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THE ROGERS-RAMANUJAN RECIPROCAL AND
MINC’S PARTITION FUNCTION

GEORGE E. ANDREWS

The reciprocals of the Rogers-Ramanujan identities are
considered, and it it shown that the results yield identities
for restricted compositions. The same technique is applied
to obtain a generating function for partitions previously
treated by H. Minc.

1. Introduction. The celebrated Rogers-Ramanujan identities
were first presented in their analytic form as follows:

149 '8 g’ o
w1 1-¢ (A-91-—2¢) * 1-90 -1 - ¢
) i 1
w0 (1~ ¢ — ¢
1 + q9 + qe q12 + P
1.2) 1—-¢ A-90-¢) N 1-90—¢>1— ¢
' o 1

I 1 - g1 — ¢

The fascinating story of their discovery by L.J. Rogers [8] and
their subsequent rediscovery by S. Ramanujan (see [5; p.91]) and
1.J. Schur [9] has been told many times [1; Ch. 7], [2; Ch. 3], [5;
Ch. 6]. P.A. MacMahon [6] and I.J. Schur [9] observed that (1.1)
and (1.2) are equivalent to the following assertions in additive
number theory:

THEOREM R,. The number of partitions of m into parts that
differ by at least 2 equals the number of partitions of m into parts
of the forms 5m + 1 and 5m + 4.

THEOREM R,. The number of partitions of m into parts that
differ by at least 2 and conlain no ones equals the number of par-
titions of m into parts of the forms bm + 2 and bm + 3.

Apart from Schur’s two ingenious proofs in [9], all other proofs
effectively rely on establishing the following two variable result:
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where (4), =1 — A1 — Ag) --- (1 — Ag*™), (4), = 1.

The reciprocal of F\(—zq=') was utilized by Carlitz and Riordan
[4; p.386, eq. (10.7)] in their work on g¢-analogs of two element
lattice permutation numbers; however they give no indication that
in fact 1/F,(—z) is the generating function for certain simply re-
stricted compositions. In another paper Carlitz [3] treats classes of
restricted compositions which he calls “up-down” and “down-up”
partitions. These he shows are generated by reciprocals of g-ana-
logs of the Olivier functions. In fact arguments similar to those
given by Carlitz may be utilized to prove the following assertion.

THEOREM 1. Let C,(m, n) denote the number of representations
of n in the form

m=c¢+¢+ -+ +¢Cu, where 1=Zc¢,,=c¢;,+d.

Then for d = 0,
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We note that C,(m, n) is just the number of partitions of = into
m parts and (1.4) reduces to a well-known generating function
identity [1; p. 16] since

(1.6) Fy(z) = El 1+ 29%), [1; p.19].
Let us call a representation of n of the form ¢, + ¢, + --- + ¢,

where 1 =< ¢,y < ¢, +1 a restricted composition, and let K.(j; n)
(resp. K,(j; n)) denote the number of restricted compositions with
each ¢; = 7 and with an even (resp. odd) number of parts. Also let
L,j; n) (resp. Lyj; »)) denote the number of partitions of » into
an even (resp. odd) number of parts each=+j(mod 5). Then equa-
tions (1.1) and (1.2) together with Theorem 1 imply:

THEOREM 2. For all n = 0,
(€%)] K.(1; n) — K(1; ») = L,(1; n) — L(1; n) ;
(1.8) K, (2; n) — K((2; n) = L,(2; n) — Ly(2; n) .

Both Theorems 1 and 2 will be proved in §2. In §3 we apply
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these methods to H. Mince’s partition function y(1, »), the number
of representations of # in the form n=1+¢, + ¢, + ---¢c,, Where
l=¢,and ¢+, <2¢;, for 0<i<m — 1. Minc [7] reduced an enu-
meration problem in groupoids to the determination of v(1, n), and
he provided a recurrence whereby v(1, n) could be computed. We

shall present the generating function for »(1, n):

THEOREM 3.
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2. The Rogers-Ramanujan reciprocal. We begin by proving
Theorem 1. From the definition of Cy(m, n) we see that
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Thus applying mathematical induction we may rigorously establish
that the above iterative process yields

(—1)ig?®+(3Y {0 if m>0
(9); 1 if m=0.

Hence (2.2) is equivalent to
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Consequently by (2.3),
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Therefore Theorem 1 is established.

As we remarked in the introduction, Theorem 2 follows im-
mediately from Theorem 1 and the Rogers-Ramanujan identities.
Namely
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Equation (1.7) follows immediately from (2.5) when we compare coef-
ficients of ¢" in the extreme terms. Similarly for (1.8) we see that
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3. Minc’s partition function. If g, denotes the generating
function for Minc’s partitions with m parts then as in §2:
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As before applying mathematical induction we may rigorously es-
tablish that the above iterative process yields

(—1)ighestre+2-0 0 for m>0
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Therefore as in Theorem 1
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and this is clearly seen to be equivalent to Theorem 3 once we re-
call that 3., (27 — 1) = 2%+ — g — 2,

4. Conclusion. The method here could obviously be applied
more generally; for example, the role of 2 in Mine’s partitions could
clearly be played by any positive integer k. Of course similar
methods are used by Carlitz [3] to treat up-down and down-up
partitions. After first discovering Theorem 1, I had hoped that it
might be possible to find similar results in general for

1
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where f.(z, q) is the two variable generating function for the linked
partition ideal & (see [1; Ch. 8] for an explanation of linked parti-
tion ideals). Unfortunately the coefficients are not even positive in
general.

There is a natural way of providing a common generalization
of Theorems 1 and 3. Namely the difference conditions bounding
¢+ can be extended to 1 < ¢,y = d + aw; + a6-y + -+ + aje—;. For
example the generating function for representations of n of the
form

n=1+1+¢+ec+ - +ec,
subject to ¢, = ¢, =1 and ¢+, < ¢; + ¢,—, 18
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where w, are shifted Fibonacei numbers u, =2, 4, =3, %, = w,—, + u,_,
for » > 2. In general the Fibonacci exponent u; — 1 in the gene-
rating function will be replaced by the sum of the 1st 7 terms of
the recurrent sequence arising from the recurrence ¢,., = d + a.c, +
ACp—y + + 00 + AiCpu—j.
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