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IMAGINARY VALUES OF MEROMORPHIC
FUNCTIONS IN THE DISK

DOUGLAS W. TOWNSEND

Let / be a meromorphic function in the unit disk, and
let Φ(r,f) be the number of solutions of the equation
Re f(reiθ) = 0 f or 0 ^ θ ^ 2π. In this paper we bound φ{r, f) off

S r
Φ(t, /)(1 — t)~1dt

0

for all r, in terms of the Nevanlinna characteristic function
of /. We then give examples to show that the bounds ob-
tained are the best possible.

The quantity φ(r, f) was studied for entire functions by A.
Gelfond [3] and later by S. Hellerstein and J. Korevaar [5]. The
quantities φ(r, f) and Φ(r, /) were studied for meromorphic functions
in the plane by J. Miles and the author [10].

We will prove the following theorem analogous to Theorem 1
of Miles and Townsend.

THEOREM. If co(r) = (1 — α0) + aor for 0 < a0 < 1 and f is a

meromorphic function in the unit disk then there is a constant
A = A(aQ) and a set A a [0, 1) satisfying

\ exp{Γ(co(r), /) - log (1 - r)}dr < -

so that for r £Δ and r > R

( i ) Φ(r, f) < A(l - r)~\T{c,{r\ f) - log (1 - r)].

If Φ(r, f) — \ Φ(t> / ) ( ! — t)~xdt then there is an aλ so that 0 < αx < 1,
Jo

and a constant A so that for r > R and for c^r) =-'(l — a±) + aλr
(ii) Φ{r, f) < A'(l - rΠTfoCr), /) + (1 - r)"1].
We will then give examples to show that no nontrivial lower

bound for φ(r, f) can be given and that the factor (1 — r)"1 in (i)
and (ii) can not be replaced by any function δ(r) satisfying δ(r) =
o((l — r)"1) as r-> 1.

It is not known whether the exceptional set for (i) is nonempty,
even if / is holomorphic in the unit disk.

We note that the second occurrence of (1 — r)"1 in (ii) may be
replaced by —log (1 — r), using a proof that is much longer and more
intricate than the one given in this paper. This alternate proof is
a combination of the essential ideas of the proof of Theorem 2 in
[12], together with techniques used in this paper to bound φ(r9 f)
in terms of the characteristic function of /.
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226 DOUGLAS W. TOWNSEND

The technique used in [10] to obtain an upper bound for the
number of solutions of Re g(z) = 0 on | z | = r for g meromorphic in
the plane begins by considering Gr(θ) — Re g{reiθ) as a function of a
complex variable θ. After showing that Gr(θ) is a meromorphic func-
tion in the #-plane, Jensen's theorem can be used to bound the number
of zeros of Gr in | θ | ^ π, and hence to bound the number of zeros
of Reg(reiθ) for —π^θ^π. However, if g is meromorphic in
\z\ < 1, then Gr(θ) is only meromorphic in | Im^| < A(l — r), where
0 < A < 1. Thus, to bound the number of zeros of Gr(θ) on the real
#-axis using the above technique, we would have to apply Jensen's
theorem to Gr(θ) in 0((l — r)"1) disks of radius less than A(l — r),
centered on the real #-axis, and covering the real #-axis between
— π and π. This complication alone would introduce an additional
factor of (1 — r)"1 to the bounds of φ and Φ in (i) and (ii) of the
theorem. New techniques are used to obtain the correct bounds for
φ and Φ.

Also, in [10] the bounds on φ and Φ involve T(Ar, f) for some
constant A > 1. Such a bound is impossible for r close to 1 if / is
meromorphic in \z\ < 1. This complication is resolved by denoting
a convex linear combination of 1 and r by c{r) — (1 — b) + br, 0 <
b < 1, and bounding φ and Φ in terms of T(c(r), f).1

We assume familiarity with the standard notation of Nevanlinna
theory. It is not intended that positive constants such as A and R
have the same value with each occurrence. Also, notation such as
A(a0), A(a, d), etc. is used to emphasize the dependence of the con-
stants on a0, or a and d, etc. Once again it is not intended that
these constants have the same value with each occurrence. Through-
out the paper, if c(r) = (1 — 6) + br for 0 < b < 1, then we let
c%r) = c{cn~\r)). It is easy to show that cn(r) = (1 - bn) + bnr.

1* Preliminary lemmas*

LEMMA l . l . 2 Let f(z) be holomorphic in the circle \z\ < R with

, /(O) I = 1 and let ΎJ be an arbitrary positive number not exceeding

(δe)"1. Inside the circle \z\ ^ r < R but outside of a family of ex-

cluded circles, centered at the zeros of f in \z\ < R, the sum of whose

radii is not greater than ηr, we have

log \f(z) \>A(R- r)- 2T(i2, / ) log η ,

provided r and R are sufficiently large.
1 I wish to thank the referee of this paper for suggesting this very useful notation

as well as for making other helpful comments.
2 This lemma was observed several years ago by A. Baernstein, who in unpublished

work used it to obtain a bound for φ(r,f), off an exceptional set, where / is meromor-
phic in the plane.
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This is an elementary adaptation of Theorem 11 of [7].

LEMMA 1.2. There are absolute constants A > 0, 7 e [0, 1) and

p, a positive integer, such that iff is meromorphic in\z\<l, then

there exist holomorphic functions g and h in \z\ < 1, such that f —

g/h and

max (T(r, g), T{r, h)) < A(l - r)-*Γ((l - 7) + yr, f) .

This lemma is contained in [1], which carries a result of J. Miles
[9] to the unit disk.

LEMMA 1.3. If f is a nonconstant meromorphic function in the
plane and 0 < a < 1, then there is an A = A(a) so that for r > R

— Γ I Re (reίθf"{reίθ)lf(reiθ)) + 11 dθ
2π Jo

< Ά(l - ry'imi - a) + ar, f) - log (1 - r)] .

This lemma is contained in (3.10) of [8].

LEMMA 1.4. Suppose f is a nonconstant meromorphic function
in the disk and r is such that f\reίθ) Φ 0, 00 for 0 ^ θ <i 2ττ. If
Φ(T, f) > 7A(1 - ry^Tdl - a) + ar, f) - log (1 - r)], where A and
a are as in Lemma 1.3, then

Φ(r, zf"{z)lf'{z) + 1) > φ(r, /)/6 .

Proof. Let /3(0) be a continuous determination of the argument
of the vector tangent to the curve f(reiθ), 0 ^ θ ^ 2ττ. We recall that

(1.1) /9'(0) - Re (reiθf"{reiθ)lf\reiθ) + 1) .

Suppose 0 ^ αx < α2 < α3 < 2ττ, Ref(reiaή = 0 for i = 1, 2, 3 and
Ref(reίθ) Φ 0 for αx < θ < α3 except for θ = α2. We distinguish two
cases.

Case I. Suppose |/3fe) — /3fe)l < π f ° r all ^ and φ2 in [α^ α3].
By Rolle's theorem there exist a[ e (au a2) and a'2 e (α2, α3) and there
exist integers ^ and ^2 such that β(a's) = ^^TΓ + π/2, j = 1,2. Since
liδ(«0 — /3(α0l < ^, we must have β(a[) = /3(α2). By Rolle's theorem
we conclude that in Case I there exists 7 in (a[, a'2) c (al9 α3) such
that β'(y) = 0.

Case II. Suppose there exist & and ψ2 in [αx, α2] such that
I β{φι) - β(Φi) I ̂  π. Thus, in Case II
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(1.2) JL\a*\β'φ)\dθ ^ \ .
2π J«i 2

We now let 0 ^ θx < θ2 < < θn < 2π be a complete list of
solutions of Ref(reiθ) = 0 in [0, 2ττ), and consider triples (Θ2k_u θ2k, θ2k+1)
for 1 ^ & ̂  [φ(r, /)/2] - 1. By Lemma 1.3 and (1.2), no more than
2A(1 - r)-ΊΎ((l - α) + αr, /) - log (1 - r)] of these triples fall into
Case II. Thus at least

[φ(T, /)/2] - 1 - [2A(1 - rJ-MΓία - α) + ar, f) - log (1 - r)}]
^ [^(r, /)/6]

of these triples fall into Case I, and consequently there are at least
φ(r, /)/6 zeros of β\θ) in [0, 2π).

LEMMA 1.5. If f is a nonconstant meromorphic function in the
unit disk, k(r) is a function satisfying k{r) ^ — log (1 — r) and
Cz(τ) = (1 — α2) + a2r where 0 < a2 < 1, £fcew ί/^ere is α constant A
and a set A a [0, 1), both depending on the function k and on a2,
such that

k{τ)}dr < oo

and for r £ A and r > R,

fΊog I Re (reiθf"(reiθ)/f'(reiθ)) + 1 | - ^ < A[T(c2(r), /) +
Jo

Proof We follow closely [6, p. 226-227]. Let G(s) = zf"(z)/f'(z) +1,
and

(U |Re α

where w(a) is area measure on the Riemann sphere A, Also, define

λ(ί, G) -

From (14.6.18) of [6], we have

(1.3) ΓΊog p(G(reiθ))dθ ^ 8πT(r, G) + log λ(r, G) + 0(1) .
Jo

We set L(r, G) = Γλ(ί, G)ίcft and JSΓ(r, G) = j ' L(β, G)B-χds. Then by

(14.6.20) of [6], Γ(r, G) ̂  X(r, G) - 0(1). Denote by Δx the intervals
(«!,-, /Si,-) where

λ(r, G) > r-1exp{fc(r) + r(c,(r)f G)}(L(r, G))2 .
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We have

S exp{fc(r) + Γ(c2(r), G)}dr < \ rλ(r, G)(L(r, G))~2dr

= ( (L(r, G))-*dL{r, G)

< (L(an, G))-1 < - .

Denote by 4> the intervals (a2j, β2ί) where

L(r, G)>r exp{fc(r) + T{φ), G)}[K(r, G)Y .

As before, we have

\ exp{fc(r) + T(c2(r), G)}dr < [ (K(r, G))-2d(K(r, G))
J42 JA2

< (K(a21, G))-1 < oo .

Let Δ = Δx U Λ. If r £ Δ and r > R, then

λ(r, G) < r

+ 3Γ(c2(r),

+ 3Γ(c2(r), G)}(Γ(rf G)

Thus for r i Δ and r > R and for some constant A,

(1.4) log λ(r, G) < A(3fc(r) + 7Γ(c2(r), G)) .

From Lemma 1.6 and well known properties of the characteristic
function, T(s, G) < A2(T(s, f) - log (1 - s)) for s > R. The lemma
follows readily from (1.3) and (1.4).

We state the following elementary lemma without proof.

LEMMA 1.6. Let f be meromorphic in \z\ < 1 with |/(0)| = 1.
If r < 1 and c(r) = (1 — a) + ar for some 0 < a < 1, £foew

( i ) n(r, f) < A{a){l - τ)-'T{c{r\ /')
(ii) n(r, IIf) < A{a)(l - T)^T{G{T\ /')
(iii) Γ(r, /') < A(T(r, f) - log (1 - r)) /or r > Λ

(iv) Γ(r, 1//') < A(Γ(r, /) - log (1 - r)) for r > R.

2. Proof of part (i) of the theorem* Without loss of generality
we may assume that | /(0) | = 1 since if /(0) Φ 0, oo we may consider
/(z)/l/(0)| and if /(0) = 0, oo w e may consider f(z) + ί or ί/f(z) + i.

With aQ as in part (i) of the theorem, let

a = al/2 and s = c(r) = (1 — α) + ar .

Also define
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(2.1) Fr{θ) = Re (reiθf"(rei9)/f'(rei9)) + 1 ,

and for x e [0, 2π)

(2.2) H!(θ) = Fr(x + θ) .

We will show that if θ is complex then H?(θ) is a meromorphic
function in a strip containing the real #-axis. We will apply Jensen's
theorem to fl?(0) in a circle centered on the real 0-axis, and integrate
with respect to x to obtain a bound for φ(r, (zf'(z)/f(z)) + 1), which
will yield a bound for φ(r, / ) . We first let

(2.3) K(t, a, θ) = (t2 - ta cos θ)/(t2 + α2 - 2at cos θ) .

Then, by the difFerentiated Poisson-Jensen theorem [4, p. 22], we have

(2.4) FM = 1 Γ log I / W O l^((r- + S - ) c o s ( ^ ^ ) - 2 : S )
2π Jo (s2 + r 2 — 2rs cos (0 — μ))

Γ log I /WO l ^ ^
2π Jo (s2 + r 2 — 2rs cos (0 — μ
- Σ «(α,r, s2, (? - α.) + Σ KQb.r, s\ θ - βn)

0<an<s 0<bn<s

+ Σ K(r, a,, θ-a%)~ Σ iΓ(rf K, θ - βn) + 1

= /-//+///+ /F - F + 1 ,

where {ane
i0Ln} and {ί)wβ^w} are the zeros and poles, respectively, of / ' ,

listed in nondecreasing order of magnitude. We let θ be complex
and prove

LEMMA 2.1. The function Fr(θ) (see (2.1)) is meromorphic in
I m # | < (1 — α)(l — r) with poles at values of θ for which lτaθ =

±log (rd"1) and Reθ = 7n + 2πk, k = 0, ± 1 , ± 2 , , where dne
ί'"»< is

a zero or pole of f and 0 < dn < s.

Proof If t = a then K(t, α, θ) = 1/2 for all 0 ^ 2ττfc, fc = 0, ± 1 ,
± 2 , . If t2 + α2 - 2αί cos θ = 0 where α ^ ί and 0 = ζ + i/S, then

(2.5) 1 < (α2 + f )(2αί)"1 = cos 0 = cos ζ cosh β - i sin ζ sinh β .

Thus, ζ = 2πk and cosh/5 = (a2 + £2)/2α£ = (α/ί + t/a)/2 = cosh(loga/t).
Hence,

(2.6) Re# = 2π/b , k an integer and Im# = ±logαί~ 1 .

We have log s?^"1 = log (1 + (s — r)r~ι) > (1 — α)(l — r) for r > R.
Thus, term / of (2.2) is a holomorphic function of θ in | I m 0 | <
(1 — α)(l — r). Also for 0 < c£w < s, we have log s2(dnr)~1 > log sr~\
Hence terms //and /// are also holomorphic in |Im θ \ < (1 — α)(l — r).
Finally, from (2.5) and (2.6), terms JV and F are meromorphic in
I m 0 | < (1 — α)(l — r) with poles at values of 0 satisfying Im0 =
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±\ogrd~1 and Re# = yn + 2πfe, k = 0, ± 1 , ±2,
We now apply Jensen's theorem to H;(β) (see (2.2)) with h =

(1 —• α)(l — r)/2, and integrate with respect to x, to obtain

(2.7) \**N(h, ~)dx = - Γ l o g |fl?
JO \ Hr ' Jo

In the following four lemmas we obtain a lower bound for the left
hand side of equation (2.7), and upper bounds for the three terms
L19 L2 and L3.

LEMMA 2.2. For H? defined above we have

) d x -2hφ{r' zf"{z)lf{z)

Proof. By Tonelli's theorem,

> w)

The contribution to the latter integral from a single zero of Hi on the

S h Ca+t
I t~xdxdt =

0 Ja-t
Sh

d t = 2h. S i m i l a r l y i t c a n b e s h o w n t h a t if a — h < 0 or a + h ^
0

2π, then the contribution to the integral is again 2h. The lemma
follows from the fact that the real zeros of H? are just the zeros
of Re (zf"{z)lff{z) + 1) on \z\ = r.

LEMMA 2.3. Let A be the constant and Δ the set in Lemma 1.5
corresponding to k(r) = —log (1 — r) and a2 = a2. For Lγ as in (2.7)
we have for r & A and r > R,

Lx < A[T{c\r), f) - log (1 - r)] .

Proof. If r g Δ and r > R, then by Lemma 1.5

L, = -('"log \H!(0)\dx = -\2Ίoe\Fr(x)\dx
JO JO

= -\27:log\Re(reίxf"(reix)/f'(reix)) + l\dx
Jo

< A[T(c\r), f) - log (1 - r)] .

LEMMA 2.4. JPO? L2 as in (2.7), we /mve for A = A(a) and for
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L2< A[T(c\r),f)-log(l-r)].

Proof. By Tonellί's theorem we have

L2 = \2π N{h, Hϊ)dx =

The contribution to L2 from a pole of Fr(θ) at b, where | Im b \ < h,
is no more than

Γ /fRe6+vt J ^ dxλt-'dt = Γ 2V? - (Imbγt-'dt
J |Im δ| \ JReb-"/t2-(Iτnb)2 / J | I m 6 |

dt = 2h .

The poles of Fr(β) (see (2.1)) in {θ: 0 ̂  Reθ < 2π and |Imθ\ < h} arise
from zeros or poles of f\z) in \z\ < s. Thus, by Lemma 1.6, Fr{θ)
has no more than 2(n(sf f) + n{s, 1//')) < A(a)(l - r)~ι[T{c\r), f) -
log (1 — r)] poles in the above region for r > R. Hence

L2 < 2hA(a)(l - r)-χ[Γ(c2(r), /) - log (1 - r)] ,

and the lemma follows since h(l — r)~ι = (1 — α)/2.

LEMMA 2.5. For Ls as in (2.7)

-A(α) α^d /or r > R

have for some constant A =

L3 < A[T(c\r), f) - log (1 - r)] .

Proof. We have from (2.4) that

(2.8) = 4~ \2π Γ log I Fr(x
2π Jo Jo

1 f 2π C2π 1 f 2τr

^ ^ log + ^ -
2π Jo Jo 2π Jo

x

+

2rβ((82 + r2) cos (a; + heiμ — t) — 2rs)
(r2 + s2 - 2rs cos (x + fee*" - t))2

dt dxdμ

f 2π: Γ27Γ

Jo

1 f 2π: Γ

2π Jo J

27Γ Jo Jo

v K(r, dn, x + heiμ - dxdμ

0<cί ί l<S

log 5 ,

- γ.) + log 5

where dne
irn is a zero or pole of / ' .

We analyze terms Elf E2 and Es separately.
Term Eλ. Since h = (1 - α)(l - r)/2 and logsr" 1 > (1 - α)(l - r)
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for r > R, we have for some w e ((1 — a)(l — r)/2, (1 — a)(l — r)),
for μ e [0, 2π) and for r > R,

(2.9) I (r2 + s2)(2rs)-1 - cos (x + Λe" - ί) |

;> I cosh (log sr-1) — cosh (ft sin μ) |

> cosh((l — α)(l — r)) — cosh(—(1 — α)(l — r))\
\2 /I

= sinh ω((l — α)(l — r) — —(1 — α)(l — r)J

r) sinh (—(1 — α)(l — r))
\ 2 /

— r) = —(1 — a)2(l — r) 2 .

Also, since r < s < 1 and cosh (ft) + sinh (ft) = eh < 4, we have from
(2.5) that

I (s2 + r2) cos (a; + he/ - t) - 2rs\ ^ 2(cosh (ft) + sinh (ft)) + 2 < 10 .

Thus, for constants A5 — A5(a), j = 1, 2, and for r > i?, from (2.7)
and Lemma 1.6,

(2.10) Ex < 2π( - A, log (1 - r) + log+ - i - Γ |log |/'(se
V 2ττ Jo

- 2 π ( - A , log (1 - r) + log+(τ(s, /') + T^s, ±

< A2(\og T(c(s), f) - log (1 - r)) .

Term EB. Since 0 < dn < s we have (s4 + d2

nr
2){2dnrs2)-1 ^ (s2 +

τ2)(2rs)-\ As in (2.9) we have for r > R that the denominator of
\K(dnr, s2, x + fte^ - 7JI (see (2.3)) divided by \2dnrs2\ is

(2.11) |(s4 + ^r2)(2d%rs2)-1 - cos (x + fee** - τ j | > ^ ( 1 - α)2(l - rf .
o

Also as above we have for r > R and dn Φ 0 that the numerator of
\K(dnr, s2, x + fee*'1 - γ j | divided by |2c?%rs2| is

(2.12) I (2dnτs2)~\dnrs2 cos (x + he*" - Ίn) - d\r2) \

= —I cos (x + fte</£ — 7 J — ώ^rs"21

^ i-(cosh (fe) + sinh (h)) + —

= \{eh + 1 ) < 3 .
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We conclude from (2.11) and (2.12) that for r > R

\K(dnr, s\ x + he* - τ j | < Λ(α)(l - r)

and therefore from (2.8) and Lemma 1.6, for r > R

(2.13) E3 < 2π(log (n(s, /') + n(s, 1//')) + log (A(α)(l - r)~2))

< A(a)[log T(c\r), f) - log (1 - r)] .

Term E2. We change the variables of integration in E2 to u =
x + A cos μ — 7Λ and v = h sin μ. Since this transformation takes
{(&, i"): 0 <: x < 2π, 0 ^ /£ < 2π} onto {(%, v): 0 ^ w ^ 2ττ, -h <> v £ h}
exactly twice, it follows that

(2.14) E2 = — Γ ΓYlog+ Σ ^ ( n d», u + iv)\)(h2 - v2)~1/2dudv .
% JO JO V d % < s I /

We define

(2.15) ε = ε(r) - min {exp(- T(c\r), /)), (1 - r)5} ,

and

(2.16) D - D(ε) = U {(log (d.r"1) - ε, log (d^-1) + ε)
dn<s

U (-log (d/-1) - ε, -log ((ί/-1) + ε)} .

We will evaluate the integral in (2.14) over values in [0, h] — D
and then over v values in D Π [0, K\. We begin by obtaining a lower
bound for the denominator of \K(r, dn, v + iv)\ (see (2.3)). If r2 +
d\ — 2rdn cos (u0 + iv0) = 0 for \vo\ ^ fe, t h e n

r2 + dl — 2rdn cos (^ + iv)

= r2 + dl — 2rdn cos (u + iv) — (r2 + d2

n — 2rd!% cos (u0 + iv0))

w(cos (% + iv) — cos (%0 + ity>))

sin ^—(% - u0) + -|-(t; - θ j sin ^—(% + u0) + y(v

There is an absolute constant B so that |sin«|/|Imjs| > B. ItvgD,
then \v ± ι;0| > ε and |sin ((u ± wo)/2 + i(v ± vo)/2)| > B|ι; ± vo| > 5ε.
Hence, for vgD, dn Φ 0 and r > R, the denominator of | JSΓ(r, cZn,
tt + iv) I is

|r2 + dl- 2rdn cos (u + iv) | > 4rdnB
2e2 .

Also, since | v | <ί fe and cos (u + ΐv) = cos u cosh v — ΐ sin % sinh v, we
have that the numerator of | K(r, dn, u + iv) \ is

(2.17) I r2 — rdn cos (u + iv) \ ̂  1 + cosh v + sinh | v \ < 4 .
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S h
(h2 — v2)~mdv — π/2, we have for

0

d0 = min {dk Φ 0: k = 1, 2, 3, •}, and for r > R

(2.18) ( - L Γ( log +

J[0,Λ]-D 2TΓ Jo \
, dn, u + iv)\W - v2)~1/2dudv

< A{a, do)(T(c(s), f) - log (1 - r)) .

S 2π
I log I c — cos tl^ldt < A for all real c, (2.17)

0

and a straight forward calculation yield that for all dn Φ 0,

S 27Γ

log+ I K{r, dn, u + iv) \du
0

— ( 2 7 Γ 1 cv+ ^ ~ r^» C 0 S (^ + ^
~ Jo r2 + d\ — 2rdn cos (u + i

< 8ττ + |log(2rώ0)| + Γlog + | ( r 2 +
Jo

< 8τr + I log (2rd0) \ + A = A(d0) .

Hence, using Lemma 1.6, for r > R

(2.19) Γlog+ Σ -̂ (Λ d , « + i«) dtt
Jo dn<s

£ 2π log (n(s, f) + Λ(β f -1))

Σ

^ 2π log (»(β, /') + n(s, 1 )

< A(a, do)(l - rJ-'ίΓίcίβ), /) - log (1 - r)) .

The measure of D is no more than δ = δ(ε) = 2(n(s, f) + n(s, l/f'))ε.
Also,

ί (/i,2 - v2)-1/2di; ^ (* (h2 - v2)-mdv = sin-1 (1) - sin-1 (1 - δh'1)
JDfUO.λ] JΛ-ί

where y = sin"1 (1 — SΛr1). Since limw_;τ/2 (sin π/2 — sin w)/(π/2 — w)2 =
1/2, we have for r > R

= 2(1 - (1 - δh'1))1'2 =
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Therefore,

n(s, ±))e)m

\ T / / /T

and from (2.19) and Lemma 1.6,

(2.20) , dn, u + ίv)\\h2 - v2)~1/2dudv
1/

^ A(a, do)(l - r)-\T(c(8), f) - log (1 - r))

^ A(a, do)(l - r)-2(T(φ), /) - log (1 - r))3/2ε1/2 =

by the definition of e (see (2.15)). From (2.14), (2.18) and (2.20) we
conclude that for r > R

(2.21) E2 < A(a, f)(T(c(s), f) - log (1 - r)) .

Since s = c(r) it follows from (2.10), (2.13) and (2.21) that for
r > R and for some constant A = A(a, f)

Lz < A(a, /)(T(c2(r), /) - log (1 ~ r)) .

Finally, we conclude from (2.7) and Lemmas 2.2, 2.3, 2.4 and
2.5 for r ί J , r > R and for some constant A = A(α, /)

2ft0(r, zf'\z)lf\z) + 1)< ^(Γ(c2(r), /) - log (1 - r)) .

Part (i) of the theorem now follows from Lemma 1.4 since h =
(1 - α)(l - r)/2, and c\τ) = co(r).

3* Proof of patt (ii) of the theorem* We have obtained an
upper bound for φ(r9 f) off an exceptional set of r values, but the
techniques used in § 2 do not yield any upper bound for φ(r, f) on
the exceptional set. In this section we obtain an upper bound for
Φ(r, f) on the exceptional set by bounding φ(r, zf'Ίf + 1). This
upper bound for φ(r, f) will yield, upon integration, the appropriate
bound for Φ(r, / ) .

We let c(r) = (1 — 7) + ηr with 7 as in Lemma 1.2. By Lemma
1.2 we can write zfrt(z)/f{z) + 1 = g^lg^z) where gx and g2 are
holomorphic in the unit disk and for r > R

(3.1) max (Γ(r, Λ ) , Γ(r, g*)) < A(l - r)->T(c(r), zf"z/f'(z) + 1)
< A(l - r)"'(Γ(c(r), /) - log (1 - r))

where p is a positive integer and we have used Lemma 1.6 and well
known properties of the characteristic function.
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We have Re (*/"(*)//'(*)+ l) = Re {g,{z)gJiz))l\gz{z)\\ We let u, ,r(θ) =
Re g5(reίθ) and vj>r(θ) = Im g5(reίθ) for j = 1, 2 and define J r by

(3.2) Jr(0) - E

= UUr(θ)u2,r(θ)

Now choose r0 > 0 so that (3.1), Lemma 3.3, (3.8) and (3.12) of this

section hold for r > r0. For 7 as in Lemma 1.2 let

(3.3) φή = {1- Ίm) + 7VV and sn = c?(r) .

We note that if we let sQ = r0 then d(r) = c(r) and U?=o [s%, sΛ+1) =

K 1).

LEMMA 3.1. If re [sn, sn+1), /(re") =£ 0 /or 0 ^ 0 ^ 2ττ, α^ώ the

distance from \z\ — r to the nearest zero of g2(z) is no less than Ύ]r,

where Ύ] < ηQ < 1, then there is a θQe [0, 2π) such that

log I Jr(θ0) I > A(sn+2 - sn+1)-\T(c(sn+2), f) - log (1 - sn+2)) log η .

Proof. Applying Lemma 1.1 to g2(z)/\g2(0)\ or g2(z)/ckz
k for ap-

propr iate k and c& in \z\ ^ s%+2, we obtain a union of disks C(sH, η),

centered a t t h e zeros of g2 in 0 < | z \ ^ sn+2, t h e sum of whose radii

does not exceed τjs%+lf such t h a t in {r0 ^ | z \ ^ s%+1} — C{s%, rf)

(3.4) log I g2{z) [ > A(s,+ 2 - s% + 1)-2T(s% + 2, βf) log ^

> A(sn+2 - sn+1)-2(T(c(sn+2), f) - log (1 - sn+2)) log Ύ] .

We let B{s%, η) = {r: f(reiθ) e C(sn, η) for some 0 ^ θ < 2ττ}, and

(3.5) E(sn, η) = [sn, sn+1) Π {B(sn, rj) U {r: / has a zero of modulus r}} .

If re[8n98n+1) — E(8n,7)), then g^/g^z) has no poles (and hence /

has no zeros or poles) on \z\ = r . Thus ω = f(reίd), 0 ^ ^ ^ 2ττ is a

closed p a t h in t h e plane and by (1.1)

— Γ|Re {reiθf"(reίθ)lf\reίθ))
2π Jo

Consequently, there is a θ
0
 6 [0, 2π) such that

which together with (3.2) and (3.4) yields the lemma.

LEMMA 3.2. If re [sn, sw+1) and θ is complex, then Hr(β) is holo-

morphic in | I m # | < — logr and for | I m 0 | ^ log (c(sn+1)/sn+1) we have

for some positive integer p,
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( β n + 8 - s f t + 2 )

x [T(c(*n+Λ /) - log (1 - 8n+4)]} .

Proof. If ^(z) = ΣϊU α^% where αΛ = αΛ + iβ», an, βn real, then
let g*(z) = ΣϊU |αjs*. We note that by Lemma 4 of [10]

M(r, gf) <(R- r)M(R, g)

for 0 < r < R < 1. Also, for real θ

(3.6) %lιr(0) = Σ («» cos ^ - /SΛ sin

If we let 0 be complex, (3.6) implies that uUr(θ) is holomorphic in
] Im θ I < - log r. If |Im 01 < log (sn+2/s%+1) < - log r, then

^ 2 Σ | α n | ( r exp(log(8Λ+2/β +i))) ^ 2firf(s%+2)

+2, flr*) < 2(βn+8 - sn+2)-mM(sn+3, Λ )

X

where p is a positive integer and we have used Lemma 1.2 and a
well known relationship between log+ M(r, f) and T(r, / ) , see [4,
p. 18]. Identical statements can be made for v1>r(θ), u2>r(θ) and v2tr(θ)
and the lemma follows.

Now choose a positive integer q so that

Y log (sn+2/sn+1) ^ πiϊq)-1 < log (sn+2/sn+1) ,

which can always be done provided r0 is sufficiently large. If U1 =
{θ:\Imθ\ < π(2q)~1}9 then fλ(z) = ez is a one-to-one transformation of
U1 onto U2 = {θ Φ 0: | arg θ | < 7r(2g)~1}, and /2(«) = z9 is a one-to-one
transformation of U2 onto U3 = {θ Φ 0: | a r g # | < ττ/2}. Also, /3(^) =
(z — eθύq)l(z + ê °g) is a one-to-one transformation of C73 onto the unit
disk, satisfying fz(eθ°q) = 0, where #0 is as in Lemma 3.1. If we let
L~\z) — /8(/2(/i(ίs))), then L(») is a one-to-one transformation of the
unit disk onto U19 satisfying L(0) = θ0. We let p(q) = (eπq - l)/(eπq + 1).
Elementary calculations show that L maps {\w\ < p(q)} onto a region
in Uλ containing the interval [θ0 — π, ΘQ + π] on the real #-axis. We
will use L to prove

LEMMA 3.3. If re [sn, sΛ+1) — J&(SΛ, rj), then
1

^(Λ / ) < exp{A(s% + 2 — s%+i)"1}[T'(c(sw+4), / ) — l o g ( l —
V

provided r > R.
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Proof. We let nr(t) be the number of zeros of Jr(L(co)) in
\o)\ ^ t. Since Jr(L(ω)) is holomorphic in \co\ < 1, we apply Jensen's
theorem to JroL to obtain

(3.7) [n^x-'dx - -log I Jr(L(0))| + -A- Γlog \Jr{L{te^))\dζ .
Jo 2π Jo

For t > p(q) we have

(3.8) Γ ^(^aj-^α? > nr(p(q)) log (^(g))"1) .
Jo

We note that — log p(q) > exp(—πq) for sufficiently large q, and g
will be large enough if sn (or, equivalently, r0) is large enough. Also,
from the definition of q, we have exp(ττg) < exj)(A(sn+2 — s^+i)"1)-
This observation together with (3.7), (3.8), Lemma 3.1 and Lemma
3.2 yield, upon letting t approach 1,

nr(p(q)) < [log (tipiq))-1)]-1 \* n
Jo

- [log (tίpta))-1)]-1 {-log I Jr(θ0) \+-^\** log I JΛUte*)) \dζ

2 - sn+1)-2[T(c(sn+2), f)

- log (1 - sn+2)] log — - i - log (sw + 3 - s%+4)

+ A ( s w + 4 - s n + 3 ) - ^ [ T ( c ( s n + A ) , f ) - l o g ( 1 - s n + }

< exv(A(sn+2 - 8Λ + 1)-1)[Γ(c(8.+ 4), / ) - log (1 - *Λ + 4)] l o g i - .

Since the zeros of Jr(L(ω)) in | ω \ < p(g) include the zeros of
Re (reίθf"(reίθ)lf\reίθ) + 1) in the interval [#0 - π, θ0 + π], the lemma
follows from Lemma 1.4.

Let Ao be the constant in Lemma 3.3, and let δn = exp( —3T(c(s%+4),
/) - 4Ao(8Λ+2 - β.+i)"1). Define JS? = U?=o S(βn, δ j , where βH and
E(sn, δ j are defined by (3.3) and (3.5), respectively. Let Δf be the
set in Lemma 1.5 corresponding to a2 = 72 and A (r) = B(l ~ r)" 1 with
B a sufficiently large constant to be specified in (3.12) below. Finally,
let P1 = [0, r0], P2 = J' n ^, and P3 = (Δf - E) f] [r0, 1). We will bound

Φ(t, f)(l - tyW for i = l , 2 , 3 .

If D(%) = {r < s.,+2: f̂2 has a zero of modulus r}, and if r1eD{n)

then by Lemma 3.3, for sn> R
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Φ(t, /)(i - tyw

< exp{Λ(sπ+2 - W O T Φ +i), /) - log(l -

x Γ1+°'(-log|ί -r^dt
Jrχ — δη

< 2exp{Λ(Stι+2-sκ+1)- ι}(Γ(c(sM+4), / ) - l o g ( l - β .

< exp{-2Γ(c(sB+4), /) - 2Aΰ(sn+2 - s.+J-1} .

Since E(sn, δj c \JreDM (r — δη, r + δv) U {r: / has a zero of modulus
r}, and ̂ 2 has no more than n(sn+ΐ, g2) zeros in \z\ < sw+2, we have
from Lemma 1.6 and (3.9) for r > R

\ φ(t,
JE(sn,δn)

< e x p { - 2 T ( φ % + 4 ) , / ) - 2^0(8^+2 - sn+1)-1}7i(sw+2, g)

<l-8n = yn/i(l - r0) .

Since E = \Jn=0E(sn, δ j , an elementary calculation shows

(3.10) j φ(t,

It follows from [10, paragraph after (2.16)] that

(3.11) ( φ(t, /)(1 - tY'dt < oo .

If r e (J ' — JS) n [s%, sn+1), then from Lemma 3.3, for ro> R

(3.12) ^

< (1 - r ^ e x p {4,(^+2 - s^rWicis^lf) - log(l - 8%+,)]

X [3T(c(s%+4), /) + 4Λ(β + ί - s.+J-1]

< exp{2Λ(8n+2 - «Λ+1)-
1}Γ2(c(8Λ+4), /)

<exp{B(l-r)-1}Γ2(c(cί(r)),/)

= exp{B(l-r)-1}T2(c8(r),/)
< exp{T(c2(r), /)

where B is a constant and we have used the fact that cj(r) = c(r).
Thus, by Lemma 1.5 we have

(3.13)

Finally, we note that the proof of part (i) of the theorem may be
altered using Lemma 1.5 with Δ' corresponding to k(r) — J3(l — τ)~ι

(B as in (3.12)) and a2 = τ2 to yield that for r g / and r > R

(3.14) φ(r, f) < A(l - r ) - 1 ! ^ 2 ^ ) , /) + ( ! - r)"1] .
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From (3.10), (3.11), (3.13) and (3.14) we conclude for r > r0,

t\ /) + a - tyι]dt + θ(i)Γ
Jo

< A[T(c\r), /) + (1 - r)-ι]((l - r)" 1 - 1) + 0(1)

< A(l - rJ-lΓ^Cr), /) + (1 - r)-1] .

The proof of part (ii) of the theorem follows by letting ax — 72.

4* Examples* We first give an example to show that φ(r, f)
may equal 0(1), and that Φ(r, f) may equal O( —log(l — r)), for
functions of arbitrarily large order. For λ > 0, let

f(z) = exp{((l + z)/(l - z)Y} ,

where the branch is chosen so that /(0) = e. Note that \f(z)\ = 1
implies Re {((1 + z)/(l - z))λ} = 0. Since (1 + z)/(l - z) takes | s | = r
onto a circle in the right half plane, |arg((l + z)/(l — z))λ\ < πλ/2.
Also, for fc = 0, ± 1 , ±2, , ±[λ/2], -[λ/2] - 1, arg ((1 + z)/(l - «))λ -
(k + l/2)π if and only if arg ((1 + z)/(l - z)) = 1/X(k + lβ)π. For
each such k, the latter equality holds at most twice on | z | = r. Thus,
I f(z) I = 1 at no more than 4([λ/2] + 1) ^ 2λ + 4 points on | z \ = r.
If L(z) is a linear fractional transformation taking \z\ = 1 onto the
imaginary axis, and if g{z) = L(f(z)), then 0(r, βr) ̂  2λ + 4 and
Φ(̂  , ^) ^ (2λ + 4) log (1 — r)-1. The order of g can be made arbitra-
rily large by choosing λ sufficiently large.

Now we give an example to show that the factor (1 — r)~ι in (i)
and (ii) of the theorem cannot be replaced by any function b(r)
satisfying b(r) = o((l — r)"1). We use the Lindelδf functions. If q
is a positive integer and q ^ λ ^ q + 1, then we let

f(z, λ) = Π (1 — zUn1) βxp \iza~1) + —(za~1)2 + H {za%

1

k=i I 2 q

w h e r e an = M 1 " . I t is known [11, p . 18] t h a t /(z, λ) has order λ and

mean type 1. Thus, for ε > 0 and \z\ > R(ε), we have

(4.1) log I f(z, λ) I < (1 + ε) |z \λ .

We let g(z, λ) - /((I + z)/(l - z), λ). Thus, for | (1 + z)/(l -z)\> Λ(e),

(4.1) implies

(4.2) log I g(z, λ) | < (1 + ε)| (1 + z)/(l - z)\λ .

Also, t h e r e is a constant K(ε) so t h a t , if | (1 + z)/(l — z)\ ^ R(ε), t h e n

(4.3) log |^(z, λ ) | < K(ε) .

Since (1 + ε)( | l + reiβ\/\l - reiθ\)λ = (1 + e) | l + reίθ\\\l - reiθ\2ym£
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(1 + ε)2'(l - 2r cos θ + r

2)~λ/2, we have from (4.2) and (4.3)

(4.4) m{τ, 0) = - L ( * log+ I g{reiθ) \dθ

^ 2;(1 + ε) fπ ( 1 _ 2 r c o g θ + T2yamdθ + Kφ m

2π J-*

By [2, p. 65], the latter integral in (4.4) equals O((l - r)- ( ;-1 }). Thus

(4.5) T(r, g) = m(r, g) = O((l - r ) - ( ^ ) .

Since the image of | z \ ̂  r under (1 + z)/(l — z) contains the interval
[(1 — r)/(l + r), (1 + r)/(l — r)] on the real 0-axis, we have n(r, 1/g) ^
(1 — τ)~\ for r > R. By the argument principle, if f(z) ^ 0 on
I z I = r and r < R, then

(4.6) <*(r, ̂ ) ^ 2 ( ! ~ τ)~λ

From (4.5) and (4.6), it follows that if f(z)Φθ on | s | = r and if
r > R,

/3) + βr, g) = O[(l - r ) - ^ - ((1 - /3)
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