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TWO RESULTS ON COFIBERS

HOWARD J. MARCUM

Recently M. Mather has generalized results of T. Ganea
concerning homotopy fibers and cofibers. In this paper we
present two results on cofibers, one of which substantially
extends and clarifies Mather's generalization. Our other
result (which is used to prove the first) in part examines
the mapping cone of the fiberwise join of two maps. Appli-
cations of the results are made to reprove a result of I. M.
James on the fiberwise suspension and to give a characteri-
zation of coreducible Thorn spaces.

l Introduction* One of the principal problems of homotopy
theory is to describe the homotopy fiber Fa and the (homotopy)
cofiber Ca of a given map a:X-^Y. A very useful general result
(indeed, one of the few known) is that Fa is a double mapping
cylinder if X is. As an application of this general result one has
Ganea's classic gem [1]: if p: E —> B is a Hurewicz fibration with
fiber F then the homotopy fiber of the map E U CF —> B is the
topological join ΩB*F,

Interesting enough Ganea's result can be recovered as well from
a cofiber theorem. Namely

THEOREM 1.1. In the diagram

EB

 > E

C-JU B M M

let p be a Hurewicz fibration with EB obtained from p by pullback
along β. Suppose also that g coclassifies β and that e is the canoni-
cally obtained lifting. Then the cofiber of the induced map Ce—>E
is C*F where F is the fiber of p.

Under restrictions imposed by his method of proof, Ganea [2]
proved this theorem when E ~ * (in which case the result has the
form ΣCe ~ C*ΩM). The connection between [1] and [2] was observed
by Mather in [7]. (Actually, Mather states the result only when
p: E-> M is the principal fibration induced by a map M-*Z.) One
recovers Ganea's first result from (1.1) by letting M = E U CF and
C = F = EB (so that e = 1, Ce ~ *).

We prove the following generalization of Theorem 1.1 (with
notation explained later).
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THEOREM 1.2. In the homotopy commutative diagram

el I s

P > E

I 1'
B >M

suppose that the outside square is a homotopy pushout and that the
lower square is a homotopy pullback. If the map §A: A —» EA is a
cofibration then the cofiber of the induced map ^f(e, f)-*E is the
quotient space E(f*pA)/A.

A main ingredient in the proof of (1.2) is Lemma 3.3 below.
The other cofiber result of the title (stated as (3.4)) is an immediate
consequence of this lemma. The lemma itself is quite useful and
seems to have been overlooked heretofore in the literature. In §4
we use it to reprove a result of James on the fiberwise suspension
as well as to give a characterization of coreducible Thorn spaces.

2 Notation* We work in either the category of based or
unbased topological spaces. In each of these categories one has
available homotopy pushouts and homotopy pullbacks. We assume
the reader is familiar with these concepts, but, primarily to fix the
notation we use, we recall some notions concerning homotopy push-
outs. For this purpose we employ the double mapping cylinder
functor. It is denoted ^ ^ ( / , g) in the unbased category and ^Jt(f, g)
in the based category. (The reader is referred to [4] for elementary
properties of the double mapping cylinder functor, albeit there in
an abstract setting.) For convenience the definitions are stated only
in the unbased category.

A square

C '- ~B

(2.1) /
F/f

A a ^ X

with a homotopy F: af ~ βg is called a homotopy pushout if the
map μF: ^€^(/, g) —> X induced by the homotopy F is a homotopy
equivalence. The homotopy class of μF actually depends only on the
track class of the homotopy F. There is a bijective correspondence
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between maps ^ # ( / , g) —> X and triples (α, F, β) as in (2.1) above.
In particular a diagram

having F: af ~ f'y and βg = #'7 induces a map μ(a, 7, /S; i*7):
- ^ ( / , flO —• ^ / ( / ' , 0') whose defining homotopy is the track sum
v F + KΊ where K denotes the defining homotopy of ~ ^ ( / ' , g') and
i0: Ar —> ^£{f\ #') is the inclusion. Observe that if JP is the static
homotopy (so that now af — ffrγ) then i0F + i^7 is track equivalent
to Ky; hence / (̂α, 7, /3; F) is homotopic to μκr. In this case μκr,
denoted μ(a, 7, /3), is said to be induced functorially by the triple
of maps (a, 7, β). If a, 7 and β are homotopy equivalences then by
[4, Theorem 4.9] (or [8, Corollary 9]) μ(a, 7, β; F) is a homotopy
equivalence, a fact we often use without citation.

We shall also need the (fiberwise) join construction for maps.
This is defined as follows.

If a: A-+X and β:B—>X are arbitrary maps then the (fiber-
wise) join a*β: E{a*β) -> X is the map constructed by considering
the (topological) pullback square

P > B

A > X
a

and letting E(a*β) = ^t(A <- P-> B), with E(a*β)-+X being the
projection induced by the commutative square. Note that the fiber
of a*β over xeXΊs a~\x)*β~\x) (the usual join of spaces with the
identification topology). Hence if X = * then E(a*β) = A*B.

We denote by α*ε° the fiberwise join of a:A-+X and the
projection X x S° —> X. One sees readily that .©(α * s°) is homeomor-
phic to ^lΓ(α, α).

Note. The fiberwise join construction lives most conveniently
in the unbased category (for one reason, to maintain its fibration
properties). In this paper whenever E(a*β) (or any unreduced
double mapping cylinder) occurs in a situation requiring base points,
we always take the variable base point as explained in [5] and
assume that all spaces are well-pointed. The use of this convention
to modify our results whenever necessary is left to the reader.
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This must be done for example in the based version of Theorem 1.2.
We also point out that since we use the track calculus (as

opposed to identification map techniques) absolutely no restrictions
on the spaces involved (except possibly well-pointedness) are needed.

3* A lemma* In this section we consider a fixed diagram

(3.1)

with F: af ~ βg and u = vg. (Here the square containing F need
be neither a homotopy pushout nor a homotopy pullback.) From
(3.1) we obtain a square

μ(i, l, v)

(3.2)

with homotopy H given by

H9[c, t] =

^ - ) .

[g(c), 8 + 2ί - 2] , ^ ί

Hs{a) =

Hs(b) = [66, s]

for aeA, beB, ceC, and s,tel.

LEMMA 3.3. Square (3.2) is a homotopy pushout. Moreover if
F is the static homotopy then the homotopy H may be replaced
by another homotopy so that the square (3.2) with μ(a, g, 1; F)
replaced by μ(a, g, 1) is a homotopy pushout.

Proof. Construct the diagram
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μ{a,g,l;F)

X

Now applying in an evident way [8, Lemma 15] twice to this
diagram yields (3.2) as a homotopy pushout. The last statement of
the theorem clearly follows from the first.

COROLLARY 3.4. The maps μF and μ(a, g, 1; F) have homotopy
equivalent mapping cones.

4* The fiberwise suspension* Let ΣF —> E(p * ε°) —* B be the
i p

fiberwise suspension of a given Hurewicz fibration F —> E —> B. Since
E(p*ε°) ~ ^f(p, p), p*ε° has two canonical cross-sections, denoted
§0, £x: B—> E(p*s°). James has studied the composite

τcrB πrΣF - ^ πrE(p

where d is the boundary homomorphism in the long exact homotopy
sequence for p and E is the suspension homomorphism. He proved
[3]:

THEOREM 4.1. Jt°E°d = §1#: πrB-+ πrE(p*e°).

As an application of Lemma 3.3, we wish to give an elementary
proof of this result. Let d: ΩB —> F be defined in the usual way by
choosing a lifting function for p. Let ε: ΣΩB —»B denote the
canonical map. Then (4.1) follows immediately from:

T H E O R E M 4.2. j o Σd ~ §>Q o ε - ^ o ε: ΣΩB -> * ε°).

LEMMA 4.3. Lei w: E U CF—> I 'F V B be given by w(e) = (*, pβ)
/or ee£? α^ώ w[j/, ί] = ([?/, ί], *) /or y e F, O^ί^ l . ΓΛe^ the homotopy
commutative diagram
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EΌCF-^ΣFVB

I
B — - E(p*ε°)

©0

is α homotopy pushout.

Proof. Apply Lemma 3.3 to the diagram

B

I I-
* > B .

3 i
Proof of (4.2). Since the composite ΩB —> F —• E is null homotopic,

we obtain (by fixing a particular null homotopy) a map φ: JίλB —•
E U CF. Moreover, the diagram

ΣΩB -^ΣΩBW ΣΩB

φ\ \Σd V ε

EUCF-^ ΣFVB

is commutative where co is suspension comultiplication. Also the

composite ΣΩB —> E U CF —> B is easily seen to be homotopic to
ε:ΣΩB-+B. Hence (4.2) follows from (4.3).

Let μ: ΣF —> Cp be the canonical inclusion. (When Cp is referred
to as the Thorn space then the map μ is called the homotopy Thorn
class.) Recall that Cp is said to be coreducible if there is a map
r:Cp-+ΣF with rμ ~ 1.

By applying Lemma 3.3 to the diagram

F —-

i 1'
* > B

we obtain:

PROPOSITION 4.4. // q: E U CF —> I'JP7 is the canonical quotient
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map then the following homotopy commutative square is a homotopy
pushout.

E{JCF —U ΣF > ΣF

i I-
B

(Here the map — 1:ΣF—*ΣF intervenes because Cp is defined with
vertex at t = 0.)

We note that this square actually occurs in Proposition 1.6 of
[1], although of course it is not there asserted to be a homotopy
pushout.

COROLLARY 4.5. Cp is coreducible if and only if q: E U CF-^ΣF
factors through E U CF —> B.

COROLLARY 4.6. Suppose Cp is coreducible with retraction
r: Cp -• ΣF. If a e πnB then Ed{a) = -ri,a e πnΣF where ix\ B -> Cp.

Proof. For qoφ — Σd: ΣΩB^ΣF, with φ as in the proof of
(4.2).

Let p: ΩB x F^ F be the usual map with p\ΩBχ{*} — 3: ΩB-> F.
Combining Theorem 1.4 of [1] with Corollary 4.5 above we get the
next result.

PROPOSITION 4.7. If Cv is coreducible then the Hopf construction
on p is trivial:

h(p) ~0:ΩB*F >ΣF .

We remark that using (4.3) one may prove a result slightly more
general than (4.7). Namely, if p*s° is retractible then ft(p)-0:
ΩB*F —»ΣF. (p*ε° is retractible if ΣF is a homotopy retract of
£r(p*ε°).) Since this involves changing the topology on E(p*e°) to
insure (without restrictive assumptions) that p * ε° has the homotopy
lifting property, we omit the proof.

It is interesting to note one further consequence of the results
of this section. Suppose that the base space B of the given fibra-
tion p is a suspension space ΣX. Then as in (5.2) below there is a
clutching function y: X x F -> F and as in [6, §5] one has the
twisted Whitehead product map Wp: X*F->ΣX V ΣF.
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THEOREM 4.8. Let p: E —> ΣX be a Hurewicz fibratίon with fiber
F and clutching function 7: X x F—>F. Then the following con-
ditions are equivalent:

( i ) Cp is coreducible.
(ii) h(y) ~Q:X*F-^ΣF.
(iii) Wp ^ (r V r) © TΓ: X*.F -> i X V ΣF where r denotes para-

meter reversal and W denotes the (untwisted) generalized Whitehead
product map for the spaces X and F.

Proof. By (4.7), (i) => (ii). Also (as is classically known or see
[5]), because the base is a suspension space, μ:ΣF-±Cp is coclas-
sified by h(y): X*F -> ΣF. Hence (ii) => (i). Finally (ii) <=> (iii) follows
from Corollary 4.4 of [6].

5* Proof of Theorem 1*2* In the diagram of Theorem 1.2,

let a = p& and let g be the composite C —> P —• β. By hypothesis,
the square

is a homotopy pushout (for some given homotopy F). We "pullback"
the map p:E-*M over this homotopy pushout (cf. [8, Lemma 31])
to obtain diagrams

M

in which H, G, iΓ, J are homotopy pullbacks, and homotopies Fπ +
α£f + Gp and /Sif + J T + pL are track equivalent. Since F is a
homotopy pushout, [8, Theorem 25] implies that L is a homotopy
pushout; i.e., μL: ^(7, p) —> E is a homotopy equivalence.

Let $A: A-+EA and $C:C-+R be the maps induced by @: A-+E.
In the diagram of Theorem 1.2 let k denote the map P^E and let
U: ke ~ g/ be the given homotopy. Then 8̂  and §c satisfy:

W: βA a
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Because J is a homotopy pullback we have:
(5.1) The homotopies kV + L$c - jT - Wf and U are track

equivalent.
Next we consider the following diagrams:

We apply Lemma 3.3 to each of these diagrams to get (after
modifications) the following homotopy pushouts:

t'-

f)

μ~τ

EA ~E(f*pA)

In the first square, apart from parameter reversal, we have replaced
, Ί) by E and used (5.1) to identify the corresponding map

β, f)->E as μv. In the second square, parameter reversal is
also taken into account and ^(f, π$c) has been replaced by A since
π&c ~ lσ. The corresponding map A-*E(f*pA) may be taken to
be the composite

Now applying Corollary 3.4 twice it follows that μΌ\ ^C(e, f)-+E
and A —> E(f*pA) have homotopy equivalent mapping cones. Finally,
if A—>E(f*pA) is a cofibration (which is the case if $A:A->EA is
a cofibration), then its mapping cone is homotopy equivalent to the
quotient space E(f*pA)/A. This completes the proof of Theorem 1.2.

REMARK 5.2. A topological pullback of a Hurewicz fibration is
a homotopy pullback. Hence if the map p: E —>M in Theorem 1.2
is a Hurewicz fibration then in the proof the squares containing G,
H and J can be taken to be topological pullbacks with G, H and J
being static homotopies. In this case R — C x AEA with π and p
the corresponding projections. The map 7: C XAEA->EB (P = EB) is
called a clutching function for p over M. If furthermore A is a
one point space then M — Cg and e: C —> EB is called the characteristic
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function of p. Of course when B is also a one point space, so that
the base space M is (homotopy equivalent to) the suspension SC,
this use of characteristic function coincides with the usual one.

Suppose now that p: E ->Cg is a Hurewicz fibration with
characteristic function e:C-+EB, as in (5.2). By Theorem 1.2 the
map Ce~^ E has cofiber the topological join C*F where F = p'\*)9

* = the vertex of Ca. Actually this result can be improved if F
itself is a suspension.

THEOREM 5.3. Let p:E—>Cg be a Hurewicz fibration over a
mapping cone with characteristic function e: C —> EB. If p has fiber
a suspension space SD then the map Ce—>E is coclassified by a map
D*C -» C§. Hence E ~ EB \Je C(C) U C(D*C).

The result is classically known when B — * (so that Cg — SC is
a suspension). We omit the proof of (5.3) since a more general
result is proven in [5, (6.3)].
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