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THE SPECTRAL DENSITY OF A STRONGLY MIXING
STATIONARY GAUSSIAN PROCESS

ERIC HAYASHI

Let w be a nonnegative integrable weight function on
the real line R such that (log w)l(lJrX2) is also integrable.
Let Fτ and Pτ denote, respectively, the closed linear spans
in L2(R, wax) of {eiax: a^T} and {eiax: a^ T}. Let Θ(T)
denote the angle between Po and Fτ. The problem consi-
dered here is that of describing those weights w for which
θ(T)->π!2 as T tends to infinity (such weights arise as the
spectral densities of strongly mixing stationary Caussian
processes). Some necessary conditions on w are given for
Θ(T) ->π/2, and a construction is given to show that w may
have arbitrarily wild oscillatory discontinuities even if
θ(T)->π/2. Another measure of the interdependence of Po

and Fτ is introduced: let Θ*{T) denote the angle between
Pτθ(PτnF0) and F0Q(PTi]FQ). A complete structural char
acterization is given of those weights w for which both
Θ(T) and Θ*(T) tend to π/2. Moreover, it is shown that if
either Θ{T) or Θ*(T) is eventually positive and the other
tends to π/2, then they both do.

Let W denote the class of weights w for which Θ(T) tends to
π/2. These weights arise as the spectral densities for stationary
Gaussian processes which satisfy a certain strong mixing condition.
Helson and Sarason studied the analogous class of weights on the
unit circle, which correspond to discrete-time processes. In [10] and
[17] they give a structual characterization of these weights as those
of the from |P|V*+\ where P is a polynomial and where n and v
are continuous functions on the unit circle (v denotes a harmonic
conjugate of v). Since the entire functions of exponential type are
related to the bounded uniformly continuous functions on R rougly
in the same way as polynomials are related to continuous functions
on the unit circle, it is tempting to conjecture that W is precisely
the class Wι of weights w which have the form w — \B\2ewΛ\ where
B is an entire function of exponential type and is square-summable
on R, and where u and v are in BUG, the space of bounded uni-
formly continuous functions on R. The class Wλ is discussed in § 4.
It is easy to show that TFLc W, but whether or not Wa W± remains
unanswered. A necessary and sufficient condition for a weight
function in W to be in WΊ is given in Theorem 2 of that section;
it is hoped that further investigation of that condition will lead to
an answer. Section 6 contains some partial results in this direction.
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The class W* of weights for which Θ*(T) —> π/2 is taken up in § 5.

2* Some preliminaries* Let L°° denote the space of essentially
bounded measurable functions on the real line, and let H°° denote
the space of functions in L°° whose Poisson extensions into the
upper half-plane are analytic. This section will outline some facts
about the closed algebras between H°° and L°° which will be needed
either in substance or for motivation in the following sections.

Let A be a closed subalgebra of L°° which contains H°°. It was
shown by Marshall and Chang in [16] and [4] that A is generated
by J?°° and the complex conjugates of the inner functions which are
invertible in A; such algebras have been named Douglas algebras.
The main algebra we will consider is H°°[e~i<B]f the closed algebra
generated by H°° and the function e'ix. In [19], Sarason showed
that this algebra equals the algebraic sum H°° + BUC, where BUC
denotes the space of bounded uniformly continuous function on R;
BUC is also the C*-algebra generated by the inner functions which
are invertible in H°° + BUC. It turns out that this form holds for
all Douglas algebras. In [3], Chang proved the first two parts of
the following theorem which will be used in proving Theorem 5.
Part (iii) was proved by Chang and Marshall in [4].

THEOREM. Let A be a closed subalgebra of L°° which contains
H°°, and let CA denote the C*-algebra generated by the inner func-
tions which are invertible in A. Then the following statements are
true:

{i) A = H~ + CΛ

(ii) A Π A — L°° Π (CA + CA) where A denotes the space of com-
plex conjugates of functions in A, and CA denotes the space of
harmonic conjugates of functions in CA.

(iii) If f is a function in CA, then dist(/, H°°) = dist(/, Ή°° n CA),
where dist(/, S) = inf{||/ - g \\^ g e S}.

The role of the conjugation operator in the study of Douglas
algebras is tied largely to results discovered by FeίFerman and Stein
in [9]. If / is a locally integrable function and / a finite interval,

we let fj = 11]-11 f(x)dx, where |/ | denotes the length of /. A

function is said to be of bounded mean oscillation, or to lie in BMO,

if the quantity \\f\\* = sup^II" 1 ! \f(x) — fj\dx is finite (the suprem-

um being taken over all finite intervals). If functions in BMO
which differ by a constant are identified, then BMO becomes a
Banach space, with norm ]| H*, which Fefferman and Stein identified
in the above paper as the dual of H1. They also showed that the
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functions / in BMO are precisely those of the form / = u + v where
u and v are in L°°, and that the conjugation operator is a bounded
map from L°° into BMO, which is a fact we will need later.

Another important class of functions is VMO, the functions of
vanishing mean oscillation. A function / in BMO is said to be in

VMO if the numbers Ma(f) = supuι^β |/|"M I/O) — fx\dx tend to zero
as a tends to zero. It is easy to see that a uniformly continuous
function in BMO belongs to VMO. It is also well known that the
conjugation operator preserves certain smoothness properties of
functions (see [5]), so it is not surprising that if u and v are uni-
formly continuous functions in BMO, then u + v is in VMO. In
[19], Sarason proved that the converse is also true. He also showed
that VMO plays an important role in the structure of H°° + BUC,
namely that (H™ + BUC) n H~ + BUC = L" n VMO. In [3], Chang
associated to each Douglas algebra A a space VMOA which is a
generalized version of VMO. (Roughly speaking, functions in VMOA

look locally like VMO functions where the functions in CA are nicly
behaved.) Furthermore, it is shown there that VM0ΛnL~ = AΓ\A
and VMOA - CA + CA.

3* The class W. We shall only be considering integrable
weights w which satisfy the condition that (log w)/(l + x9) is inte-
grable, so w can be expressed in the form w = \h\2 where h is an
outer function in H2, the usual Hardy space for the upper half-plane
(see [5, p. 83]). For each nonnegative real number T, define the
number

p(w, T) = sup Γ eiTxf{x)f2{x)w{x)dx

where fx and f2 are allowed to run over the unit balls of FQ(w) and
P0(w), respectively. The number p(w, T) is just the cosine of the
angle Θ(T) between the subspaces P0(w) and Fτ(w) of L2(R, wdx).
Let W denote the class of all integrable weights w for which
p(x, T)->0 as T-> oo.

The following lemma is a variation on a theme by Helson and
Szego [11].

LEMMA 1. Let w — \h\2 where h is outer in H2. Then w is in
W if and only if the function h/h belongs to the algebra H°° + BUC.

Proof. The idea here is that p(w, T) equals ά\st(eiTxh/h, if00),
the distance in L°° of the function eiTxh/h to the space H°°. To see
this, note that the unit ball of F0(w) is the closure in L2(R, wdx) of
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functions g in H2 which satisfy \\gh\2 = \\g\2w ^ 1. Thus, we have

p(w, T) = sup

— sup
/1/2 h

where fx and /2 are the functions gxh and (/2/&, respectively. Since h
is outer, the ft range independently over a dense subset of the unit
ball of H2, hence their product ranges over a dense subset of the
unit ball of H1. Now H°° is the annihilator in L°° of H1, so p{w, T)
equals the norm of eiTxh/h in Z/^/iί00, which equals inf/eHoo \\eίTx(h/h) — f\\oO.
Thus w is in W if and only if άist(eiTxh/h, H°°) -> 0 as T -* 00 9 end
Lemma 1 is proved.

The following theorem is stated without proof in [13]. The
proof given here is essentially the same as the Helson-Sarason proof
in [11]; the argument is sketched below since it will be used on
several occasions.

THEOREM 1. Let w — \h\2 where h is outer in H2. Then w is
in W if and only if, for every ε > 0, w can be written in the
form w = (1 + x2)\Bε\

2eUε+Vε where uε and vε are real functions on R
with \\uε\\oo + IKIloo < ε and where Bε is an entire function of expo-
nential type which is bounded on the real axis and zero free in
the upper half-plane.

Proof. First suppose that w = (1 + x2)\B\2eu+7 where |M|oo-f
||v||oo < ε and B is entire of exponential type and bounded on R with
no zeros in the upper half-plane. Since (log |f?|)\(l + x2) is integrable
on Ry it follows from Nevanlinn's representation theorem ([8, p. 22])
that eίTxB is an outer function for some T, so

h = (x + i)eiTxBe[(u + v) + i(u - v)]/2 ,

and

h/h = X ~ % e-2iTx[B*(x)/B(x)]eί{v-Z)

x + i

where B*(z) = B(z). Furthermore, by Nevanlinna's theorem, the
zeros of J5* form a Blaschke sequence for the upper half-plane, so
B*/B = b eiτx for some Blaschke product b and real number r. The
factor eiτx may be absorbed by the factor e2ίTx, so
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άist(eHTx'h/h, H~) = dist f-^-^-δ^-^, H
\ x + i

x + i

To get an estimate on this last quantity, let g — e~{u+ίu). Then g is
in H°°9 and

Since this last expression tends to zero as ε —> 0, and p(w, T) is a
nonincreasing function of T, it follows that lim^oo p(w, T) — 0.

Suppose now that w is a weight in W. Then, if ε > 0 is given,
for some positive T, there exists a function A in H°° such that
Λ/Λ = e~ίTxA es+ίt where s and t are real functions with ||s||oo + | | ί ||oo <
ε/2. Thus the inequality

0 -t(x)+it(x)

holds almost everywhere on i?. There is no harm in assuming that
ε < π/2. This insures that Re[et+it] ^ 0 so that the last factor on
the right is actually the boundary function for a function in
(z + if-H1 (see [5, p. 34]). So

-t{z)+ίt(z)S(z) = e~ιT A(z)h\z)e

is a function which is analytic in the upper half-plane, positive a.e.
on the real axis, and is in Hm of every half-disk with diameter on
the real axis. Using a fact about analytic continuation noted by
Helson and Sarason (seen [14]), we can analytically continue S across
the real axis by reflection across the diameters of arbitrarily large
half-disks. Thus S is an entire function. That it is of exponential
type follows from a theorem of Krein which says that an entire
function which is of bounded characteristic in both upper and lower
half-planes is of exponential type. However, the following direct
estimate obtained by Koosis in [14] is more useful:

\S(z)\ ^ C (l + |z|2)e1ΓIm*' ,

where C is a constant independent of z. Now, since (log S)/(l + x2)
is summable, S can be factored as S(x) = B*(x)Bι(x) on the real axis,
where B1 is entire of exponential type at most Γ/2 and has no
zeros in the upper half-plane (see [2, p. 125]). If Bx has no zeros,
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then Bx(x) — ea+cx for some constants a and c. But the constant c
must be purely imaginary for (log \Bj\)/(l + x2) to be integrable, and
in this case, we can assume that Bλ is constant. So, without loss
of generality, B1 has a root z0. Let B2 == BJ(z — zQ). Then for real
x, we have \B2(x)\2 = \S(x)/(x — zo)\2 which is bounded on J? by the
Koosis estimate. Furthermore,

w = \h\2 = S(x)es+ΐ = (1 + x2)-\B2(x)\2er+s+1

where r = log|x — zo/x — i\2. Since the function er is in BUG, it can
be uniformly approximated by entire functions of exponential type
(see [2, p. 249]). Thus, we can write er = |2?8|V

ι where BB is entire
of exponential type and Hŝ U < ε/2. Putting all this together
yields

w = (1 + x2)-B2B*BzB?es>+s+1 .

Now B2B%BzBf can be factored as I?JB* on the ίc-axis where 5 is an
entire function of the desired type. Setting uε — s1Λ- s and vε — t
gives the desired result.

The following corollary gives local versions of properties stated
in [10] for weights w in W. Corollary 2 will be used in proving
Theorem 3.

COROLLARY 1. If w is in W, there is a unique sequence ( r j
of real numbers such that, if BQ is the Hadamard product with
zeros ( r j , then the following are true:

(1) w = \BQ\2ef where f is a function which is of vanishing
mean oscillation on every finite interval.

(2) lim| J K 0, J C I sup \J\~2 Q^(^/|βo |2)^]Q^(|5o |2/^)dxJ = l uniform-

ly for every finite interval Γ
(3) w/\B0\

2 has an antiderivative which is uniformly smooth
on every finite interval I, i.e.,

Wj(a) = sup
x + h rx I /I fx+h

O 12

-'o I

tends to zero uniformly as a tends to zero for each finite interval I.
(4) w cannot have a jump discontinuity.

Proof. Suppose that w = (1 + x2)\B, | V ^ and w=(l + x2)\B2 \
2eu*+v*

are two representations of w given by Theorem 1. Then \BJB2\
2

and l-Bs/JBil2 are both locally summable, provided that H^ — v2||oo < ττ/2.
Thus, if vλ and v2 are small enough, J5X and B2 must have the same
real zeros, counting multiplicity. Let Bo denote the Hadamard pro-
duct with these zeros. Then, for every Jsmall positive ε, you can
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write / = log(w/\B0\
2) = log|£ε/J50|

2 + log(l + x2) + uε + v ε where
\\uε\\oo + \\Ve\\oo < ε. Now, the first two terms on the right are conti-
nuous; let g denote their sum. Then it is clear that, for any finite
interval /,

lim sup \J\A \f - fj\ ^ lim supj|J\A \g - Qj

/ / I

^ o + \\uε + #β|L

^ κιι* + IIS.IL .
Since the conjugation operator is a bounded map from L°° into BMO,
it follows that ||w.|L + \\vε\\^K{2 Wu^Λ- |K]|TO). So, lim supljMOfjC/1/11\
\ \f —//| ^ 2K-e, for some absolute constant K and arbitrary ε.

This means that / is in VMO(I), and (1) is true. The equivalence
of properties (1) and (2) and that (2) implies (3) were established
by elementary methods in [19]. Property (4) is an easy consequence
of property (1).

COROLLARY 2. Let w = \h\2 he in W. Then for every x in R,
limy^0 \(h/h)(x + iy)\ — 1 {by (h/h)(z) we mean the Poίsson extension
of h/h into the upper half-plane) and this convergence is uniform
on bounded subsets of R.

Proof. First of all, if k is a bounded function on R, it may be
extended harmonically into the upper half-plane by k(x + iy) =
(Py*k)(x) where Py(t) = y/π(t2 + y2). If / and g are bounded func-
tions on the line and / is continuous, then on every finite interval J,

lim sup \f(x + iy)-g{x + iy) — (fg)(x + iy)\ = 0 .
2 / - > 0 + x e j

A proof of thit can be found in [18]. Let ε > 0 be given and J
be fixed. Then we can write h/h = [(x - i)/{x + i)]e~2ίTxb(x)eiinx)-^x)) as
in the first paragraph of the proof of Theorem 1. Now write
h/h = fg where g = eUv-Z) and f=[(x- i)/{x + i)]/e~2iTxb(x). Then / is
continuous on R, so by the remark at the beginning of this para-
graph, it will suffice to show that lim^0+ sup,.^ |1 — \g(x + iy)\\ < lOε:
this implies the inequality

1 - lOε ^ lim inf
2 / - + 0 + x e j

^(x + iy)
h

lim sup
y - > 0 + x e j h

1 + lOε

for arbitrary ε. To get the desired inequality for g, write g(x) =
k(x)eu{x)+ίv{x) where k = e~u-iZ, which is in if00. Then e~ε <, \k(x)\ ^ e%
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and | 1 - e

u{x)+ίvix)\ ^ 4ε, so

iy) - g(x + iy)\ = |J~J^){1 - ^ ( ί ) + i" ( ίW* - t)dt

The desired inequality now follows easily for ε < 1/2.

4* The class W^ Let Wx denote the class of integrable weights
w which can be expressed in the form w = \B\2eu+υ where B is an
entire function of exponential type which is square summable on R,
and where u and v are real bounded uniformly continuous functions.
In this section, we show that W1 is a subset of W, and a necessary
and sufficient condition is given for a weight w in W to belong to

To see that WΊ is a subset of W let w = \h\2 be of the form
w = \B\2eu+v where J3, u, and v are as above. We can assume with-
out loss of generality that B has no zeros in the upper half-plane,
so there exists a number T such that eiTxB is an outer function in
H\ This implies that h/h = e-UTx{B*\B)-ei{v-Z)\ since B*jB essential-
ly is a Blaschke product for the upper half-plane, it will suffice, by
Lemma 1, to show that eUv~Z) belongs to H°° + BUC. But eUv~Z) =

second factor is in H00, so the desired result follows.

THEOREM 2. Let w be in W, and w — \h\2 where h is outer in
H2. Then the following are equivalent:

(1) w belongs to Wx.
(2 ) h/h can be factored as an inner function times a function

which is invertible in H°° + BUC.

Before proving Theorem 2, it should be remarked that it is un-
known whether or not condition (2) holds for all w in W. It will
be shown in Lemma 6 that (2) is "almost" true for every weight
w in W. This will be used to get a representation of the sort that
defines the class Wlf except that the entire function B will be of
finite order. Next, two lemmas are given. A proof of Lemma 2
can be found in [6]. An argument from [18] is used in proof of
Lemma 3.

LEMMA 2. Let b be an inner function. Then b is invertible
in iϊ0 0 + BUC if and only if b is of the form b(x) — eiσx-b0(x) where
a is a nonnegative number and b0 is a Blaschke product whose zero
sequence (zn) satisfies the inequality
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Sup Σ * E L * ^ < o o .
-oo<Z<oo \X — Zn\

2

LEMMA 3. Let φ be a unimodular function in H°° + BUC.
Then the following are equivalent:

(1) φ is invertible in H™ + BUC.
(2) dist(^, H~ + BUC) < 1.
(3) φ — e~iTxb(x)eUu+v) where T is a real number, u and v are

real in BUC, and b is a Blaschke product whose zero sequence (zn)
satisfies sup_oo<iB<oo Σ I m ZJ\X — ZΔ2 < °°

Proof. That (1) implies (2) is obvious. Suppose now that
dist(ζ5, H°° + BUC) < 1. Then for some positive T, there is a ψ in
H~ such that \\eίTxώ - ψ]^ < 1, so | |1 - φe-iTxψ\\oo < 1. Now φe~iTxψ
is in H°° + BUC, so, by the last inequality, it must have a logarithm
in H™ + BUC. Hence, we can write φe~iTxψ = e

f+i^+r+is where
f + if is in H™, and r + is belongs to BUC. Factoring f as a
product of its inner and outer parts, we get

where b is inner. Since \φe~ίTx\ — 1 a.e., we must have / ' + r =
log \ψ\ a.e., so

φ = eiT*ζe«Γ-log\ir\~)+is = eiT*ξeU»-ϊ) .

Now, eiΓr~s) = er+ί;r e-r-ίs, which belongs to H°° + BUC since the first
factor belongs to H°° and the second to BUC. Thus φ-1 == e-

ί71ajδei(1:-s)

and 6 = β-ίΓ>ei{7-8) both belong to ίί°° + BUC. Thus conditions (1)
and (2) are equivalent and imply that the function φ satisfies (3).
Therefore (1) implies that φ must satisfy (3) as well. It is clear
that (3) implies (1), so the lemma is proved.

Proof of Theorem 2. Suppose that (2) in the statement of the
theorem holds. Then by Lemma 3, h/h = e-

iTxbeί{u+7) where b is
some inner function, and where u and v are in BUC. Now eίu can
be uniformly approximated by entire functions of exponential type,
so we can rewrite the last expression as h/h = e~iTx'F-b-er+Us+v)

where F is entire of exponential type, and where r and s are also
in BUC, with ||s||oo < π/2. Then, we have

\h\*e-r-1+v = e-ίTxh2 F be-7+is ev+i7,

and the proof of Theorem 1 can be adapted to show that

\h\2 = (1 + a l̂
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where uλ and vL are real in BUG and Bx is an entire function of
exponential type which is bounded on R. By letting B2 = BJ(z — z0)
for some zero z0 of Bl9 \h\2 can be written as

\h\2 = (1 + x2)2\B2\
2e^+^'

where \B2(x)\ is now Oil)x) and hence square summable on R. Now,
the factor

( 1 + X2)2 = e2l08il+χ2) = £-4[arg(z+ΐ)]~

is of the form e* for ί in J5 UC. So putting this together yields
w — \h\2 = \B\2eu+v where B = B2, u — u2 and v — v2 + t, so w he-

logs to W±.

Suppose conversely that w — \B\2eu+v as in (1) of Theorem 2.
Then we can assume without loss of generality that B has no zeros
in the upper half-plane. This means that for some T, eίTxB is outer
in JET2, so h/h - e-2iTx(B*\B)ei{v-z\ The factor B*/B is a Blaschke
product, modulo a harmless exponential factor, so h/h is of the de-
sired form by Lemma 3.

5* The class W*. For a nonnegative weight function w and
real number T, define the number

p*(w, T) = sup I f(x)g(x)w{x)dx
f,g I J-°°

where / and g range, respectively, over the unit spheres of the
subspaces Fo Q (Fo Π Pτ) and Pτ Q (Fo Π Pτ) of L\R, wdx). If w is the
spectral density of a stationary Gaussian process, then p*(w, T)
measures something like the amount of dependence between "past"
and "future" events conditional on the field generated by FQ Π Pτ

(see Dym and McKean [8]). Let W* denote the class of weight
functions for which p*(w, T) —• 0 as T tends to infinity. At first
glance, it may seem that W is contained in W* however, this is not
the case. An example is furnished at the end of this section. The
weight functions in Wf) W* have a nice form which is given in the
next theorem.

THEOREM 3. Let w be an integrable weight function on R.
Then the following conditions are equivalent:

(1) w belongs to Wf] TΓ*.
(2) w belongs to W and p*(w, T) < 1 for some T.
(3) w belongs to W* and p(w, T) < 1 for some T.
(4) w(x) = (1 + x2)\B(x)\2eu{x)+^x) where u and v

are in real BUG, and where B is an entire function of finite ex-
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ponential type which is square integrable on R and whose zero
sequence (zn) satisfies

sup Σ \ < °°

Before proving Theorem 3, two lemmas will be stated and proved.

LEMMA 4. Let A and B be two closed subspaces of a Hilbert
space H. Let p{A, B) denote the cosine of the minimum angle be-
tween A and B. IfH=A + B and p(A, B) < 1, then H = A1 + B1

and p{A\ B1) = p{A, B).

Proof. Let / be a unit vector in A1. Let p = p(Af B) < 1 and
pλ denote the length of the projection of / o n BL. By assumption,
/ — a + b where a belongs to A and b belongs to B. Then the
vectors /, a and b determine a right triangle whose hypotenuse has
length || 61|. I t follows from elementary geometry that | | 6 | | 2 ^
1/(1 — p2). Now, write f=g + h with g in B and h in B1. It fol-
lows that ||λ|| = px and \\g\\ = (1 - pt)1/2. Thus, 1 - </, /> = <δ, /> =
<6, g> ^ ll&ll Hflfll ^ (1 - $)1/2(1 - p2)-172. This implies that pt^p<l.
Hence, piA1, B1) <ί ^(A, 5) < 1 so A 1 + B1 is a closed sum and
(A1 + B1)1 £ A n £ = {0}. This shows that ί ί = A 1 + J B \ and by
symmetry, ^(A, B) <; ^(A1, i?1) so the lemma is proved.

LEMMA 5. Let w = \h\2. Then p*(w, T) = &\$t{eiTxhlh, H°°), so w
is in class W* if and only if h/h is in H°° + BUC.

Proof. Let Mτ = FQ Π P Γ . It was noted in [7] that Mτ is the
orthogonal complement in L2(R, wdx) of Nτ = (eiTx/h)H2 + (l/h)ΪP
and that the cosine of the minimum angle between the two sum-
mands of Nτ equals dist(eiTxh/h, H°°). Let A denote the first sum-
mand of Nτ and B the second, so p(A, B) = dist(eίTxh/h, H°°). Then
a function / belongs to NTQ A if and only if / is orthogonal to Mτ

and 1 f(eiTx/h)ghhdx — 0 for every function g in H2. This last

condition implies that feίTxh is in H2, so / is in (eίTx/h)H2 which

equals Pτ. Thus, NTQA = PTQMT. A similar argument shows

that NTQ B — F0QMτ. An application of Lemma 4 to the Hilbert

space Nτ now shows that

- <o(Pr θ (Fo n

provided that either p(A, B) or /0*(w, Γ) is less than 1. This proves
the lemma.
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Proof of Theorem 3. Let w = \h\2. If any of the first three
conditions of Theorem 3 are satisfied, then it follows from Lemmas
3 and 5 that the function h/h is invertible in H°° + BUC and has
the form h/h = e-

ίTxbei[u+7) where b is a Blaschke product for the
upper half-plane whose zero sequence (zj satisfies sup_oo<a;<ooΣIπi2j
\x — zn\

2 < oo, and where u and v are real in BUC. Repeating the
argument used to prove Theorem 1 shows that (4) holds since the
nonreal zeros of the entire function B are determined by the zero
sequence of the Blaschke product b. Conversely, suppose that (4)
holds. It can be assumed without loss of generality that B has no
zeros in the upper half-plane, so h/h = eiTx[(x-i)/(x + i)]B*(x)/B(x)eUυ-")

for some number T. It follows from Lemma 3 that h/h is inverti-
ble in H°° + BUC and that the first three conditions of Theorem 3
must be satisfied, so the theorem is proved.

To see that W is not contained in W*, take an integrable
weight of the form w(x) — \B(x)\2 where B is an entire function of
finite exponential type which is square integrable on the real axis
and has zeros with arbitrarily small (nonzero) imaginary part (see
[8, p. 315]). Then, h/h = e~iTxb(x) for some number T and Blaschke
product b which is not invertible in H°° + BUC. It is then true
then p(w, T) — 0 but w fails to belong to W*. It is interesting to
contrast this with the situation for weight functions on the unit
circle. If w is a nonnegative integrable function on the unit circle
whose logarithm is also integrable, then, w — \h\2 for some outer
function in H2 of the unit circle; the numbers p(w, N) and p*(w9 N)
are defined in a corresponding way for each nonnegative integer N.
Then p(w9 N) tends to zero if and only if the function h/h belongs
to the algebra H°° + C (where C denotes the space of continuous
functions on the unit circle), but p*(w, N) tends to zero whenever
p(w, N) does. This follows from a lemma due to Sarason (see [3,
Theorem 2]) which states that if u is a unimodular function on the
unit circle and dist(u, H°°) — 1 but dist(u, H°° + C) < 1, then ΰ be-
longs to H°°[u].

6* Some necessary conditions for w to be in W. We begin
with a lemma which shows that condition (2) in Theorem 2 is almost
satisfied by any w in W.

LEMMA 6. If w — |fe|2 is in W, and G(x) is any unbounded in-
creasing function on the positive reals, then it is possible to re-
present h/h in the following way:

h/h - bAei{s+7) ,

where s and t are continuous functions on iJU{°°}, ||s||oo < π/2, and
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where bx and b2 are inner functions with \b[(x)\ = O(G(\x\)) as \x\—>oo.

Proof. The argument used here is a refinement of one given
by Axler [1] to show that every function in L°° is a quotient of a
function in H°° + C and a Blaschke product, where C denotes the
spece of continuous functions on JSU{°°}. To begin with, H™ + BUG
can be generated by iϊ0 0 and the complex conjugate of any Blaschke
product b whose zero sequence (zn) satisfies 0 < m ̂  X Im zj\x — zn\

2 <L
M < oo for all real values of x and some constants m and M. For
definiteness, let Im zn >̂ 1 for all n. Now, there are functions
hlf h2y in iJ°° so that \\h/h — bnhn\\oo —> 0 as n —• ©o. Let 7(r) be
a function on the positive reals to be determined later, but with
0 < 7(0), and with j(r) increasing and unbounded. For each integer
n, there is an integer M(n) such that for all real x

v
Imzk

\χ —

and

Let

v

Ί{\X\)

i/2

Π

Then b2{z) converges and so is a Blaschke product. For each n, we
can write b*hn — hn-andjb2 where an is a Blaschke product, and dn

is a finite Blaschke product, so bnhn — ψjb2 where ψn is in H°° + C.
Since bnhn converges to h/h in L°°, ψn must converge to some ψ in
H™ + C. Thus, h/h = τ/τ62, where the zero sequence (λj of b2

satisfies

^ 7(|^|) for all x .
\X ~

Now, the Blaschke product b2(z) converges uniformly on compact
subsets of the strip \lmz\ < 1, so the formal differentiation

K(X) = b2(x)
»=i ICC — λ,,

< X < oo)

may be justified by Cauchy's integral formula for the derivative.
Thus,

n=l X -
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so we get the desired estimate by letting y(\x\) = 1 + sup{0, G(\x\)}.
Since δ2 is continuous across R and h/h — ψb2, we must have, from
Corollary 2, that ψ is bounded away from zero in a neighborhood
of R. So, by a theorem of Stegenga [21], we can write φ =
[(x + i)/(x — ΐ ) ] ^ ^ 8 4 " * * where ^ is an inner function, w is an integer,
and where s and t are C, with ||s||oo + ||£||oo < π/2. Absorbing the
factor [(x + i)/(& — i)]n into 62 does not change the asymptotic nature
of br

2(x)t so the lemma is proved.

THEOREM 4. Let w belong to W. Then w can be written in
the following form:

w = (1 + x2)-F'eu+" ,

where u and v are continuous on R{J{^}, and where F is an entire
function of order at most 3 which is nonnegative, and bounded on
R.

Proof. From the previous lemma, we can let h/h = bLb2e
Hs[t]

where s and t are in C, and \b'z(x)\ = O(x2). Let a{x) — 62( Vlo). Then
a is continuous on R and its modulus of continuity tends to zero at
infinity, so by convolving with an appropriate member of Jackson's
kernel Kλ(x) — e;.(sin xx/x)\ we get a(x) — G(x)(l + θ(x)) where G is
entire of exponential type and θ is continuous on R U {^} (see [20,
p. 52]). Moreover, θ(x) -+ 0 as x—>eo9 and ||^||oo can be made arbit-
rarily small. Thus we write

h/h = b^Gix^e7-^8^

where r, sλ and tλ are in C, and || sλ jU < π/2. Now, by the same
procedure as in the proof of Theorem 1, the desired representation
may be obtained.

The next theorem gives a representation for weights in W in a
closed form, but falls short of being a good generalization of the
Helson-Sarason theorem.

THEOREM 5. Let w be a weight in W. Then there is a fixed
δ > 0 such that w can be represented in the form w = (1 + x2)\B\2eu^τ

where B is an entire function of exponential type which is bounded
and zero free in the upper half-plane, and where \\u\\o* + |MU < δ>
where u and v are functions in C(w, B), the C*-algebra generated
by the inner functions which are invertible in H™\e~ix, B*/B]. Fur-
thermore, C(w, B) — C{w) does not depend upon the representation
and equals BUC if and only if w also belongs to W*.
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Before proving this theorem, the following technical lemma is
needed.

LEMMA 7. Let Abe a Douglas algebra and A = H™ + CA. Then,
if f is in Af and ε > 0, it is possible to write f= k + g where k
is in H°°, g belongs to CA, and \\g\\oo < (1 + e)||/||oo.

Proof. If / = Id + gι where kt is in H°°f and gt is in CAf we
have that dist(flrlf H°°) <̂  H/IU, so by part (iii) of the theorem in § 2,
there must be a function k2 in H°°f]CA with H^ — &2||oo <£ ||/||oo(l + ε).
Set k = fci + ά2 and g — gx — k2 to get the desired result.

Proof of Theorem 5. Let w belong to TF. Then represent w

as in Theorem 1, i.e., w = (1 + £2)|J?|V+T where ||s||oo + p | U < ττ/2.

Then for some number T, we can assume eiTxB is outer in H°°.

Then A/Λ = β-2<21β [(aj~i)/(a? + i)] 6 β<ί'- ) where b is the Blaschke pro-

duct associated with B. By Lemma 1, hfh is in iJ°°[e-ΐίC], so eί(f~s)

is in H^lb, e~ix, (x + ϊ)l(x-i)] = iJ°°[6, e~ίx]. Since βs+ίT is in H°°, it fol-

lows that e s + ί ί = e8+i7eut~7) is in iϊ°°[6, e"iίC]. Since | | ί | |oo<π/2, e8+it

has a logarithm in H°°[b, e~ίx] by the functional calculus. By the

theorem of Chang stated in § 2, this logarithm has the form f + g

where / is in if00, and g is in C(w, B). By the last lemma, we may

choose / and g so that ||g||oo < π/2. Thus, es+it = e

ir+i7)+lu+tv) where

r + ίr is in jff°°, and where w and v are real in C(w, B) with

||t;||oo < π/2. Now r = s - u, so e" = e^ —>^+*% i.e., ei{t~sl = e""-*.

This can happen only if t — s and v — u are equal modulo 2ττ. It

will be shown next that es+t = eu+v up to a constant factor. To see

this, note that you can write 0 < |fe|2β-1ί-7 = e-«
r«/fc26e~«-*+*<«-*> a.e.,

and you can carry out the analytic continuation as in Theorem 1,

and get \h\2 = S1e*+1>, where Sx is entire, having the same zero set

as S = J5S*: The nonreal zeros all come from 6, and the real zeros

must be the same because ISj/ISJ and its reciprocal are locally in

Lm for δ < π/2, and the zeros have multiplicity 2. This means that

S and Sx can differ only by a factor of the form a eCίC, which, in

view of the fact that (log Sx)/(1 + x2) and (log S)/(l + x2) are inte-

grable, must reduce to a constant. Hence, w = (1 + x2)\B\2es+t =

α(l + x2)}B\2eu+1> as desired. To see that C(w, B) really only depends

on w for suitably small δ note that if

are two different representations of w, and, say, | | ^ |(oo < 1/4 log 2,
and 11 Vi 11 * < τr/8 (for i = 1, 2), then comparing the two resulting ex-
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pressions obtained for hjh shows that

for some T, (where bt is the Blaschke product associated with Bu

ί = 1, 2). By the proof of Lemma 1,

dist(&A, iί°°[e-ΐx]) < 1 .

Similarly,

, iJ°°[e-ίa;]) < 1 .

This implies that H°°[blf e~ix] = iϊ°°[62, e~tx]. The final claim follows
from Lemma 3.

7* Discontinuous weights in W. Examples of unbounded
weights in W can be found in [12]. The following construction
shows that a weight function in W can have arbitrarily wild oscil-
latory discontinuities. Let fn be the function defined on R by
fn(x) = 1 — \x\Vn for I a? I < 1, and fn(x) = 0 elsewhere. It is easy to
check that | | /J |* < 3/w. Furthermore, the BMO norm HΊI* is in-
var ient under linear change of variables. Now let ( r j be any
sequence of real numbers which decreases strictly to zero, and let
(αj be chosen so that the intervals [rn — any rn + an] are disjoint.
Define the function

fix) = Σ/aJ(* " O/αJ .

Then / belongs to VMO and w = ef/(l + ^2) belongs to W but has
an oscillatory discontinuity at 0 which can be made arbitrarily wild
by the choice of (rn).
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