PACIFIC JOURNAL OF MATHEMATICS
Vol. 96, No. 2, 1981

A STRUCTURAL CRITERION FOR THE EXISTENCE
OF INFINITE SIDON SETS

DoNALD I. CARTWRIGHT AND JOHN R. McCMULLEN

LetAG be any compact connected group with dual hyper-
group G. We establish in this paper a criterion by which
the existence of an infinite Sidon set in G can be decided
from the structure of G.

1. Introduction. Let G be any compact connected group with
dual hypergroup G. We establish in this paper a criterion by which
the existence of an infinite Sidon set in G can be decided from the
structure of G (see §6 below).

Since Sidon [18] proved his famous result about Hadamard sets
for the circle group, a recurring theme in the literature has been
proof of existence or nonexistence of Sidon sets for more or less
special compact groups G. For compact infinite abelian groups,
existence was established by Hewitt and Zuckerman [10] (see [9,
(837.15)]). This has been extended by Hutchinson [13] in the follow-
ing form: if G has an infinite subset S whose elements are repre-
sentations all of the same degree then S contains an infinite Sidon
subset.

On the other hand, in [9], Hewitt and Ross showed nonexistence
for SU(2), thereby mounting the first attack on compact connected
Lie groups G. Cecchini’s result [3] shows that in fact every Sidon
set for such G must have bounded degree. It is then not hard to
show (see [13]) that nonexistence for such a G is equivalent to
semisimplicity.

Semisimplicity is also equivalent to there being at most finitely
many elements of G of any given degree, i.e., to G being tall.

For compact totally disconnected G, Hutchinson showed in [15]
that tallness was again equivalent to nonexistence. Unfortunately,
Figa-Talamanca and Rider [6] had given an example of a tall con-
nected group with an infinite Sidon set, so that tallness was not a
valid general criterion.

We show herein that the group [y, PSU(n) admits no infinite
Sidon set, though it is connected and is not semisimple. We also
lay the general problem for compact connected groups to rest, by
means of our criterion in §6.

The case of a general compact group G remains open, to the
best of our knowledge.

2. Mise-en-scéne for Sidon sets. (2.1) Notation. If G is a
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compact group, G will denote a maximal set of pairwise inequivalent
continuous unitary irreducible representations of G. The degree of
a representation e G will be denoted by d,. The space of trigono-
metric polynomials f on G whose Fourier transforms f vanish off P
will be denoted T.(G). The properties of the norm | Al = tr|A]
on the space M,(C) of » X n complex matrices are developed in
Hewitt and Ross [9, Appendix D].
For any P < G the Sidon constant x(P) is defined by

w(P) = sup (|If . = 5,417 @) e fe T=(@), | £l < 1} -

One says that P is Sidon if k(P) < . For a singleton we replace
k({o}) by k(). The set P is local Sidon if its local Sidon constant
£(P) = sup {k(o)|o € P} is finite.

(2.2) Two lemmas. The following two lemmas will be needed
later. The proofs are easy, and we omit them.

LEMMA 1. Let ¢: G — H be a continuous epimorphism of compact
groups. Let EC H, and let Eop = {ooplocE} S G. Then E is a
Sidon set for H if and only if Eo¢ is a Sidon set for G, and indeed
k(Heo¢) = k(H).

LEMMA 2. Let P < G be Sidon, and let Q < G be finite. Then
PU@ s Sidon.

We note in passing that for finite @ the inequality
£@) = (,% d)

holds. It is not known to us whether Lemma 2 holds for an arbi-
trary Sidon set Q. It does if @ is Sidon and {d.|z € Q} is bounded
(Bozejko [2]).

3. Mise-en-scene for compact Lie groups. We now summarize
briefly the facts we need from the theory of representations of
compact Lie groups. This information may be gleaned from
Dieudonné [4], Humphreys [11], and Price [16].

(8.1) Suppose that G is a connected, simply-connected compact
Lie group. Denote by g the Lie algebra of G, and by g the com-
plexification of g. Then g is semisimple (Dieudonné [4, (21.6.9)]),
and so also is gc.

Fix a maximal torus T of G. The Lie algebra t of T, regarded
as a Lie subalgebra of g, is a maximal commutative subalgebra of
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g. Its complexification t; is a Cartan subalgebra of g..

(8.2) Let @ denote the set of roots of g, relative to ¢, and
let ( , ) be the inner product induced by the Killing form on the
R-linear hull of @®. For ae®, put a¥ =2a/(a, ®). Fix a Dbasis
{a,, ---, a;} of @ (I is called the rank of G, g or g;). The weights
A are defined by requiring (A, a¥) € Z for all a € ®. These comprise
a lattice 4, which is ordered by: », <N, if N\, — N, = ma, + -+
m,, with nonnegative integers m,, - --, m;.

(8.8) The set of dominant weights A* consists of those weights
» satisfying (A, )= 0%~ (k=1,2, ---,1). The fundamental weights
Ay -+, A, are defined by (\;, a%) = 0;. Each Med* can be written
NNy + Nghy + -+ - + nN; With n,, ---, n;, nonnegative integers.

(8.4) If ne A" there is a finite-dimensional irreducible Lie repre-
sentation ¢;: gc — ¢'(H;) with < — maximal weight A\, acting on a
C-vector space H, of dimension d; < o. There is a unique continu-
ous representation o,: G — GL(H,) of G such that

0; (expg (X)) = exp (4:(X)) for all Xeg,

where expg: g — G is the exponential mapping. Since G is compact,
o, is unitary with respect to a suitable inner product on H,.

(8.5) The set {o:: ne 4%} is a maximal set of pairwise inequi-
valent continuous unitary irreducible representations of G. We may
thus take G to be this set.

Weyl’s dimension formula states:

gy = Xt0@)
z ae ot (5’ a) !

where 6 =\, + --- + N, and @7 = {ac@|a > 0}.

(8.6) The representation theory of a connected compact Lie
group G reduces to the simply-connected case via the structure
theorem (Price [16, (6.4.5)]). This asserts that G is isomorphic to
(T, x G)/K, where T, is the identity component of the center of G
and G is a connected, simply-connected compact Lie group, and
where K is a finite subgroup of the center of 7,xG.

(8.7 A connected compact Lie group is called semisimple if its
Lie algebra g (equivalently gc) is semisimple. This is equivalent to
T, = {1} in the notation of (3.6), i.e., to G having finite center.
When G is semisimple, and 7, G — G the surjection implicit in (3.6),
then the map o — oorr identifies G with a subset 4, of A*, where
A+ is the set of dominant weights of G.

(3.8) A connected compact Lie group G is called simple if its
Lie algebra g is simple. Equivalently, g, is simple. For if g is
simple, then so is g, because it is semisimple, and any compact real
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form of g must be isomorphic to g. The reverse implication holds
for any Lie algebra g over R.

4. The key estimates. In this section we derive inequalities
for Sidon constants to be used later.

(4.1) A special coordinate function. Let G be a simply-connected
connected (and therefore semisimple) compact Lie group, and let A*
be the set of dominant weights for G. For each fixed ne 4t let
B; ={¢}, --+, i} be an orthonormal basis for H;, and let gi(y) =
{o:®)C, & foryeGand 5,k =1, ---, d;. Thus (04)7%-, is the matrix
of o;(y) with respect to B,, We may choose B; so that (ck(x)) is a
diagonal matrix for each ze T, let us say (ok(x)) = diag (Xi(x), - - -,
X} (x)). The maps X}: T'— T are characters of T, and so for each
vedtand jefl, ---, d;} there is a unique linear map pi: t; — C such
that

X} (expe (X)) = exp (#}(X)) (Xet).
Since 0;(x){; = X} (x)C} for all xe T, it follows that
$(X)C} = p#i(X)E (Xet),

with {C}, - -, (i} a corresponding set of weight vectors. Reordering
the basis B; if necessary, we may assume that g is the maximal
weight A of 4,. Since the weight space of the maximal weight A\
is one-dimensional, we have g} <\ for j =2, ---, d,.

For each ) e A" choose a basis and order it in the above manner.
For refl, ---, I} write «, instead of ¢} when A is the fundamental
weight .. Since o}, (exps (X)) = exp (MX)) for Xet, it is clear
that if A = )\, + %y + -+ - + Wy, then oli(y) = Y(y)™- - - (y)™ for
all y€G of the form exp,(X), Xet. In fact we have the fol-
lowing

PROPOSITION. With notation as above, the identity
(") Ol = PPy oo Al
holds on G.

The proof is to be found in Giulini and Travaglini [8].

(4.2) Let G be as in the previous section. We now obtain
lower bounds for the (local) Sidon constants x£(¢) for geG.

PROPOSITION. Let » = nN + -+ + mM €AY, and let &, be the
Sidon constant of the corresponding representation o;. Then for
any €€10,1/2] we have, provided N # 0,
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i
£, =S U
r=Tg M~%+e
S e _di
=9 l@+|%+s !

where M; is the number of positive roots a € @* such that (A, a)=0.

Proof. Retaining the notation of (4.1), let f = of,. Then the
orthogonality relations yield SGI f@)|*dx = 1/d;. For se N we have
o= (e ) = o™ - - 4™ = g}], Where sh = su\, + -+ + SHN;.
Hence SGI f@)*dx = 1/d,;. On the other hand, since feT,(G), we
have | flls < 2t s]| fll. (see Hewitt and Ross [9, (87.10) and

(37.25)]). Hence we have

£ > 1 A/d )Y _ 1 l"ﬁ:\l/(%)
Tas Wd)F W sldgd

Now d; = [laer+ v + 0, @)/(6, @) (Weyl’s formula), and (s + 4, a)/
6, @) £ s(\n + 4, @)/(0, @). Since (sn + 9, @)/(9, a) = (N + 6, @)/(0, a)
when (A, @) = 0, we obtain the estimate d,; < s”:d;,. Hence

dllZ-—l/ (28)
K = 4

ST

Let ¢€]0, 1/2][ be given, and let A be the integer satisfying 4—1<
1/2¢ < A. Let s=M;A (s#0 since A+ 0). Since 1/(2M;A) £1/2A)<
min {1/2, ¢} we have

1
d 2 —1/(2M 4) - d?'s

2(MA)E e = 2AM; ~

K=

the last since A < 1/2¢ + 1 < 1/e.

(4.3) Using now the structure theorem for compact connected
Lie groups, we are able to give estimates for all local Sidon con-
stants in such groups.

PROPOSITION. Let G be a connected compact Lie group. Then
there is a constant C, > 0 (depending only on G) such that

k(o) =

for any ae@, d, = 1.

Proof. By (3.6), G is a qllotient of a group 7T, x G, where T,
is compact and abelian, and G is a compact connected simply-con-
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nected Lie group. Let 7: T, X G — G be the quotient map. Then
by Hewitt and Ross [9, (27.43)], if 0€G then gox has the form
(x, y) — A(@)r(y) for ze T, and ye G, where X: T, — T is a character
of T, and re(G)". Clearly T,.(T, x G) consists precisely of all
functions f of the form f(x, ) = X(x)g(y), with ge T.(G).

It is clear that ||7|l, = [|g ]l and || f]l = ||g|l~ for such f and g.
Hence k(oow) = £(z), and so by Lemma 1 of (2.2) and Proposition
4.2 with ¢ = 1/In(d,), a constant C, exists for which the inequality
holds for all ¢ with d, = 8. Since k(o) = 1, we may diminish C, if
necessary so that the inequality holds for 1 < d, < 8 as well.

(4.4) Estimates independent of G. The constant C, appearing
in (4.3) depends on the group. We give, after a preliminary lemma,
an estimate valid for all such G simultaneously.

LEMMA. Let gc be simple of rank I. If 0= xn= 3}, nned",
then d, = 1’/8 except when either

(1) gc 18 of type A, and NE{N\y, Ny gy Mgy 20y, 20, Ny + N} O

(ii) gc¢ 18 of type By, C, or D, and N e {\;, N\, 2N}

Proof. We may clearly assume [ = 3. From the Weyl dimen-
sion formula it is obvious that

(@) d;=d,if p=mn + -+ +mne4¥ and n; = m; for all 5.
Assume first that g is of type A,. The set of positive roots of g
is {a, + - +a;]1=it=j=<1}, and &; = a; for each j (see Tits
[19]). So Weyl’s formula becomes

R R !
=11 |* ; ]
’ 1gi£Ij§l j—i+1

From this it is easy to see that

b) dy=dy if N =nxn + -+ + 0, and

© d;—_-[l‘g.l fa=n, 1=j=L.
So let » = n\, + - -+ + nn € 4T\{0} be given. If ) is not one of the
weights listed in (i) above, then (a), (b) and (c) imply that d, = d,
for some € {N\g N+ Ngy N+ Mg, 20 F Mgy Ay + Nilg, 3Ny, 20,).  Direct
calculation yields that the smallest such d, is [l "5 1] > [I%/8.

Next suppose that g. is of type B, G, or D,. If

d; = min {dll—l’ dll}
= 2" (see Tits [19, p. 30 ff])
= 1°8.

Now notice (see Bourbaki [1, p. 250 ff]), that for each pair
@, 7) with 12171 (except (¢, 5) =1 —1,1) in case D,) @* con-
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tains m(ay + --- + af) with m =1,2 or 1/2. Thus in Weyl’s

formula a factor (n, + -+ +n;+ 5 — 1+ 1)/(j — i + 1) appears for

each such pair (i, 7). Consequently, in the B, C, D, case, if \ =
LN, with 5, = n, = 0, then

(d) d; is at least the degree of the corresponding weight in
A,. Thus if ) is not listed in (ii), and hence is not listed in (i), we
have d; = I°*/8 by the A, case.

Finally, assume that g. is an exceptional algebra. Then by (a)
we have d; = min{d;;|1 < j = I}, which is at least I*/8 in each case
(see Tits [19, p. 41 ff]).

Here now are our absolute estimates for the local Sidon

constant:

PROPOSITION. Let G be a simple compact Lie group of rank .
There is an absolute constant C (C = 560 will do) with the following
property. Let oeG be nmontrivial with e d* its corresponding
weight. Then the inequality

k(o) = 1"*/C

holds, except when either
(i) gc is of type A, and )e{\, N}, or
(ii) gc is of type B, C;,, or D, and N = \,.

Proof. Referring to Tits [19], we find that |@*| < 2] in all
cases. If A\ is not one of the weights listed in (i) and (ii) of the
preceding lemma, then d; = [°)/8. With these estimates, Proposition
4.2 with ¢ = 1/30 shows that &k, = [%/240.

If gc is of type A; and e {hy, My, 2Ny, 20, N + N} OF if g¢ is of
type B, C,, or D, and A€ {\, 2\,}, explicit calculations show that
d; = 1?/2 and M; < 4l. Proposition 4.2 with appropriate ¢ > 0 again
shows that «; = ["%/560.

REMARK. In fact inequalities

k(o) = CI*/in(l) if1>1
and
k(o) = Cd°lin(d,) (if o+ 1)

for some absolute constant C > 0 can be obtained by taking ¢ =
1/in(l) [resp. € = 1/ln(d,)] in the above derivation (provided ! and
d, are = ¢°).

(4.5) There is good reason to exclude the weights in (i) or (ii)
of the previous proposition. Their local Sidon constants are bounded
independent of g., as the next two lemmas show. This fact is
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responsible for the Sidonicity of the Figa-Talamanca-Rider set con-
structed in §5.

LEMMA 1. Let G = SU(n) or U(n), where n = 2. Then there
is a constant K independent of n such that

|All,, + || B|l,, £ K max {|t(AU) + t»(BD)|: Ue G}

for any A, Be M, (C). Hence tf o denotes the self-representation of
G, then k{o, 6} = K.

Proof. First note that for z, weC and n = 3 we have
max{|az + awl: ae T} = |z| + |w| £ 4max{jaz + aw|:a” = 1} .
Hence for n = 3 we have

max {|tr(AU) + tr(BU)|: Ue Un))
< 4max {|tr(AU) + tr(BO)|: Ue SUW)} .

This shows that we may assume G = U(n).
Now if A, Be M,(C) we have for some Uce U(n),

HA||¢1=tr|Al:W(AU)g%{[to*(AU)th?-(Bﬁ)l+[t7-(iAU)—t7~(iBl7)t} .

This, together with a similar inequality for [ B||; shows that for
n=3, K=2will do if G = U(n), and K =8 will do if G = SU(n).
If n=2, £{o,d) < (&2 +dy)"* =212

LEMMA 2. Let o be the self-representation of G = SU(n), SO(n),
or Sp(n). Then

(@) k(o) =£0)=11if G=SU(n),

(®) k(o) =4 if G = 8S0(n),

() k(o) =4 if G = Spn).

Proof. (a) This follows from Hewitt and Ross [9, (D. 80)].

(b) If Ae M, (C), write A = B + iC, where B, Ce M,(R). Then
max {|tr(A0)|: 0 € SO(n)} = max {|tr(BO)|: O € SO(n)}, and similarly for
C. By Gantmacher [7, p. 286] we can write B = |B|0,, where O, ¢
O(n). If m is odd then O, or —O0,€S0(n), and so max {|t»(BO)|:
0eSO(n)} =z tr|B| = || B|,, (thus £(0) = 2 for odd n). If » is even
and O, € SO(n) this inequality still holds. If det O, = —1, let D =
diag (1, ---,1, —1,1, ---, 1), the “—1” appearing in position j, where
B; is a minimal diagonal entry of |B|. Then
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max {|{r(BO)|: O € SO(n)} = |tr(BO:D)| = tr(|B|D)
=B+ e+ B — 28,
=2(1-2)g+ - +8)
=(1-2)5,

similarly for C. Hence for » = 4 we have

HAll;, = |Bll,, + |IClls, = 211, "1 g [max {|tr(AO)|: O € SO(n)} .

Thus, once % = 4, k(o) < 4 holds, while £(¢) £ d, < 4 for n < 4.
(¢) Recall that Sp(n) consists of all 2n X 2n unitary matrices
of the form T = [__IQ,' g] where U, Ve M,(C). If Ae M, (C), write

_ [§ _%’;1 with X, Y, Z, We M,(C). Then taking T e Sp(n) as

above with V = 0, we have
max {{tr(AT)|: T € Sp(n)} = max {|tr(XU + WOU)|: Ue Un)}
2~ (| Xy, + | W|,) by Lemma 1.

Similarly, taking T e Sp(n) as above with U = 0, we find
max ([tr(AT)|: Te Spw)} 2 —(| ¥lls, + | 2] -

There follows

Al = [ Xls, + 1 Y llg, + [ Z1ls, + [| W1,
< dmax {|tr(AT)|: T € Sp(n)} .

5. Sidon sets on products. In §6 below we shall need the
existence of infinite Sidon sets for certain infinite products. This
we now establish.

(5.1) Let G be a compact connected group which is the carte-
sian product [J...G. of normal subgroups G,, each of which is
isomorphic to one of the four groups SU(n.), Sp(n,), SO(n,), or
Spin(n,) for some n,ecN. Let 0.€ G, be the self-representation in
the first three cases, and in the fourth case let o, = 7,04, Where
et SPIN(N,) — SO(n,) is the covering map and 7, is the self-repre-
sentation of SO(n,). Let P = {o,o7m,|ac A} & G, where 7. G — G,
is the canonical projection.

Taking notice of the fact that the decomposition [],.,G. of
such a group is unique up to reindexing, we see that the set PU
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P< G depends only on G. We shall call PUPU({l} the Figd-
Talamonca-Rider set (FTR set) of G, since these authors in [6]
constructed what is essentially the set P in the case in which G,=
SU(n,) for each a.

We shall proceed to show that the FTR set (and hence P) is a
Sidon set. We shall also give a description of all local Sidon sets
for such a group G, in terms of the FTR set.

PROPOSITION 5.2. Let G be the product [l...G. of a family
of compact groups, for each acA let P, = G, be a Sidon set, and
let w,.G— G, be the canonical projection. Then the set P =
U.ses (Poom,) S G is a Sidon set if and only if sup, k(P,) < co.

Proof. 1f P is Sidon, then so is P,om, & P, and hence by
Lemma 1 of (2.2), P, < G, is Sidon with &(P,) = k(P,or,) < £(P) <
co. Thus sup, k(P,) < k(P) < co.

Suppose conversely that sup,£(P,) = K < c. Applying Lemma
2 of (2.2) with @ = {1}, we may assume that 1¢ P, for each . The
union U, (P,ox,) is then disjoint. Let feTxG). Then f = 3., fu
with f, = 0 for only finitely many a’s, and for all a, f,€ T, .- (G),
so that f, = g.om, for some g, € T5 (G,).

Now for each a e A, there exists an element z,¢ G, such that

1] = Kl golle = Klgo(@d|, and so ||l = Do | Fuli = S l8all <
K> lg.z)]. It is elementary that for some #ef{l, i, —1, —i} we
have

% [ga(2,) | = 4Re(0a§ 9.(22)) ,

where A, = {a € A|Re[0g.(x,)] > 0}. Since 0g,e T (G,) and 1¢P,

we have S 0g.(x)dx = 0, whence Re(fg,(y,) =0 for some y,€G,
Ga

(we may take y, = x, if @ e A)). There follows

17]: = 4KRe(® 3, 9.(y.)
=< 4KRe(0 3, 9.(9.)

= 4KRe(0f(y)), where y = (y,) €G
= 4K f e -

This shows that P is Sidon.

COROLLARY 5.8. Let G be as in (5.1) and let P,=G be its FTR
set. Then P, is a Sidon set.

Proof. With the notation of (5.1), we have P, = PU PU {1).
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Hence the statement follows from Lemma 2 of (2.2), (5.2) and
Lemmas 1 and 2 of (4.5), since ¢, = &, save when G, = SU(n,).
Note that the Sidonicity of P was established by Hutchinson
([12, (9.5)], [13]) by methods different from ours.
(5.4) Next we prepare the way for our description of all local
Sidon sets for G with three lemmas. .

LEMMA 1. Let G be the product of the family (Guca 0f com-
pact groups. For each «, let o.eG,, with o, =1 except for finitely
many «’s. Let geG be the representation of G corresponding to
(o,) (see Hewitt and Ross [9, (27.43)]). Then k(o) = 11.k(0.).

Proof. Let A, ={acAlo,#1}. For acA, choose f,eT, (G.)
with || fulle =1 and | f.l, = £(6,). Define f:G—C by f(x)=
Iecs, fol®,) for @ = (z,) €G. One sees routinely that

17l =TT Fell = IT (00 = IT (o) -

LEMMA 2. Let G and H be compact groups and let P< G and
Q S H be finite. Let P x Q denote {o¢ X t|oeP, 7€Q} < (G x H)
and let £ = k(P X Q) be its Sidon constant. Then k=[min {3},.»d,,
e A% As a consequence, P X Q is mever Sidon if P and @Q
are infinite.

Proof. Let s=cardP,t=card@, letP ={o%, ---,09}, Q=
{T(l)’ ) Tu)}! and putm = ZaeP dw n = ZreQ dr- Put d® = da(k)
A=k=s)and e =d.;) A =1=t). Fix orthonormal bases for the
representation spaces of all oeP and all z€Q, and denote the
corresponding coefficient functions by (6)',, (¢, A<k <s,
1<1<t). If A=(a;;) is any 'm n complex matrix, partition the
rows and columns of A using the scheme m =d® + d® + ... + 4,
n=e"+4+ .- + e Thus A consists of an s X ¢ matrix of blocks,
and the (k, [)th block is a d® x ¢ matrix. Denote by af the
(1, j)th entry of the (k, I)th block 1 =:<d%, 1< j=<d%). For
any such A, the function

9: (@, Y — > agold @)
16,9
belongs to T5,,(G X H), and hence we have

k%j lafi] = 1|§]l, = £ max {| k%jai-“}oz‘-?)(w)f;?(y)I: reG,ycH}.

Let p =min{m, n} and let B be a » X p unitary matrix all of
whose entries have modulus p—*2.. Take for A above the matrix
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with entries
by 124,55 D

@;; = .
0, otherwise.

Because |o{P(x)| =1 for all e G (and likewise for the 7’s) the
previous inequality yields

p o < kmax{| 2 b,7m,&: 6 7eC & =1, [yl =1, all 4, g}
= lcnga;XKB??, &l

< £|B|lpp*
=KD .

Thus k£ = p** as claimed.

LEMMA 3. Let G and H be compact groups. Let PZ G be
finite and let @ = H be Sidon. Them P X Q = (G X H)™ is Sidon,
with

£(Px Q) = (2, d)e(@) -

Proof. If f is any continuous function on G, and if ceP, 7€
@, then || f(o x s = dag fo(r)llmdx, where we write f, for the

function y — f(x, y). 1If fae Trio(G x H) then
171l = 3 doe- [ 7@ % D)
= 543 d]fe % D,

< (5@ 1. lde

< (5@ @], l-do
=< (3 @@ 7 - -

PROPOSITION 5.5. Let G = [[aes Go with G, a simple connected
compact Lie group of rank l,. Let P be any local Sidon set in G.
Then there is a partition A = A, U A, U A, of A and a subset P; of
G;, the dual of G; = ues,; Go (4 = 1,2, 8) such that

(i) PL P, x P, x P,

(ili) sup {l.|a e A} < = and sup{d,|ac P} < <o,
and (iv) G, is as described in (5.1) and P, is its FTR set.

Conversely, all sets P satisfying these conditions are local Sidon.
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Proof. Each G, is a quotient G./K,, where G, is a simple con-
nected simply-connected compact Lie group. Let v G, — G, denote
the quotient map.

Each ¢ ¢ G may be regarded as a family (0.)..s, Where o,€G,
and where only finitely many o,’s are nontrivial. Let A,={a e Alo,
is trivial for every o = (0,)€ P}. With C the constant of Prop-
osition 4.4, let A4, = {aeA\A4,|l, = (Cky(P))}. Finally, let A, =
A\(4, U 4,), and let P; = {(0)acs;|(0)ecs € PY S G; (5 =1,2,3). Ob-
viously (i) and (ii) hold. Also sup {l.|ae 4.} =1 < (Ck(P))* by de-
finition of A,. By the classification theorem, this imples that there
are only finitely many pairwise nonisomorphic groups in the set
{G.]ae A;}. Proposition 4.3 then entails sup{d, |acA, ceP}=
d < oo. But for each a« ¢ A there can be only finitely many z-e(?,,
with d. < d, by the Weyl dimension formula (3.5). Accordingly,
if ¢ = (6,) e P, let N, denote the number of a € A, with o, 1. If
sup {N,|o € P} = o, then the foregoing remarks show that for each
n € N there exists ¢ ¢ P with o, equal to the same nontrivial repre-
sentation, 7 say, for at least 2n a’s in A,. Then by Lemmas 1 and
2 of (5.4) we obtain £(P) = k(z X 7 X---X 7) (2n factors) = d(z X
T X .-+ X T)V? (n factors)=d**=2"?, a contradiction. Thus sup {N,|o e
P} = N < oo, sup{d,|ce P} =< d” < oo, and (iii) holds.

Turning at last to A,, suppose zeP and ae A, Then [, >
(Cey(P))’, and so T,oy.€{l, 0, G,), since otherwise ry(P) = k() =
£(T,) = K(T.0q,) = Ii?/C by Proposition 4.4.

Moreover, 7, # 1 holds for at most one e A;. For supposing
the opposite, let z, and z; be both nontrivial with «a, ge 4;,, a=g.
Then again by Lemmas 1 and 2 of (5.4) we obtain k,(P) = k(7)) =
k(. X 75) = min {d}?, d‘,’;} = min {I3?%, 13/*} > (Ck(P))¥* = k(P), another
contradiction. Thus P, is contained in the FTR set of G,. If we
redefine P, to be the FTR set, then (i) through (iii) remain valid
while (iv) becomes valid. "

The converse follows from Lemma 3 of (5.4), which shows that
P x @ is local Sidon whenever sup{d,|/c e P} < « and @ is local
Sidon.

(5.6) In a special case, (5.5) even affords a description of all
Sidon sets.

COROLLARY. Let G = [[5,SU(mn). Then E S G is a local Sidon
set if and only if it is a subset of P’ x P”, where for some n, =1,
P’ is a finite subset of (I3 SU(n))” and P" is the FTR set of
117+ SU(n). Hence E is a local Sidon set if and only if it is a

Sidon set.

Proof. The set A, of (5.5) must be finite, so the first assertion
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holds. Lemma 3 of (5.4) shows that subsets of P’ x P” are always
in fact Sidon.

(5.7) Specializing on another front yields a counterexample to
Hutchinson’s conjecture ([12, (9.1)], as abstracted in [14]). We
write PSU(n) for the quotient of SU(n) by its center:

COROLLARY. If G = I3, PSU(n) then G has no infinite Sidon
sets, although it has infinite central Sidon sets, is conmnected, and
is not a semisimple Lie group.

Proof. The first statement is an application of (5.5), as again
A, must be finite. The second was proved by Rider [17].

6. Sidon sets for compact connected groups. We give in
this section our main criterion for the existence of an infinite Sidon
set in the dual of a compact connected group. We give the criterion
in two different forms, as Theorems 1 and 2 below.

(6.1) Notation. Let G be a compact connected group. Then the
extended structure theorem (see Price [16, (6.5.6)]) guarantees an
epimorphism z: G* — G, where G* has the form A4 X G,, with 4 a
connected compact abelian group and G, a cartesian product [[..;S.
of compact simple simply-connected Lie groups. The kernel K of @
is totally disconnected and central.

The symbols G,G* w, A, G, S, (¢ceI), and K will have these
fixed meanings throughout this section.

(6.2) Here is our main result in its first form.

THEOREM 1. Let G be a connected compact grouwp. Then the
Jollowing are equivalent: (i) G has an infinite Sidon set; (ii) G has
an tnfinite local Sidon set; (iii) there is a continuous homomorphism
of G onto ome of the following groups:

(a T

(b) anm infinite cartesian power S° of a simple Lie group S,
or (c) a group of the form (IIr- L,)/K,, where L, is a compact
linear semisimple Lie group, L,=SU(n,), SO(n,), or Sp(n,) for k=
1,2,8, -+, with L= n, < n, <N, ---, and where (with I denoting
the appropriate identity matrix) K, = {(x,) e [[i Ly|z, =2\ and
2, =N for all k=1 and some )€ C}.

Proof. It is evident that (i) implies (ii). We show first that
(ii) implies (iii). To this end, assume that G admits an infinite local
Sidon set, and that there is no continuous homomorphism of G onto
groups of type (a) or (b). Thus with the notation of (6.1), A={1},
and for each !¢ N there are only finitely many ¢ec I such that the
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rank [, of S, is equal to I (see (6.3) below). By (5.5) then, there
are a partition I = BU C, an infinite local Sidon set P = {po,, p,, - - -}
of G and an injection % ¢, of N into C such that Por < (G*)" has
the form {o,omw =7 X 0,|ke N}, where z€([[..5S)" is fixed, B& I
is finite, and o, is the canonical projection [],.,S.— S, followed by
the representation w, of S, corresponding to the fundamental
weight \,. Let L, denote the image of S, under the representation
®,. Then L, = SU(n,), SO(n,), or Sp(n,) for some n,cN. Reduc-
ing and reordering P if necessary, we may assume that n,<m,<---.
Let Ly = (I1.c5 S.), let 0: [1.c¢ S. — [I=: L; be the obvious surjection,
and consider the homomorphism

©x 0:G* = TI 8, % II(}S,—»IcﬁOLk.

If now 2= (®)..;€K, then 1= p,on(x) =17 X 0,(x) for each
ke N, whence 7((¢,)..5) ® @,(x,) =I. If T and S are diagonalizable
operators and T® S = I, then T = A\l and S = A '] for some »eC,
with I denoting the identity operator on the appropriate spaces.
Hence for each x€ K we have 7 X o(x) € K, = {(&,) € [15=0 Li|& = N
and & = \"'I for all ke N and some AeC}. Hence t X ¢ induces a
continuous homomorphism of G onto a group of type (c).

Now we assume (iii) and show that (i) holds. Thanks to Lemma
1 of (2.2) we need only show that groups of type (a), (b), and (e¢)
have infinite Sidon sets. For groups of type (a) this is classical,
and for those of type (b) we choose a fixed nontrivial pe S and
apply (5.2) with P, = {0} for each a. Let G = (IIv- Li)/K, be of
type (¢). Let z be the self-representation of L, and let 7; be the
canonical projection [Iy., L, — L; followed by the self-representation
of L;. Then {r X 7;|je N} = (IIx- L))" is a Sidon set by (5.3) and
Lemma 3 of (5.4). Clearly 7 x m; is trivial on K, and so induces
an irreducible representation p; on G. The set {p;|je N} is the
infinite Sidon set we require.

(6.3) Some alternative criteria

PROPOSITION 1. Let G be a compact connected group. Then the
following are equivalent:

(a) G admits T as a homomorphic image;

(@) G admits an infinite abelian quotient;

(@)" A=+ {1}

@) G admits a nontrivial connected abelian mormal subgroup.

PROPOSITION 2. Let G be a compact connected group. Then G
is not tall if and only if (a) it admits an infinite abelian quotient,
or (b) it admits an infinite power S° of a simple Lie group S as
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a homomorphic image.

Proof. If (a) or (b) holds, G is clearly not tall. If, conversely,
G has no quotients of the stated kinds, then A = {1}. Also, since
K Z G* is central, there is a surjection of G onto G, = G*/Z(G*).
But G* = G, = [[..: S, so Z(G*) = [1..; Z(S,), and so G, is isomorphic
to T1..;(S./Z(S,)). By hypothesis, only finitely many of these factors
lie in each isomorphism class. Consequently the same holds for the
product G* = [],.;S.. Thus G* is tall, and therefore G is tall.

The correspondence between the factors of G* and of G, noted in
the last proof may be exploited once more to yield the following fact.

PROPOSITION 3. Let G be a compact connected group. Then the
following are equivalent:

(b) G admits an infinite power S° of a simple Lie group S as
a homomorphic image;

(b) infinitely many of the S, (ceI) are pairwise isomorphic;

®)" G admits infinitely many pairwise isomorphic connected
normal subgroups that are simple Lie groups.

(6.4) When A = {1} and I is infinite we shall call the kernel K
of @ almost trivial if there are disjoint subsets B and C of I which
are finite and infinite respectively, and if there exists an element
7€ ([].exS.)” with the following property: for each z = (x.)..;€ K,
there is a complex number )\ such that z((z)..z) = M and w(x,) =
At for all ceC, where w, is the representation of S, which corres-
ponds to the fundamental weight A, (@, is the self-representation
unless S, = Spin (n) for some n»), and where I denotes the identity
operator on the appropriate space.

If K is almost trivial, let x, denote the projection of G* onto
its subproduct H = [],.5,:S.. Then z,(K) is clearly a finite cyclic
central subgroup of H, and its order must divide that of Z(S, for
each ¢eC.

We now state our main result in a second form.

THEOREM 2. Let G be a connected compact group. Then the
following are equivalent: ) G has an infinite Sidon set; (i) G has
an infinite local Sidon set; (iii) either G s mot tall, or G is tall
and the kernel K of w is almost trivial.
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