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SMOOTH ACTIONS OF THE CIRCLE GROUP
ON EXOTIC SPHERES

VAPPALA J. JOSEPH

Recent work of Schultz translates the question of which
exotic spheres Sn admit semif ree circle actions with λ>dimen-
sional fixed point set entirely to problems in homotopy
theory provided the spheres bound spin manifolds. In this
article we study circle actions on homotopy spheres not
bounding spin manifolds and prove, in particular, that the
spin boundary hypothesis can be dropped if (n—k) is not
divisible by 128. It is also proved that any ordinary sphere
can be realized as the fixed point set of such a circle action
on a homotopy sphere which is not a spin boundary; some
of these actions are not necessarily semi-free. This extends
earlier results obtained by Bredon and Schultz. The Adams
conjecture, its consequences regarding splittings of certain
classifying spaces and standard results of simply-connected
surgery are used to construct the actions. The computations
involved relate to showing that certain surgery obstructions
vanish.

I* Introduction* Results due to Schultz give a purely homo-
topy theoretic characterization of those homotopy (n + 2&)-spheres
admitting smooth semi-free circle actions with ^-dimensional fixed
point sets provided one limits attention to exotic spheres bounding
spin manifolds. The method of proof is similar to that described
in [14] for actions of prime order cyclic groups; a detailed account
will appear in [21]. Since the premise of this article relates directly
to [21], we outline some of the results contained there.

Given nonnegative integers m <n, let CPZ denote the quotient
complex CPn/CPm. CP% is also the Thorn space of m copies of the
canonical line bundle over CPn~m [10, 11]. For some integer A
depending only on n — m, the complexes Y/CPZ and CP^+ί are
stably equivalent [4]. Using this periodicity one can define a spect-
rum (finite) CPZ for all integers m < n. In the same manner, it is
also possible to form a limit spectrum CP™ for all finite integers
m. If m and n are positive integers, there are elementary coexact
sequences of the form

Cf2m-2 . npn . v ppn . C2m-1 .

and by periodicity and limit arguments there are similar sequences
when m and n are arbitrary integers or n = oo.

Let Fsi(Cq) be the topological monoid of S1 equivariant self-maps
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of the unit sphere S29"1 contained in Cq (action via scalar multipli-
cation), and let F8ι be the corresponding stabilization. There are
natural inclusions of the unitary group Uq in FSl(Cq) and of U =
lim Uq in Fsif and therefore one has quotient spaces and a stabiliza-
tion map of the form σ: Fsi(Cg)/Ug -+Fsi/U. From [9], we know
that the homotopy groups of Fsi are isomorphic to those of the free
infinite loop space Ω^Σ^ΣCP™). Now we can state the following:

THEOREM 1.1 [21]. Let S?+2k be a homotopy (n + 2k)-sphere
bounding a spin manifold, and let P(y) £ Πξ+2k be its Pontryagin-
Thom invariant. Then there is a smooth semi-free S1 action on
S?+2k with n-dimensional fixed point set if and only if:

(1) There is a class β e Πs

n{ΣCP?k) = Πξ+2k(Σ2k+1CP?k) such that
δ*Σ2kβεP(7) £ Πs

n+2k.
( 2 ) There is a class aεΠn(Fsi(Ck)/Uk) such that σ*a equals the

image of β under the composition

Πl(ΣCP?k) A Π'iΣCPS ) = Πn(Fsί) > Πn(Fsl/U) ,

in which K is formally the map collapsing the subspectrum ΣCPik

to a point.

If b SpinTO+1 is the group of homotopy m-spheres bounding spin
manifolds, ΘJb Spinm+1 = Z2 if m = 1, 2 mod 8, m > 8 and zero other-
wise [5]. Therefore the question of which homotopy spheres, not
necessarily in 6 Spinm+1, admit semi-free circle actions as in the
theorem reduces to whether any such actions at all exist on exotic
spheres not bounding spin manifolds of the appropriate dimensions.
We list below the known results and the results obtained in this
article.

(1) If k is odd no such examples exist by results of Schultz

[15].
(2) If n and k are both even, Bredon has examples [6].
(3) If n is odd and k Φ 0 (8), k > 2 being even, Schultz has

constructed examples [16]. In general, the problem of finding
examples with n odd and k even reduces to the following problem
about vector bundles:

Problem. Suppose we are given an odd integer n and an integer
k such that n + 2k = 8s + 1 > 8. Is there a real vector bundle ζ
over Sn+1 x CPk~\ which is stably trivial over Sn+1 and CP1*-1 such
that the Pontryagin classes of ψsζ — ζ satisfy

- ζ), [Sn+* x CP"-1]) e2Z + l;(L2£ψ% - ζ),

[Sn+2 x CP1"1]} = 0?
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We discuss this reduction in § 2 and show how a positive solution
leads to circle actions. In § 3, the problem is answered positively
for k Φ 0(64).

(4) If n is odd and k — 2, then no examples exist according to
Levine [12]. In this case the methods of this paper can be adapted
to yield actions which are nearly semi-free. These actions, discussed
in §2, have three types of orbits; namely fixed points, free orbits
and orbits of type Z2n.

2. Fixed point sets of co-dimension 2 mod 4» We study
smooth effective circle group actions on homotopy spheres with
standard spheres as fixed point sets. The homotopy spheres do not
bound spin manifolds and the fixed point sets have co-dimension 2
mod 4. It is known that such actions cannot be semi-free [15]. The
actions we construct have three types of orbits: fixed points, free
orbits and orbits of type Z2n for given n.

THEOREM 2.1. Let k > 0. There is a smooth effective action
of the circle group on a homotopy (8k + l)-sphere not bounding a
spin manifold with fixed point set a standard sphere of co-dimen-
sion 4q + 2, q > 1.

We prove this result by constructing a homotopy sphere Σ8k+1

and an action on it with the desired properties. In order to do
this, it is necessary to show that certain normal maps into the
space M = S8k~iq+2 x siS4*"1 are normally co-bordant to homotopy
equivalences. Here, M is the orbit space of the S1 action (trivial
@f2nc)x(2qC) on S8k~iq+2 x Siq-\ 2qC is the standard free action of
S 1 on Siq-U, ψ2nc is given by zzx = z2nz, for z in S1 and z, in C.
Since M is a simply connected 8&-dimensional manifold, the obstruc-
tion to finding a normal cobordism of a normal map to a homotopy
equivalence is an index difference. The normal maps we consider
are obtained via fiber homotopically trivial bundles over M. Hence,
it is sufficient, by Hirzebruch's index theorem, to calculate the
rational Pontryagin classes of fiber homotopically trivial bundles
over M. All such bundles arise from elements of [M, F/0], [7]. For
our purposes it is enough to consider elements of [M, F/0] obtained
from a simpler set as pullbacks in the following manner:

2q-Yn

9 F/0] = [(CP 2«-T i v i a l Θ η2\ F/0]

= [Z>β*-4 ί + 8xβϋS4 f f-ViSί8*-4 ί + 1xβiS4 f"1, F/0]

(By excision) - [S**-^ x ^S^/D81*-^1 x siS
iq~\ F/0]

I (Collapse)

[M, F/0] .
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Here η is the Hopf bundle S4*-1 -> CPzq~ι so that ψ is the bundle

CP2*-1

where S1 x îS**-1 is the orbit space of the action ψ2nCx2qC on S1 x S*q~\
Dl denotes the lower hemisphere of Sn. This means that we are,
in fact, interested in studying bundles over the space s^k~iq{CPzq~ι)'η2n.

Bott periodicity and Thorn isomorphisms give all the information
we need for calculating the rational Pontryagin classes in this case.
We denote the Bott periodicity isomorphism by β, the IΓ-theory
Thorn isomorphism K*(CP2'-1) -> K^CP2*-1)7?") by Th. We also let
μ = η - 1 in K*(CP*). Then μ generates K*(CPn) multiplicatively
[4]. Let ψ% denote an Adams' operation in real if-theory. With
these notations, we can state the following:

LEMMA 2.2. Let ζ = [£**-* Thfjf*-1)]. Then ζ = σ (g> C, where σ
belongs to KOlS^-^ίCP9*-1)] and γn is the pullback of the generator
of KO(S8k) under the collapsing map

Let ζ" = /^-^Thίμ2*-3), C = re ζ", where re: K-+KO is reali-
fication

3*a and 3*7 have fiberhomotopically trivial associated sphere bundles
by Adams conjecture [13]. We denote the pullbacks of a, y to M
by the same symbols. The computations necessary to prove (2.1)
are contained in the following

LEMMA 2.3. There is an integer pair (x, y) such that y is odd
and (L2k(τM®Zexa + Zeyj), [M]) = (Lu(τM), [M]>. Here L2k denotes
the Hirzebruch L class and τM is the tangent bundle of M. [M] is
the fundamental class of M.

Proofs of Lemmas 2.2 and 2.3 are postponed.

Proof of Theorem 2.1. The elements 3βα and 3βτ lift cannonically
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to [M, F/0] for large e. Therefore, for any pair of integers (xf y)
Zexa 0 3*2/7 gives a normal map fXyy: X8k —> M so that

r. + /*73x = /*(3eαα 0 Vyy) [7] .

Here 7^ is the stable normal bundle of ikf. Since the bundle 3exa 0
3βτ/7 is induced from

[S8k~iq+2xsiS
i<1-1/D!k-iq+2xsiS

iq-'\ F/0], we may choose / so that
fx>y restricted to f^Di^^x siS*'-1) is a diffeomorphism. Excise
the open manifold over which / is a diffeomorphism. We get a
relative map of pairs

/,',„: (X, dX) > (D8k-iq+\ S8k-«+1)X8iS«~ι

such that f'/dX' is a diffeomorphism.
The relative surgery obstruction of / ' is the same as the

surgery obstruction of / since all the spaces involved are simply
connected [20]. So / ' is normally cobordant to a homotopy equi-
valence which is a diffeomorphism on the boundary if and only if
the surgery obstruction of / is 0. That is,

l/8[Index X-Index M] = 0 .

But Index X = (L2k(τx), [X])

- <L2k(τM®Sexa®S*y7), [X])

- <L2k(τM 0 Zexa 0 3e2/7), [M]}

= Index if, for some choice of (α?, 2/), y odd

such that

/ ; , , : (X, aX) > (i)8*-4ff+2y s^-^XsiS4*-1)

is normally cobordant to a homotopy equivalence, which is a diffeo-
morphism on the boundary. Consider the pullback diagram

(Γ,

I"
(X, dX

The orbit map 77 is a principal bundle projection, since the action
(trivial 0 ψ2nC)x2qC is free. So there is a free action on (Y, dY)
such that / " is an S1 equivariant homotopy equivalence. Further,
f"/BY is a diffeomorphism. Let ΣSΐ) = ΓU/"/aF>S8fc-4?+1xi)4?. Then
Σ(ί,"y> k a s a smooth effective circle action given by the circle actions
on the two component pieces. Clearly, the fixed point set is 4g + 2.
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By a Mayer-Vietoris argument Σ(ί$ ι& a homology sphere. It is
simply connected by van Kampen's theorem. Hence Σ<ϊ,"ϊ> is a

homotopy (8k + l)-dimensional sphere.
It remains to show that this sphere does not bound a spin

manifold. This is done by identifying the Pontryagin-Thom invariant

Consider the map on Thorn spaces obtained via the following
diagram of bundle maps:

\Hπ

Here 77 is the orbit map for the action ψ2nCx2qC, H is the Hopf
map and p2 is the projection. Let Xk>q = ^ - " ( C P * - 1 ) and 77*:
[Xktq,FIOw]-*[S*k-i9+\Siq-1VS0), F/0m] the map induced by this
Thorn space map. Here Xlp) is the localization of X at p [18, 19].

We wish to calculate 77*(3 e#αφ3Vy) I t is enough to calculate
the image of 3e(#ζ' + yσ) under the map analogous to the above
with BSO(2) replacing F/O{2).

BSO(2)] = /78fc+1(BSO(2))xi78fc_4g+2(BSO(2))]

(by Bott periodicity) = [J78fc+1 BSO <g> Zl2)] X [Π8k_4g+2 (BSO)]

So the group has exponent two. Therefore, the factor 3e acts as
identity and may be suppressed. The bundle ζ has a complex
structure; in fact ζ' = reζ" where ζ"=βik~2«Ίh(μ2q-5). Since £r* = 0
on KiCP29"1), it follows by naturality of Thorn isomorphism and
the Bott periodicity that

(2.4) /7*ζ" - 0 and hence Π*C = 0 .

By Lemma 2.2, a is the pullback of the generator of 778A(BSO)
under the collapsing map

By definition of 77*, it follows that 77V is the composite of this
generator with the map

nr8A-4g/e4g-ntrivial ^ σ8k-4:q/Qp2q-l\rj2n

induced by the suspended Hopf map H on the Thorn spaces. Look-
ing at this map on the top cells, it is seen that 77* has the form
Mhτ) and therefore
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(2.5) Π*(3exa φ 3e2/τ) = Mkη since y is odd.

Elementary attaching considerations [17, 20] tell us that
fl*(feφ3e|/7) is the Pontryagin-Thom invariant of Σ(ί,"t> %
the results in § 1 and (2.4) and (2.5) this completes our proof.

Now, we return to the proofs of computational Lemmas 2.2-2.3.

Proof of Lemma 2.2. Look at the following diagram

0 < K{CP2q~2) ^— KiCP2"-1) £— KiCP^-'jCP2*-2) < 0
III I II

Thorn Thorn K(Siq~2)
+ + JThom

o <—

where i is the inclusion and j is the collapse, j * is a split mono-
morphism identifying the generator of K(Siq~2) with μ2q~x. (f)*
identifies the generator K(Siq) with Th (μ2q~ι)η2n. Suspend this
diagram (Sk — Aq) times and look at the map of the corresponding
KO groups into the above diagram under the complexification map.
Lemma 2.2 is now obvious.

Proof of Lemma 2.3.

a = ψ*Rreζ" - reζ", 7 = ψ%σ - a ,

σxC = ζ. Also ζ = /34fc~2ί Th(μ 2 *- 1 )

ζ " = βik~2q T h (μ2q~3) .

We can calculate ch( ) and ch( ) as follows;

ch Th (/ι*-1) = ch {μ2q-1) (J [Td (3f )]" ι U#*

ch Th (μ2q~B) = ch (^~3) U [Td OΓ)]"1-1/""2" -

We have ch (μ) = ch (77 — 1) = ec — 1, where c is the generator of
H\CPU-X)9 [4]. Hence c h ^ - 1 ) = c*-1. Further Td(^2 Λ) = QfeC^)]
where Q(α ) = x/1 - β~α. So [Td {r]2n)Y1 = 1 ~ β—/a? and a: = cx(ψ) =

= 2τtc. (Here X denotes the Euler class.) Therefore

Td [OH]- 1 = 1 - cd + 2 ^ + .
(2.6) 3

ch Th (μ2'-1) = c2g-χ

(2.7) ch Th (μ2q~z) = c2q~*[l + Ac + Be2] . Γl - nc + ^

where i l = 2g - 3/2, J? = 2q - 3/6 + (2q - 3)(2g - 4)/8
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(2.8) chTh(μ2*-3) = c2'-3Γl + A'c + (—n* - nA + B)c2~\.

We don't need A' for further calculations.

(2.9) -|»2 - n A + B = 2 % 2 + ̂ H i Γ w + λ+ Γ w + +
2 L 3 2 J

_ (2g - 3)(3g - 6u + 4) + 8ri>

12
We can obtain the Pontryagin classes of a and 7 from (2.7)-

(2.9).

Vj{a) = (—l)Jc2j (α(g)c) by definition

Since our calculations are over a suspension, namely, ssk~iq(CPZq~1)v2Λ,
products of cohomology classes vanish. It follows from (2.7)-(2.9)
that the possible nonzero classes are pik{a), j>2i_i(α) and 2>2Jfc(7) only.
These are easily written down using the fact that

Cifl ( ) = Z% ( ) [1]

and

= (4Jb - 3)! (34

D!

(2.10)

Here ySα-2« denotes the (8& — 4g)-fold suspension in cohomology. We
may drop βik~2q and U^ from (2.10) with no loss of clarity.

, [M]) = (Lik(τM), [M])

So in order to prove the lemma, we must be able to choose x, y
(with y odd) such that ( L ^ V ^ ' x a © ^ ) , [M]) = - (L2k(&xa φ
3*2/7), [.M]>. Again, since α, 7 are defined on a suspension, we
have Lm = lmpm where l m = 22Bl+1(22"1-1 - l)/(2m - 1)! i4ronum (BJ4m)
[8,16] J4. = order JίS4"1-1) = odd/odd (32m - 1) and num(5ro/4m) is
odd (Bm is the nth Bernoulli number [3]). Since I^r*) = (M)/3
we want
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p,(M) -^- l2k-iP2k-i(xά), [M]\ = (-I2k(p2k(xa) + p2k(yy), [M]) .

This relation can be written as

ya = xb

where

(2.11) a = -<lΛ» t t(7), [ΛΓ]> = { W ^ L c2*-1, [M]) from (1.10) .

We write 6 = 6 ' - 6"; 6" = (L2kp2k(a), [M])

odd. . Γ(2g - 3)(3g - 6n + 4) + 8^2Ί ^2q_^
odd L 6 J

^ 6» + 4) + 8**].<c*-1,4" ̂ T-2 oαα

Therefore

6" = 2*k - ̂ - (c2q~\ [M]} if ^ is nonzero mod 4 and Λ is
odd

even or q is zero mod 4 and n is odd.

6' = / PiW) l^p^ia), [M] ) . To calculate 6' we need p

M = S8 fc-4 ί+2χs iS f4g-i JL.cP^-1 be the bundle (trivial

r^ = i7*τCP2ςf"1 φ the tangent along the fibers, is stably equal to
i7*τcp2*-i φ / 7 * ί ? 2 Λ # Hence, p ^ ) = 2g/7*c2 ± 4^2/7*c2 = (2q ± 4n2)Π*c\
Substituting this value of px{M) in 6', we see that

(2.13) V = 24fc - ^ _ (c2q~\ [M])
odd

and

(2.14) 6 = V - 6" =
odd

if q is nonzero mod 4 and w is even or if q is zero mod 4 and n
is odd. It is clear from (2.11)-(2.14) that there are integers (x, y),
y odd such that ya — xb. This proves the lemma.

3* Semi-free actions* We discuss semi-free circle actions on
homotopy spheres not bounding spin manifolds with standard spheres
as fixed point sets. The fixed point set has co-dimension 4q [15].
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G. Bredon has shown that for every k there is a Sk + 2 homotopy
sphere not bounding a spin manifold which admits a smooth semi-
free action of the circle group [6], and in [16] Schultz proved the
following complementary result in dimension 8k + 1:

THEOREM 3.1 [16]. Let k > 0 and q < 2k + 1. Assume that q
is not equal to 1 and not equal to zero mod 4. Then there is a
semi-free action of the circle on some homotopy (8k + 1) — sphere not
bounding a spin manifold whose fixed point set is an ordinary
sphere of co-dimension 4q.

Levine has shown that co-dimension 4 is not realizable [12]; we
wish to show that the restriction on q may be relaxed in general
and may be removed in low dimensional cases.

THEOREM 3.2. Let k>0 and q<2k+l. An ordinary (8k-
sphere can be realized as the fixed point set of a smooth semi-free
circle action on a homotopy (8k + l)-sphere not bounding a spin
manifold provided q is not equal to 0 mod 32.

Our arguments closely follow those in [16] and the first part of
this paper. First we establish an analogue of Lemma 2.3. Let

s = q — 1

M= S8k~*9+2xCP28+1

a =

= ψ%σ - σ, where <j<g) G generates

We can calculate the Pontryagin classes of a and 7 just as in
Lemma 2.3. We see that

(3.3) pn(ά) = (-1)*+1.2. (2n - 1)! (32Λ - 1) ch2^*-4s-2(μ28-3)

and

ch (μ28-3) = (eΰ - I ) 2 8 " 3 = c 2 s" 3 + A'c28-1 + B'c28+1 + t e r m s

of even degree in c. Here

- 6 + 4 \ 2

> _ 2 * - 3 12s - 3\r 1 J - i j / 2 s - 3\ l/2s - 3'
B

B - 5 ! +\ 2 J L I Γ + ( 3 ! ) * J + S\ 3 J + M 4
Therefore, the only nonzero Pontryagin classes are p2k(a), plk-ι(a)
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and p2k^{a). These are given by

ft*(α) = (-2)(4fc - 1)! (34*

(3.5) p2»-i(α) - (2)(4fc - 3)! (34fc~2

fe_2(α) - (~2)(4fc - 5)! (34fc~4 - I)c2s~3 .

Note that the right sides have to be suspended enough times to
place them in the proper cohomology groups.

As in Lemma 2.2, σ (x) C = β**-2*-1^2^1) and hence

(3.6) p84(7) - (-l)(4fc - 1)!

and PXT) = 0 if i Φ 2k. Also note that

(3.7)
= ±(7p2 - pi) = -ks + l)(10β - 3)

45 45

α, 7 can be considered to be bundles over M; 3eα, 3e7 are therefore
elements of [Mf F/0] for large values of e. We have the following
proposition

PROPOSITION 3.8. There are integer pairs (x, y) such that y is
odd and (L2k(τM 0 2>exa 0 2>eyy), [M]) = 0, provided q is even and
nonzero mod 32.

Proof of Theorem 3.2. Let (x, y) be an integer pair given by
Proposition 3.8. 2>exa 0 3eτ/7 gives a normal map fx>y: X8k —> M such
that

τx + f*(yM) = /*(3exα 0 3e7/7) .

It is possible to choose / such that f/fZl(Dik-i8-2 x CPZs+1) is a diffeo-
morphism. Excising the manifold on which / is a diίfeomorphism,
we get a relative map /;,„: (X, dX) ~> (JD8*-*-2, S8*-4-8) x CP2"*"1 such
that f'/dX is a diίfeomorphism. The relative surgery obstruction
of / ' is the same as the surgery obstruction of / since all spaces
involved are simply connected [20]. So / ' is normally co-bordant
to a homotopy equivalence if and only if surgery obstruction of
/ = 1/8 [Index X-Index M] = 0 = Index M, since Index M = 0. But

Index X - {L2kτx, [X]) = <L2kf*τM 0 Zexa 0 3Vr, [X]>

φ3e2/γ, [Λf]> .

This last expression is zero by Proposition 3.8 and our choice of x
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if q is even. So / ' is normally co-bordant to a homotopy equivalence
which is a diffeomorphism on the boundary. Consider the pullback
diagram

(Y, BY) -^-> (D8k-is~2, S8fc"48-3) x S i 8 + Z

I , \lxH

Here if is the Hopf fiber map. The pullback (Γ, dΓ)->(X, 9Z) is
a principal S1 bundle map and hence there is a circle action on
(Y,dY) such that / " is equivariant. Further, / " is a homotopy
equivalence which is a diffeomorphism on dY. Therefore Σ * * 1 =
Γ#/'WS 8 f c- 4 8~ 3xI) 4 s + 4 has a smooth effective circle action given by
the actions on the component pieces. This action is semi-free and
the fixed point set is S8h~*q+1. By van Kampen's theorem ΣSίJ*1 &
simply connected. A Mayer-Vietoris argument shows that it is a
homology sphere. A discussion similar to the one in the proof of
Theorem 2.1 shows that this sphere does not bound a spin manifold.

When q is odd, the theorem is contained in [16].

REMARK 3.4. It appears from the calculations in this paper
that different choices of α, 7 might relax the conditions in Theorem
3.1 further. But the calculation of the surgery obstructions become
unmanageably involved. Probably a transition to use of some
machinery from analytical number theory is called for. The reader
may be referred to [8].

4* Realizability of any ordinary sphere as a fixed point set*
In this final section we assemble our results into a single main
theorem. We need to state (8k + 2) dimensional versions of Theorems
2.1, 3.2.

THEOREM 4.1. Let k > 0. There is a smooth effective circle
action on the homotopy (8k + 2)-sphere not bounding a spin manifold
with fixed point set a standard sphere of codimension 4q + 2, q > 1.

THEOREM 4.2. Let k > 0, q < 2k + 1 and q not equal to 1. Any
ordinary sphere S8k~iq+2 can be realized as the fixed point set of a
smooth semi-free action of the circle group on a homotopy (8k + 2)-
sphere not bounding a spin manifold.

These results were known to Bredon [6]. The following, then,
summarises our results.
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MAIN THEOREM 4.3. Any ordinary sphere Sn(n > 0) can be
realized as the fixed point set of an infinite number of smooth
effective actions of the circle group on a Σ8k+1 or Σ8k+2 not bounding
spin manifolds, for every k > 0, 8fc > n — 1. These actions are
distinguished by their local representation at fixed points.

Proof. The verification splits into different cases according to
the value of n modulo 4.

Case (1). n = — 1 or 0 mod 4
This follows from Theorems 2.1 and 4.1. These actions are not

semi.free.
Case (2). n = 1 or 2 mod 4
Theorem 4.2 gives semi-free smooth effective actions on Σ8k+i

with S4ί"2 as fixed point sets. Theorem 3.2 gives smooth semi-free
actions on Σ8k+1 with Sit+1 as fixed point sets provided 2k — 2 is
nonzero mod 32. We are not able to remove this provision keeping
the actions semi-free. However, there is no difficulty in obtaining
the spheres in Case (2) as fixed point sets of nonsemi-free smooth
effective actions on Σ8k+1, Σ8k+2 not bounding spin manifolds. Com-
putations identical to those in § 2 show that it is enough to consider
actions with local representation [trivial φψ»8nC0(2g — 1)C].
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