MONOTONICITY OF PERMANENTS OF CERTAIN DOUBLY STOCHASTIC MATRICES

DAVID LONDON

Let $p_k(A), k = 1, \dots, n$, denote the sum of the permanents of all $k \times k$ submatrices of the $n \times n$ matrix A.

We prove that

$$(*) \quad p_k(I_n+P_n)=rac{n}{n-k}{2n-k-1 \choose k}, \quad k=1, \ \cdots, \ n-1$$
 ,

where I_n and P_n are respectively the $n \times n$ identity matrix and the $n \times n$ permutation matrix with 1's in positions $(1, 2), (2, 3), \dots, (n - 1, n), (n, 1)$. Using (*), we prove that for $n \ge 3$ and $A = (I_n + P_n)/2$, the functions

 $p_k((1- heta)J_n+ heta A)$, $k=2, \cdots, n$,

are strictly monotonic increasing in the interval $0 \le \theta \le 1$. Here J_n is the $n \times n$ matrix all whose entries are equal to 1/n.

Let A be an $n \times n$ matrix, let p(A) be the permanent of A, let $p_k(A), k = 1, \dots, n$, be the sum of the permanents of all $\binom{n}{k}^2 k \times k$ submatrices of A and define $p_0(A) = 1$. Note that $p_n(A) = p(A)$.

Denote by Ω_n the set of all $n \times n$ doubly stochastic matrices, by J_n the $n \times n$ matrix all whose entries are equal to 1/n, by I_n the $n \times n$ identity matrix and by P_n the $n \times n$ permutation matrix with 1's in positions (1, 2), (2, 3), \cdots , (n - 1, n), (n, 1).

The van der Waerden conjecture asserts that if $A \in \Omega_n$, then

$$p(A) \ge p(J_n) = rac{n!}{n^n}$$
 ,

with equality if and only if $A = J_n$.

A stronger version of this conjecture states that the function

$$p((1- heta)J_n+ heta A)$$
 ,

where A is any fixed matrix on the boundary of Ω_n , is strictly increasing in the interval $0 \le \theta \le 1$. In [2] the above assertion was proved for $A = I_n$ and for $A = (nJ_n - I_n)/(n-1)$. In [5, p. 158, Problem 8] the problem of finding other matrices A, for which the above assertion holds, was posed.

In the present paper we prove this assertion for $A = (I_n + P_n)/2$. We actually prove a stronger result: for $n \ge 3$ and $A = (I_n + P_n)/2$ the functions DAVID LONDON

$$h_{\scriptscriptstyle A,k}\!(heta) = p_k\!((1- heta)J_n+ heta A)$$
 , $k=2,\,\cdots,\,n$,

are strictly increasing in the interval $0 \leq \theta \leq 1$. We start with the following lemma.

LEMMA 1. Let $n \geq 3$ and let $A \in \Omega_n$. If

$$(1)$$
 $rac{p_i(A)}{p_i(J_n)} \leq rac{p_{i+1}(A)}{p_{i+1}(J_n)}$, $i=1,\,\cdots$, $n-1$,

with strict inequality for $1 \leq i < n-1$, then the functions

$$h_{\scriptscriptstyle A,k}\!(heta) = p_k\!((1- heta)J_n+ heta A)$$
 , $k=2,\,\cdots,\,n$,

are strictly increasing in the interval $0 \leq \theta \leq 1$.

Proof. By [4, Lemma 2],

$$h_{\scriptscriptstyle A,k}\!(heta) = p_k(J_n) \sum\limits_{i=0}^k inom{k}{i} (1- heta)^{k_{-i}} heta^i rac{p_i(A)}{p_i(J_n)} \, .$$

Differentiating, we obtain

$$(2) \quad h'_{A,k}(\theta) = k p_k(J_n) \sum_{i=1}^{k-1} \binom{k-1}{i} (1-\theta)^{k-i-1} \theta^i \left(\frac{p_{i+1}(A)}{p_{i+1}(J_n)} - \frac{p_i(A)}{p_i(J_n)} \right).$$

From (1) and (2) follows that

$$h_{\scriptscriptstyle A,k}^\prime(heta)>0$$
 , $k=2,\,\cdots$, n ,

in $0 < \theta < 1$, and so the functions $h_{A,k}(\theta)$ are strictly increasing in the interval $0 \leq \theta \leq 1$.

Doković [1] (see also [3]) conjectured that (1) holds for all $A \in \Omega_n$. Lemma 1 shows that if the Doković conjecture holds for a certain matrix $A \in \Omega_n$, then the functions $h_{A,k}(\theta)$, $k = 2, \dots, n$, are increasing in the interval $0 \leq \theta \leq 1$.

To apply Lemma 1 for a given A, $p_k(A)$, $k = 2, \dots, n$, have to be evaluated. Although the evaluation of $p_k(A)$ is in general rather difficult, explicit formulas for $p_k(A)$ are obvious for $A = I_n$ and can be developed for $A = (I_n + P_n)/2$.

For $A = I_n$, we get

$$p_k(I_n) = {n \choose k}$$
, $k = 0, \cdots, n$.

Noting that

(3)
$$p_k(J_n) = {\binom{n}{k}}^2 \frac{k!}{n^k}, \quad k = 0, \cdots, n,$$

126

(1) follows with strict inequality for $1 \leq i \leq n-1$. Hence, for $n \geq 2$, $p_k((1-\theta)J_n + \theta I_n), k = 2, \dots, n$, are strictly increasing in $0 \leq \theta \leq 1$. For k = n, we get the result of Friedland and Minc [2].

To find formulas for $p_k(I_n + P_n)$, it is convenient first to bring some combinatorial results.

LEMMA 2. Let l and m be positive integers, $m \leq l$. The number l can be represented as a sum of m positive integers in $\binom{l-1}{m-1}$ different ways. (Two representations differing in the order of the summands are regarded different.)

Proof. The lemma can be proved easily by induction. We prefer to use power series technique.

Consider

$$rac{x}{1-x} = \sum\limits_{r=1}^\infty x^r$$
 , $|x| < 1$.

It is obvious that the requested number of representations is equal to the coefficient of x^{l} in the power series of $[x/(1-x)]^{m}$, which is easily found to be equal to $\binom{l-1}{m-1}$.

LEMMA 3. Let k, l and n be positive integers, k < n. Then

$$(4) \qquad \qquad \sum_{m=1}^{\min(l,n-k)} \binom{l}{m} \binom{n-k-1}{n-k-m} = \binom{n-k+l-1}{n-k}$$

$$(5)$$
 $\sum_{m=0}^{k} \binom{n-m-1}{n-k-1} \binom{n-k+m-1}{n-k-1} = \binom{2n-k-1}{k}.$

Proof. We use again power series. To prove (4), we consider

$$(1+x)^l = \sum\limits_{r=0}^l inom{l}{r} x^r$$
 , $(1+x)^{n-k-1} = \sum\limits_{r=0}^l inom{n-k-1}{r} x^r$.

The sum in the lefthand side of (4) is equal to the coefficient of x^{n-k} in the power series of $(1+x)^{n-k+l-1}$, which is $\binom{n-k+l-1}{n-k}$.

To prove (5), we consider

$$rac{x^{n-k-1}}{(1-x)^{n-k}} = \sum_{r=n-k-1}^{\infty} inom{r}{n-k-1} x^r$$
 , $|x| < 1$.

The sum in the lefthand side of (5) is equal to the coefficient of x^{2n-k-2} in the power series of $[x^{n-k-1}/(1-x)^{n-k}]^2$, which is $\binom{2n-k-1}{k}$. The proof of the lemma is completed.

Let n and l be positive integers, $l \leq n$. Let $(n_1, \dots, n_l), 1 \leq n_1 < n_2 < \dots < n_l \leq n$, be a *l*-combination of $1, \dots, n$. Let m be the number of r's, $r = 1, \dots, l$, for which $n_{r+1} \neq n_r + 1$, where n_{l+1} is taken as n_1 and n + 1 as 1. We say that the *l*-combination (n_1, \dots, n_l) has m gaps. Obviously, $m \leq l$ and $m + l \leq n$; i.e., $0 \leq m \leq \min(l, n - l)$.

Take l < n and arrange $1, \dots, n$ in increasing order (clockwise) in a circle. Then the set (n_1, \dots, n_l) and its complement have the same number of (connected) components. This number is the number m defined above as the number of gaps of (n_1, \dots, n_l) .

For example, if n = 6 and l = 3, then the number of gaps of (1, 2, 3) and (1, 2, 6) is 1, of (1, 3, 4) is 2 and of (1, 3, 5) is 3. If n = l, then m = 0.

We denote by $\binom{n}{l,m}$ the number of *l*-combinations of 1, ..., *n* having *m* gaps. $\binom{n}{l,m}$ is thus defined for all nonnegative integers *l*, *m*, *n* satisfying $0 < l \leq n, 0 \leq m \leq \min(l, n - l)$. We also define $\binom{n}{0,0} = 1$. From the definition of $\binom{n}{l,m}$ follows that

$$\sum_{m=0}^{\min(l,n-l)} \binom{n}{l,m} = \binom{n}{l}.$$

In the following lemma we obtain a formula for $\binom{n}{l, m}$.

LEMMA 4. Let l, m, n be positive integers satisfying $0 < l \le n-1, 0 < m \le \min(l, n-l)$. Then

(6)
$$\binom{n}{l,m} = \frac{n}{m}\binom{l-1}{m-1}\binom{n-l-1}{m-1}$$

Proof. $\binom{n}{l, m}$ is equal to the number of *l*-combinations of 1, ..., *n* with *m* gaps. We first find the number of *l*-combinations of the form $(1, n_2, \dots, n_l)$ with *m* gaps.

Arrange the numbers $1, \dots, n$ in a circle and take a *l*-combination $(1, n_2, \dots, n_l)$ with *m* gaps. As l < n, the set $(1, n_2, \dots, n_l)$ and its complement have each *m* components. Let m_i and m'_i , $i = 1, \dots, m$, be the number of elements in the *i*th component of $(1, n_2, \dots, n_l)$ and its complement respectively. We have

(7)
$$\begin{cases} \sum_{i=1}^{m} m_{i} = l , \\ \sum_{i=1}^{m} m'_{i} = n - l \end{cases}$$

It is obvious that there is a 1-1 correspondence between the *l*-combinations of the form $(1, n_2, \dots, n_l)$ with *m* gaps and the 2*m*tuples $(m_1, m'_1, \dots, m_m, m'_m)$ of positive integers satisfying (7). By Lemma 2, the number of these 2*m*-triples is $\binom{l-1}{m-1}\binom{n-l-1}{m-1}$. Hence, the number of *l*-combinations of the form $(1, n_2, \dots, n_l)$ with *m* gaps is $\binom{l-1}{m-1}\binom{n-l-1}{m-1}$.

For each of the numbers 1, ..., n we get $\binom{l-1}{m-1}\binom{n-l-1}{m-1}$ l-combinations with m gaps. Assembling all these combinations, each combination with l gaps is repeated m times. Hence, to get the number of these combinations, $\binom{n-1}{m-1}\binom{n-l-1}{m-1}$ has to multiplied by n and divided by m. Formula (6) is thus proved.

In the following lemma we obtain formulas for $p_k(I_n + P_n)$, $k = 0, \dots, n$.

LEMMA 5. Let $n \ge 2$. Then

(8)
$$p_k(I_n + P_n) = \begin{cases} \frac{n}{n-k} \binom{2n-k-1}{k}, & k = 0, \dots, n-1, \\ 2, & k = n. \end{cases}$$

Proof. Formula (8) is easily verified for k = 0 and k = n.

Let $1 \leq k \leq n-1$. $p_k(I_n + P_n)$ is equal to the number of different diagonals of 1's of length k in $I_n + P_n$. (Where diagonals of length k in the $n \times n$ matrix $I_n + P_n$ are defined in the obvious way.) Each such diagonal is composed of l elements of I_n and k-l elements of P_n .

Let (n_1, \dots, n_l) be a *l*-combination of $1, \dots, n$ with *m* gaps. The number of 1's in P_n belonging either to the rows n_1, \dots, n_l or to the columns n_1, \dots, n_l is l + m. Hence, the diagonal of length *l* consisting of 1's in positions $(n_1, n_1), (n_2, n_2), \dots, (n_l, n_l)$ can be augmented, using elements of P_n , to $\binom{n-l-m}{k-l}$ different diagonals of 1's of length *k*. As there are $\binom{n}{l,m}$ *l*-combinations with *m* gaps, the number of diagonal of length *k* which originate in a *l*-combination with *m* gaps is $\binom{n}{l,m}\binom{n-l-m}{k-l}$. Summing up over all possible *m* and *l*, we obtain

DAVID LONDON

$$p_k(A) = \sum_{l=0}^k \sum_{m=0}^{\min(l,n-k)} {n \choose l,m} {n-l-m \choose k-l} \,.$$

Noting that $\binom{n}{0,0} = 1$ and, as k < n, $\binom{n}{l,0} = 0$ for $l = 1, \dots, k$, it follows that

$$p_k(A) = {n \choose k} + \sum_{l=1}^k \sum_{m=1}^{\min(l,n-k)} {n \choose l,m} {n-l-m \choose k-l}$$

Using now Lemma 4, we obtain

$$p_k(A) = inom{n}{k} + \sum\limits_{l=1}^k \sum\limits_{m=1}^{\min{(l,n-k)}} rac{n}{m} inom{l-1}{m-1} inom{n-l-1}{m-1} inom{n-l-m}{k-l}$$

 \mathbf{As}

$$rac{n}{m}inom{l-1}{m-1}inom{n-l-1}{m-1}inom{n-l-m}{k-l}\ =rac{n}{l}inom{n-l-1}{n-k-1}inom{n-k-1}{m}$$
 ,

it follows that

$$p_k(A) = {n \choose k} + n \sum_{l=1}^k rac{1}{l} {n-l-1 \choose n-k-1} \sum_{m=1}^{\min\{l,n-k)} {l \choose m} {n-k-1 \choose n-k-m},$$

and using (4), we obtain

$$p_k(A) = inom{n}{k} + n \sum_{l=1}^k rac{1}{l} inom{n-l-1}{n-k-1} inom{n-k+l-1}{n-k}.$$

But

$$rac{1}{l}inom{n-k+l-1}{n-k}=rac{1}{n-k}inom{n-k+l-1}{n-k-1}\,.$$

So

(9)
$$p_{k}(A) = \binom{n}{k} + \frac{n}{n-k} \sum_{l=1}^{k} \binom{n-l-1}{n-k-1} \binom{n-k+l-1}{n-k-1} = \frac{n}{n-k} \sum_{l=0}^{k} \binom{n-l-1}{n-k-1} \binom{n-k+l-1}{n-k-1} \cdot$$

Formula (8) follows from (5) and (9).

We bring now our main result.

THEOREM. Let $n \ge 3$ and let $A = (I_n + P_n)/2$. Then the functions

130

$$h_{\scriptscriptstyle A,k}\!(heta) = p_k((1- heta)J_n + heta A)$$
 , $k=2,\,\cdots,\,n$,

are strictly increasing in the interval $0 \leq \theta \leq 1$.

Proof. By Lemma 1, it is sufficient to show that

(10)
$$\frac{2p_i(I_n+P_n)}{p_i(J_n)} \leq \frac{p_{i+1}(I_n+P_n)}{p_{i+1}(J_n)}, \quad i=1, \cdots, n-1,$$

with strict inequality for $1 \leq i < n - 1$.

For i = n - 1, (10) holds with equality sign.

For $i = 1, \dots, n - 2$, (3) and (8) imply

(11)
$$\frac{p_{i+1}(I_n+P_n)}{p_{i+1}(J_n)} = \frac{(i+1)! \left[(n-i-1)!\right]^2 n^{i+2}}{(n-i-1)(n!)^2} \binom{2n-i-2}{i+1} .$$

From (11) follows

$$\frac{p_{i+1}(I_n + P_n)}{p_{i+1}(J_n)} - \frac{2p_i(I_n + P_n)}{p_i(J_n)} \\ = \frac{2in^{i+1}(2n - i - 2)![(n - i - 1)!]^2(n - i - 1)}{(n!)^2(2n - 2i - 1)!}$$

Hence (10) holds with strict inequality for $1 \leq i < n - 1$, and the proof of our theorem is completed.

We note that the theorem holds also for all $n \times n$ matrices A which can be obtained from $(I_n + P_n)/2$ by permutations of rows and columns.

ACKNOWLEDGMENT. I wish to thank Professor C. J. Smyth for his useful remarks.

References

1. D. Z. Doković, On a conjecture by van der Waerden, Mat. Vesnik (19) 4 (1967), 272-276.

2. S. Friedland and H. Minc, Monotonicity of permanents of doubly stochastic matrices, Linear and Multilinear Algebra, 6 (1978), 227-231.

3. D. London, On the Doković conjecture for matrices of rank two, to appear in Linear and Multinear Algebra.

4. M. Marcus and H. Minc, *Extensions of classical matrix inequalities*, Linear Algebra and Appl., **1** (1968), 421-444.

5. H. Minc, *Permanents*, Encyclopedia of Mathematics and its Applications, Vol. **6**, Addison-Wesley, 1978.

Received January 9, 1980.

UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, B.C. V6T 1Y4 TECHNION, I.I.T. HAIFA, ISRAEL (Current address) ٠