βk(ϋ < S/2k and Σ β\ϋ < S/2k .
ί e l u k

 i e I v k

Set «i = Σ?=*P;i+1/S*(i)«i It is easily checked that | ^ | x =

Zui=pUk+1P W

We claim that

(8) \\(y*k~ Vo) ~ zl\\ £ r - 6 + 2δ .

Indeed, let Lk = [qU]c, qVJ). Then

\\(ymk -Vo- zL)Uh\\ ^ \\(ymh - Vo)Uk\\ ^ ^

(Here we have used (3) and (1).)
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Also, since zk e H'(ymk - y0, r - ε), || ymje - y0 - zk || ^ r - ε and
thus

\\(Vmk - Vo - S J D L J I ^ \\(Vmk ~ Vo- zk)\Lk\\ + | | f e - zί)\Lk\\ ^ r - ε

+ l l l e ^ p Σ p ^ ̂ K U I + HieΣ /9*(i)a?*|| + | | < e Σ β\i)Xi\\ ^ r - ε

(We have used (1) and (7)) (8) follows.
We shall also need

( 9 ) ε/2 ^ \zk\x ^ ε/r + δ .

To see this, note first that

Isίli ^ \\z'k\\ ^ ||?/Wfc - yo\\ - \\vmk - Vo - zk\\ ^ r - δ - (r - ε + 23)

= ε - 3δ > ε/2

by the choice of 3, (8) and (4). To prove the right hand inequality
in (9) we need only show \zk\ ^ ε/r + 3. But ||(ε/r + δ)(ymje — y0) —
(Vmk — Vo) II = (1 — ε/r — 3) \\ymk — l/oll ^ (1 — s/r — 3)(r + 3/2m/c) ^ r —
ε + 3(l/2m* - r) < r - ε by (4) and (6).

T h i s i m p l i e s (ε/r + δ){ym]c - yo)eH(ym]c - y 0 , r - ε) a n d so \zk\1 =
inf{IH: w e JEΓ(ymjb - y0, r - ε)} ^ |(ε/r + 3 ) ^ - yQ\ ^ ε/r + 3, which
proves (9).

Now let z be an element of Hr(yQ, r). We will have to distin-
guish between two cases: If \\yo\\ < r then 0 eH(y0, r) and clearly 0
is the only element in H'(y0, r) . In this case we will have to show
0 is a fixed point for T. The second case \\yo\\ ̂  r turns out to be
slightly more involved. We shall give the detailed proof for the
case where \\yQ\\ ^ r, and leave the case \\yo\\ < r to the reader.

So let us assume \\yQ\\ ^> i\ Note that \\y0 — z\\ = r, for if
\\z — l/oll < r t h e n lite ~ 2/oll ^ r for some 0 < t < 1, thus to e ί%0, r)
and I to|i = t\z\λ = tτ < τ = inf{| w^: w eH(y0, r)} which is impossible.
Define

zΌ = z + (ε/r)(2/0 - 2) = (ε/r)y0 + (1 - ε/? )« .

Observe that zΌeK since it is a convex combination of #0 and
z; moreover Ŝ e H(yOf r — ε) since ||τ/0 — zΌ\\ = (1 — ε/r)\\y0 — z\\ = (1 —
ε/r)'T = r — ε.

Also

(10) |sί|i ^ (1 - εlr)\z\x + ε/r|yo|i ^ (1 - s/r)r + ε/r .

Let k0 be large enough so that
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(11) \\(y0 - sOlcg^^.oo,!! < S and ||sJ|[W4(k(rl),eo>||

and let m be the greatest integer so that

(12) \zΌ\λ+ Σ Ί * « U = 1 — 57 ̂  1 .

By (9) we see that

(13) 0 ^ η ^ ε/r + δ and (1 + m ) < 2/ε .

Define

171

We = (See Figure 2.)

By (12) wε e K. The remainder of the proof involves some es-
timates which, we have a strong feeling, will not thrill the reader.
We apologize for this. To start we wish to estimate \\wε — yQ\\. We
have seen above that \\zΌ — yo\\ = r — ε, and ||zIfcUj4J| ^ δ/2m*k if J4k =
[q^u-v Qm4k+2) (by (1)). The intervals {JJlύζ are disjoint and by (11),
if J = \JΪUζJ,k then \\{z[ - yo)\j\\ < δ. Furthermore | | ^ | | ^ {z'Λ ^

ε/r + δ and so | | Σ ϊ ή : z[k\j\\ ^ ε/r + δ + Σli+C «/2"« < ε/r + 2δ. Put-
ting all this together we have

\wε - zΌ - Σ
o +

Σ z[
k

— max (zΌ- + Σ

The first term on the right side is bounded by r — ε + Σl°=+C
δ/2m^ < r — s + § and the second is bounded by ε/r + 2§ + <5. Thus

(14) | | w e - 2 / o l l ^ r - ε + S.

The above estimates also yield that

(15) ^ max{e/r + 2δ, δ} = ε/r

Thus

and so

(16)

\\wε - z\\ =

VII

zl

I +

i 2-k z±k z = je/r(2/o

ε/r + 2δ ,

lim |wε — z 11 =o ,

- 2 ) 4

which looks promising. One further estimate we shall require is
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(17) \\W - ymj < r - ε + 6<5 for ko^k^ko + m .

To prove this set A = [1, qm ) and B = ~A. ||(<M;£ - j / . J L | | ^
||w£ - ί/o|| + IKl/o - V J U I ^ r - ε + δ + δ/2-** < r - ε + 25 by (14)
and (3). ||(wε - y»α)U|| 5Ξ ||w - (y.^ - y,)\B\\ + lll/oUII-

Now K U I < δ by (2) and ||(ws - (ym4i - 2/0))U|| = max{||(wε -
(tf α - VO))\JJ\, ll(wε - (y»rt - Vo))\B,jΛ\\) where as above J t t = [gUΛ_ιt

QM4M)- \\(WS - (ymik - yo))\jj\ ^ Il(wε-24'*)L4J| + \\(.z'ik-(ymik-yo))\jj\ ^
3δ + r - ε + 2δ = r - ε + 5δ (by the definition of w% (11), (1) and
(8)). Also | | ( ^ - (yaik - yo))\B/JJ £ \\4\B/JJ + | |Σ^ + C ^Ull + | |(». r t -
V»)\B/JJ\ ^ 8 + ε/r + 2δ + δ/2"«* < ε/r + 4δ. Compiling all this we
get (17).

By (17) and (5) we have

\\Tw' - yuj ^ \\Tw° - TymJ + \\TyΛΛ - ymj

^ II w ε - V.J + \\Tymik - 2 / Λ 4 J | ^ r - ε + Ίδ .

Let /3 = {/3jΓ=i 6 jB(/i)+ be such that Tw' = ΣΓ=iA*i and IΓw^ =

By our earlier observation (using (6)) there exist integers 4,
_t < 4 < «»«-! for ko^k^ko + m so that Σίίίί* 1" 1 & < ^Z24*""1 a n d

choose 40 +»+ 1 > m 4 ( 4 o + w ) + 2 such that Σ w t j + m + 1 / 3 , ^ §/2«ίto+»+^ Define

1 ̂ * for fc0 ^ /e ̂  A;o + m and

It follows that

(19) HT-Mf - Tw'\\ < δ .

Now by- (1)

(190 \\diU^kJ\ < «/2"+1 and HdSl̂ .,̂ ,11 < δ .

Thus do and the d| 's k0-^ k •£ k0 + m are "essentially disjointly sup-
ported" each one having essential support in [Q*k,Q<!k+^ Also by
(11) z'o is essentially supported in [1, qm^ _J Q [1, qίk), and for k0 ^
k ^ k0 + m, z'k is essentially supported in [qUk, qVk)Q \qik, Qsk+,) (See
Figure 2.)

By (19) and (18) we get

(20) \\ymιk - ΊW\\ < r - ε + Sδ .

We claim

(21) ||di - (ymk - yo)\\ < r - ε + 10δ k0 ^ k ^ k0 + m .

As usual we shall need several intermediate estimates. Let

Ajj= [q,k, q,k+1). Then \\(dk - 2V)LJ | ^ 3δ/2 by the definition of

TW and (19'). Also \\yo\Ak\\ < δβ by (2), and thus by (20), ||(<ft -



Alt,,

U 4 ( k o + l )

α

V . ^+i+1

' m 4 ( k 0 + l ) + 3 m4(kQ4-2)

FIGURE 2. Let us illustrate by examples how to use Figure 2: zίk0 is pictured supported on [%4fto+l.V4*o]. Thus, sί^ is a convex com-
is pictured supported on

fq^k + ί ) .

bination of 0 and {&*: ie[pUAk +1,2?«4ί.)}, and by (1) it is essentially supported on the interval [gM4Jt,<?β4*) in c0.
iy + l ^ ) ; thus cZl is a convex combination of 0 and {a5: i€[p P )J and is essentially supported in c) ; t h u s dί0 i s a c o n v e x c o m b i n a t i o n o f 0 a n d {xι: i€[ptk + u P s k +i)J a n d i s e s s e n t i a l l y s u p p o r t e d i n c 0 o n LH^k ,HCk



174 E. ODELL AND Y. STERNFELD

s£ \\(di - ϊ V ) L J | + | | (2V - ymik)\Ak\\ + II2/0LJI ^
δ/2 = r - ε + lOδ. Also

\\(dl - (ynik - yo))UAh\\ ^ \\dlUAt\\ + \\(ymtk - yo)Uk\\ ^ δ

by (3), and (19'). This proves (21).
Next we wish to show that

(22) |dίli^KΛ-30δ/r.

To see this define

A = {n e N: \d%{n) - (ymik - yo)(n)\ > r/2} and B = N/A .

If ne A and in addition \d%{n)\ > |(κ,4), - 2/0)(w)|/2 then \d%{n)\ > r/6.
But then \d%l ̂  | | 4 | | ^ \d\(n)\ > r/6 > is^J! by (9) and so (22) holds.
Thus we may assume that for ne A

(23) \dk(n)\ ^ \(ymik - yo)(n)\/2 .

We wish to show that under these circumstances d% + (30δ/r)(τ/W4fc —
y0) e H(ym4k - y0, r - ε). (22 )then follows since zik e H'(ymik - y0, r - ε)
and l ^ l i ̂  l ^ ^ .

Suppose n e A and (yma — τ/0)(w) is positive. By (23) and the de-
finition of A

(24)

and so

\(ym ik - yo)(n) -

^ r — ε +
/o)(») -

i o a -

k - yo)(n) ̂  r/3

+ (30δ/r)(yM.k — yo)(ri)]\

- d'k(n) - (S08/r)(yMik - yo)(n)

(30δ/r)(r/3) = r - ε .

Here the expression in the absolute value sign is positive by (23)
and the definition of A, and we applied (24) and (21) to obtain the
inequality. A similar argument works if (ym4k — yo)(n) < 0.

On the other hand, if n e B then

1(2/^ ~ Vo)(n) - [di(n) + (Z0δ/r)(ymik - yo)(n)]\ £ r/2 + ZOδ/r < r - ε .

This proves (22).

Let up summarize the current situation. Given z e H'(y0, r) we

have constructed vectors wε e K so that (16) limε^0 ||w
e — z\\ — 0, and

vectors dl, dε

k, k0^ k <; k0 + m such that Twε = dε

0 + Σuϊύζ d% satisfies

\\Twε - Twε\\ < δ < εε/100 (by (19)).

By the definition of Twε and (22) we have

1 ^ \Tw% = \dl I + Σ \d'k 1 ^ \di , + Σ l««|i - (30δ/r)(m + 1) .
kk kk
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Thus by (10), (12), (13) and the fact that δ < ε2/100

î oli £ 1 - ΣΊ2U1 + (30δ/r)(m + 1) ^ |«S|, + η + (30δ/r)(2/ε)

^ I zl I, + ε/r + 3 + 60ε/100r ^ (1 - ε/r)r + 2ε/r + ε2/100

+ 60ε/100r .

175

In particular

lim sup |x ^ r Ξ 12 |

We want to show that dleH(y0, r) and so \dl\t Ξg r, from which it
follows that lime_0 |do|i = τ

To this end set / = [1, q,k). \\dl - yo\\ = max{||($ - yM, IK* -
yo)U\}. Now 11 (eft - 2/0)U| ^ | |dsUI + !|ί/oUzll < 2δ by (1) and (2) and
the definition of de

0. Also

\\(dl - yM S \\(di - 2V)WI +

+ KVm* - V*)\i\\ £d + r

(Use (1), (3) and (20)). It follows that \\dl - yo\\ ̂  r, i.e., dl e H(y0, r)
and thus for all ε,

(25) |i Sir and lim

It remains only to show that

(26) l im| |2V - dl\\ = 0 .
ε->0

By the definition of Twε, (28) will follow if we show limε_0||d!|.|| = 0
for all k0 ^ k ^ k0 + m, since the d%9& are essentially disjointly sup-
ported in c0. Using the fact that | ^ | x ^ r , (22), (10), (12) (13) and
δ < ε2/100 we get

^ \Tw% = \dl\x +
ko+ o + o + m

i l i ^ τ + Σ l ^ i l i ^ ^ + Σ l ^ k - 3 ε / 5 r

Σ

3ε/5r + (1 - φ -

-η- α(e) = 1 -

i + |2ίli+ Σ |a:*l

where lime^oα(ε) = limε^0/3(ε) = 0. It follows that (since lime^01 cίS
\im\zl\1=τ)\im^ΰ(Σ1ϊ'LX\d'k\1-Σίϊ'L

+ζ\z'ik\1) = 0. By (9), K J ^
by (22), I <& L ̂  12« L - 30<5/r >

and
| t - (30/100r)ε2. A simple calculation

now shows lim^o | d% |x = 0. Indeed 0 ^ Σ*f" I <ft li - (l««li - S/HWε2) ^
small + (m + l)3ε2/(10r) £ small + (2/ε)(3ε2/10r) = small + (3/5r)ε = small.
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Thus each term is small and so {d8^ is small. Since leZJli^ ||cίε

fc||,
limε_0 \\de

k\\ = 0 too, and (26) follows.

This completes the proof of the theorem in the case \\yQ\\ ^ r.

If Ill/oil < r i β., H'(y09 r) = {0}, we define zΌ = 0, and construct w%

and Twε as before. All the relevant estimates will continue to hold

in this case, many of them trivially so. We omit the details.

Ill* Some extensions of the main result* Clearly not all con-
vex weakly compact subsets of c0 can be represented as the closed
convex hull of a weakly convergent sequence. Moreover some con-
vex weakly compact subsets of cQ are not even contained in the
closed convex hull of any weakly convergent sequence. (Such a set,
for example is K2 = {x e c0: x ^ 0 ΣΓ=i («(i))2 ^ 1}.)

However, the proof presented above can be generalized to in-
clude a larger class of sets. For example the proof of the special
case can be extended to cover the set {x = (x(ί)): x(i) ^ 0 and
ΣS=i 8(i)p ^ 1} where 1 <^ p < 00. More generally we have the fol-
lowing theorem. The set K(p9 w) below is the image in c0 under
the formal identity map of the positive cone of a Lorentz sequence
space.

THEOREM 2. Let 1 ^ p < °o, and let w = (wl9 w2f •) be a de-

creasing sequence of nonnegatives with ΣΓ=i wt = 00. Then the set
K(py w) = {xec0: x ^ 0, ΣΓ=i (x(ϊ))pWi ^ 1} (where x is the decreasing
rearrangement of x) has the fixed point property for nonexpansive
mappings.

Note that for w = (1, 1, •) K{p>w) = Kp = {x 6 c0: x ^ 0 ||α?||̂  ^ 1}
where || | |p is the 4 norm.

Certainly there are other sets k £ c0 with the fixed point pro-
perty to which the above arguments apply. We did not, however,
formally axiomatize the properties required of K to make our proof
work. We suspect that every weakly compact convex K in c0 has
the fixed point property.

REFERENCES

0. D. Alspach, A fixed point free nonexpansive map, to appear.
1. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux
equations integrales, Fund. Math., 3 (1922), 133-181.
2. L. P. Belluce and W. A. Kirk, Nonexpansive mappings and fixed points in Banach
spaces, Illinois J. Math., 11 (1967), 474-479.
3. F. E. Browder, Nonexpansive nonlinear operators in Banach spaces, Proc. Nat.
Acad. Sci., U.S.A., 54 (1965), 1041-1044.
4. D. Gohde, Zum Prinzip der kontractiven Abbildung, Math. Nachr., 30 (1965),
251-258.



A FIXED POINT THEOREM IN Co 177

5. R. Haydon, E. Odell and Y. Sternfeld, A fixed point theorem for a class of star-
shaped sets in G, to appear.
6. W. B. Johnson, On quotients of Lp which are quotients of Sv, Compositio Math.,
34 (1977), 69-89.
7. W. B. Johnson and M. Zippin, On subspaces of quotients of (ΣGn)^p and (IGn)c0,
Israel J. Math., 13 (1976), 311-316.
8. L. A. Karlovitz, On nonexpansive mappings, Proc. Amer. Math. Soc, 55 (1970),
321-325.
9. , Existence of fixed points of nonexpansive mappings in a space without
normal structure, Pacific J. Math., 66 (1976), 153-159.
10. W. A. Kirk, A fixed point theorem for mappings which do not increase distances,
The Amer. Math. Monthly, 72 (1965), 1004-1006.
11. J. Lindenstrauss and L. Tzafriri, Classical Bananch Spaces /. Sequence Spaces,
Springer-Verlag, 1977.
12. I. Namioka, Neighborhoods of extreme points, Israel J. Math., 5 (1967), 145-152.
13. S. Reich, The fixed point property for nonexpansive mappings, The Amer. Math.
Monthly, 8 3 (1976), 266-268.
14. A. Tychonoff, Ein Fixpunktsatz, Math. Ann., Ill (1935), 767-776.

Received September 12, 1978 and in revised form December 2, 1980. Research by
the first author was partially supported by NSF Grant MCS78-01344, and research by
the second author partially supported by NSF Grant MCS78-01501.

UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TX 78712






