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A STRUCTURAL CRITERION FOR THE EXISTENCE
OF INFINITE SIDON SETS

DONALD I. CARTWRIGHT AND JOHN R. MCMULLEN

^ G be any compact connected group with dual hyper-
group G. We establish in this paper a criterion by which
the existence of an infinite Sidon set in G can be decided
from the structure of G.

l Introduction* Let G be any compact connected group with
dual hypergroup G. We establish in this paper a criterion by which
the existence of an infinite Sidon set in G can be decided from the
structure of G (see § 6 below).

Since Sidon [18] proved his famous result about Hadamard sets
for the circle group, a recurring theme in the literature has been
proof of existence or nonexistence of Sidon sets for more or less
special compact groups G. For compact infinite abelian groups,
existence was established by Hewitt and Zuckerman [10] (see [9,
(37.15)]). This has been extended by Hutchinson [13] in the follow-
ing form: if G has an infinite subset S whose elements are repre-
sentations all of the same degree then S contains an infinite Sidon
subset.

On the other hand, in [9], Hewitt and Ross showed nonexistence
for SU(2), thereby mounting the first attack on compact connected
Lie groups G. Cecchini's result [3] shows that in fact every Sidon
set for such G must have bounded degree. It is then not hard to
show (see [13]) that nonexistence for such a G is equivalent to
semisimplicity.

Semisimplicity is also equivalent to there being at most finitely
many elements of G of any given degree, i.e., to G being tall.

For compact totally disconnected G, Hutchinson showed in [15]
that tallness was again equivalent to nonexistence. Unfortunately,
Figa-Talamanca and Rider [6] had given an example of a tall con-
nected group with an infinite Sidon set, so that tallness was not a
valid general criterion.

We show herein that the group ΐln^PS U(ri) admits no infinite
Sidon set, though it is connected and is not semisimple. We also
lay the general problem for compact connected groups to rest, by
means of our criterion in § 6.

The case of a general compact group G remains open, to the
best of our knowledge.

2* Mise-en-scene for Sidon sets* (2.1) Notation. If G is a
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compact group, G will denote a maximal set of pairwise inequivalent
continuous unitary irreducible representations of G. The degree of
a representation σ e G will be denoted by dσ. The space of trigono-
metric polynomials f on G whose Fourier transforms / vanish off P
will be denoted TP(G). The properties of the norm ||A\\Φί — tr\A\
on the space Mn(C) ofnxn complex matrices are developed in
Hewitt and Ross [9, Appendix D].

For any Pζ=G the Sidon constant κ(P) is defined by

J C ( P ) = s u p {ll/il, = Σ dσ | | / ( σ ) \\Φl:fe TP{G), \\ f | μ ^ 1} .
σeP
Σ
σeP

One says that P is Sidon if tc(P) < oo. For a singleton we replace
fc({σ}) by κ(σ). The set P is local Sidon if its local Sidon constant
tco(P) = sup{ιc(σ)\σeP} is finite.

(2.2) Two lemmas. The following two lemmas will be needed
later. The proofs are easy, and we omit them.

LEMMA 1. Let φ: G —> H be a continuous epimorphism of compact
groups. Let E ζZ H, and let Eoφ = {σoφ\σeE} £ G. Then E is a
Sidon set for H if and only if Eoφ is a Sidon set for (?, and indeed

LEMMA 2. Let P £ G be Sidon, and let Q S G be finite. Then
PΌQ is Sidon.

We note in passing that for finite Q the inequality

ιc(Q)^(Σ<dir2

holds. It is not known to us whether Lemma 2 holds for an arbi-
trary Sidon set Q. It does if Q is Sidon and {dτ\τeQ} is bounded
(Bozejko [2]).

3* Mise-en-scene for compact Lie groups* We now summarize
briefly the facts we need from the theory of representations of
compact Lie groups. This information may be gleaned from
Dieudonne [4], Humphreys [11], and Price [16].

(3.1) Suppose that G is a connected, simply-connected compact
Lie group. Denote by g the Lie algebra of G, and by gc the com-
plexification of g. Then g is semisimple (Dieudonne [4, (21.6.9)]),
and so also is gc.

Fix a maximal torus T of G. The Lie algebra t of T, regarded
as a Lie subalgebra of g, is a maximal commutative subalgebra of
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g. Its complexification tc is a Cartan subalgebra of gc.
(3.2) Let Φ denote the set of roots of gc relative to tc, and

let ( , ) be the inner product induced by the Killing form on the
jR-linear hull of Φ. For aeΦ, put α v = 2α/(α, a). Fix a basis
{au , α j of Φ (I is called the rank of G, g or gc). The weights
X are defined by requiring (λ, ay) e Z for all aeΦ. These comprise
a lattice Λ, which is ordered by: λx -< λ2 if λ2 — λj. = m1a1 + h
m^ with nonnegative integers mu - , mt.

(3.3) The set of dominant weights Λ+ consists of those weights
λ satisfying (λ, a^) ̂  0 Φ (k — 1, 2, , i). The fundamental weights
Xlf - ,Xι are defined by (λ̂  , α-0 = δjk. Each xeΛ+ can be written
nλXi + n2X2 + + n{Xι with nu , 7&t nonnegative integers.

(3.4) If λ e 4 + there is a finite-dimensional irreducible Lie repre-
sentation φλ: Qc —> fl'(-Hii) with -< — maximal weight λ, acting on a
C-vector space Hλ of dimension d̂  < oo. There is a unique continu-
ous representation σ̂ : G —> GL(Hλ) of G such that

^ (expG (X)) = exp fe(X)) for all Xeg ,

where expβ: f̂ -> G is the exponential mapping. Since G is compact,
Gι is unitary with respect to a suitable inner product on Hλ.

(3.5) The set {σλ: X e Λ+} is a maximal set of pairwise inequi-
valent continuous unitary irreducible representations of G. We may
thus take G to be this set.

WeyΓs dimension formula states:

w h e r e δ = X, + + Xι a n d Φ+ = {a eΦ\a > 0}.
(3.6) The representation theory of a connected compact Lie

group G reduces to the simply-connected case via the structure
theorem (Price [16, (6.4.5)]). This asserts that G is isomorphic to
(To x G)/K, where To is the identity component of the center of G
and G is a connected, simply-connected compact Lie group, and
where K is a finite subgroup of the center of TQ x G.

(3.7) A connected compact Lie group is called semisimple if its
Lie algebra g (equivalently gc) is semisimple. This is equivalent to
To = {1} in the notation of (3.6), i.e., to G having finite center.
When G is semisimple, and π, G —> G the surjection implicit in (3.6),
then the map σ t—• σ°π identifies G with a subset ΛΣ of Λ+, where
Λ+ is the set of dominant weights of G.

(3.8) A connected compact Lie group G is called simple if its
Lie algebra g is simple. Equivalently, gc is simple. For if g is
simple, then so is gc because it is semisimple, and any compact real
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form of gc must be isomorphic to g. The reverse implication holds
for any Lie algebra Q over R.

4* The key estimates* In this section we derive inequalities
for Sidon constants to be used later.

(4.1) A special coordinate function. Let G be a simply-connected
connected (and therefore semisimple) compact Lie group, and let Λ+

be the set of dominant weights for G. For each fixed XeΛ+ let
Bλ — {ζί, , ζλ

dλ} be an orthonormal basis for Hx, and let σ)k(y) =
{σλ{y)ζϊ, ζj> ίovyeG and j , k = 1, .., dλ. Thus (σj*)&«i is the matrix
of σλ(y) with respect to Bλ. We may choose Bλ so that (σ)k(x)) is a
diagonal matrix for each x e T, let us say (σ)k(x)) = diag (X,ϊ(x), ,
Xdλ(x)) The maps 1): T-+T are characters of T, and so for each
XeΛ+ and i e {1, , dλ) there is a unique linear map μj: tc —> C such
that

Zj (expβ (X)) = exp (^(X)) (X e t)

Since σ,(x)ζj = ZK*)Cy for all x e T, it follows that

φλ{X)ζ) = μ){X)Q (Xet) ,

with {ζί, •• ,ζi ;} a corresponding set of weight vectors. Reordering
the basis Bλ if necessary, we may assume that μ{ is the maximal
weight λ of φx. Since the weight space of the maximal weight λ
is one-dimensional, we have μ) S λ for j = 2, , dλ.

For each λ e Λ+ choose a basis and order it in the above manner.
For r e {1, , 1} write ψr instead of σ\x when λ is the fundamental
weight λr. Since σλ

n (expβ (X)) — exp (λ(X)) for Xet , it is clear
that if λ = n^ + w2λ2 + + n{ku then αii(#) = ψ^yY1- fι{y)nι for
all ί/eG of the form expG(X), X e ί . In fact we have the fol-
lowing

PROPOSITION. With notation as above, the identity

( * ) σi = t ί 1 ^ 2 ΨV

holds on G.

The proof is to be found in Giulini and Travaglini [8].
(4.2) Let G be as in the previous section. We now obtain

lower bounds for the (local) Sidon constants tc{σ) for σeG.

PROPOSITION. Let X = nxxx + + n{Kι e Λ+, and let κλ be the
Sidon constant of the corresponding representation σλ. Then for
any s e ]0, l/2[ we have, provided X Φ 0,
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2 - 2 Mf+ e

- 2 |0 + |4 + £ '

where Mχ is the number of positive roots aeΦ+ such that (λ, a

Proof. Retaining the notation of (4.1), let / = σi . Then the

orthogonality relations yield 1 \f(x)\2dx = Ijdz. For seN we have

y s = (^rfi... ψfi)8 = ^jwi . . . ψ»|*i = all, where s\ — sn^ + + sn{Kι.

Hence I I f(x) \2sdx = l/dsλ. On the other hand, since feTσ,(G), we
JG λ

have H/II2. ^ 2/cAi/β||/||2 (see Hewitt and Ross [9, (37.10) and
(37.25)]). Hence we have

= —J —L

Now dA = ILer+ (λ + δ, a)/(δ, a) (WeyΓs formula), and (sλ + δ, a)/
(δ, a) ^ β(λ + ί, a)/(δ, a). Since (βλ + δ, α)/(δ, α) = (λ + δ, α)/(δ, α)
when (λ, α) = 0, we obtain the estimate dsλ ^ sM*dx. Hence

Let εe]0, l/2[ be given, and let A be the integer satisfying A—l<
l/2e ^ A. Let β = M"̂ A (s Φ 0 since λ ^ 0). Since lj(2MλA) ^ 1/(2A) ^
min {1/2, ε} we have

λ = 2(MA)i+in2A) β 2AMf+e 2

the last since A < l/2ε + 1 < 1/e.
(4.3) Using now the structure theorem for compact connected

Lie groups, we are able to give estimates for all local Sidon con-
stants in such groups.

PROPOSITION. Let G be a connected compact Lie group. Then
there is a constant CQ > 0 (depending only on G) such that

ln(dσ)

for any σ e G, daφ\.

Proof. By (3.6), G is a quotient of a group To x G, where To

is compact and abelian, and G is a compact connected simply-con-
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nected Lie group. Let π: To x G —> G be the quotient map. Then
by Hewitt and Ross [9, (27.43)], if σeG then σ<>π has the form
(x, y) h-> X(x)τ(y) for xeTQ and y e G, where X: T0~^T is a character
of Γo and r e (G)Λ. Clearly TσoJr(Γ0 x #) consists precisely of all
functions / of the form f(x, y) = X(x)g(y), with geTτ(G).

It is clear that H/l^ = ||^HJ. and ||/||co = \\g\\oo for such / and g.
Hence tc(σoπ) — ιc(τ), and so by Lemma 1 of (2.2) and Proposition
4.2 with ε = l/ln(dσ), a constant Co exists for which the inequality
holds for all σ with dσ ^ 8. Since /c(σ) ̂  1, we may diminish Co if
necessary so that the inequality holds for 1 < dσ < 8 as well.

(4.4) Estimates independent of G. The constant Co appearing
in (4.3) depends on the group. We give, after a preliminary lemma,
an estimate valid for all such G simultaneously.

LEMMA. Let QC be simple of rank I. If 0 Φ x = Σ i = i ^ Λ t e ^ + >
then dλ ^ lz/S except when either

( i ) Qc is of type At and X e {λlf Xh λ2, λ ^ , 2\ί9 2xh X, + Xt} or
(ii) gc is of type Bh Ct or Όx and λe{λ2, λ2, 2λJ.

Proof. We may clearly assume I ̂  3. From the Weyl dimen-
sion formula it is obvious that

(a) dλ^ dμ if μ = m ^ + + m{Xι e Λ+ and % ^ m, for all j .
Assume first that gc is of type At. The set of positive roots of gc

is {oίi + + α^ll ̂  i ^ j tί 1}, and άό — aά for each j (see Tits
[19]). So WeyΓs formula becomes

d
λ= Π Γ *«

j — i + 1

From this it is easy to see that
(b) dλ = dχf if λ' = nιXx + + nλxu and

(c) dλ = J7 +. X ] if λ = λ,, 1 ̂  i £ I.
So let λ = Wiλi + + n{Xι e Λ+\{0} be given. If X is not one of the

weights listed in (i) above, then (a), (b) and (c) imply that dλ ^ dμ

for some μ 6 {λ3, X, + λ2, Xλ + λz_1? 2xι + λ,, λ2 + Xt_lf 3λ2, 2λ2}. Direct

calculation yields that the smallest such dμ is "t > Z3/8.

Next suppose that gc is of type Bh Cu or Dx. If

^ ^ min {dh_l9 dλι)

^ 2Z"1 (see Tits [19, p. 30 if])

Now notice (see Bourbaki [1, p. 250 if]), that for each pair
(i, j) with 1 ^ ΐ ^ i ^ ϊ (except (ΐ, i) = (Z — 1, Z) in case JDt) Φ+ con-
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tains m(aϊ + + a)) with m = 1, 2 or 1/2. Thus in WeyΓs
formula a factor (nt + + % + i — i + l)/(i — i + 1) appears for
each such pair (i, j). Consequently, in the Bh Ch Dt case, if λ =
Σί=i ^Λt with ^z_! = n% = 0, then

(d) d; is at least the degree of the corresponding weight in
Aι. Thus if X is not listed in (ii), and hence is not listed in (i), we
have dλ ^ £3/8 by the Ax case.

Finally, assume that gc is an exceptional algebra. Then by (a)
we have dλ ^ min{d^.|l ^ j ^ i}, which is at least Γ/8 in each case
(see Tits [19, p. 41 if]).

Here now are our absolute estimates for the local Sidon
constant:

PROPOSITION. Let G be a simple compact Lie group of rank I,
There is an absolute constant C (C = 560 will do) with the following
property. Let σ e G be nontrivial with λ 6 Λ+ its corresponding
weight. Then the inequality

fc(σ) ̂  ιυηc

holds, except when either
( i ) gc is of type At and X e {Xlf λj, or
(ϋ) ffc is of type Bh Cl9 or Όx and λ = λ^

Proof. Referring to Tits [19], we find that ] Φ + | ^ 2 ί 2 in all
cases. If λ is not one of the weights listed in (i) and (ii) of the
preceding lemma, then dλ ^ Z3/8. With these estimates, Proposition
4.2 with ε = 1/30 shows that κx ^ Z1/3/240.

If gc is of type Ax and λ e {λ2, λ^, 2λx, 2xh λx + λj or if gc is of
type Blf Cι, or Dι and X e {λ2, 2λJ, explicit calculations show that
dχ ^ I2J2 and Mλ ^ 4Ϊ. Proposition 4.2 with appropriate ε > 0 again
shows that κλ ^ Z1/3/560.

REMARK. In fact inequalities

fc(σ) ^ Cl1/2/ln(l) (if I > 1)

and

tc(σ) ̂  Cdιjηin{do) (if σ Φl)

for some absolute constant C > 0 can be obtained by taking ε =
l/ln(l) [resp. ε = l/ln(dσ)] in the above derivation (provided I and
dq a re ^ e2).

(4.5) There is good reason to exclude the weights in (i) or (ii)
of the previous proposition. Their local Sidon constants are bounded
independent of gc, as the next two lemmas show. This fact is
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responsible for the Sidonicity of the Figa-Talamanca-Rider set con-
structed in § 5.

LEMMA 1. Let G = SU(n) or U(n), where n Ξ> 2. Then there
is a constant K independent of n such that

A\\Ψl+ \\B\\ΦιS Kmax{\t7iAU) + tr(BU)\: UeG}\Ψl+ \\B\\Φι

for any A, BeMn(C). Hence if σ denotes the self-representation of
Gy then tc{σ, σ) ^ K.

Proof. First note that for z, w eC and n ^ 3 we have

max{|αz + aw\: a e T) = \z\ + |w\ ^ 4max{ |αz 4- άw\: a% = 1} .

Hence for n ^ 3 we have

tr(BU)\: Ue U(n)}

^ Amax{\tr(AU) + tr(BU)\: UeSU(n)} .

This shows that we may assume G — U(n).
Now if A, BeM%(C) we have for some Ue U(ri),

This, together with a similar inequality for [(JSH^ shows that for
n ^ 3, K = 2 will do if G = U(ri), and J5Γ - 8 will do if G = Sί7(w).
If % - 2, tc({σ, σ}) ^ (d2

σ + d\)m = 2]/Y.

LEMMA 2. Let σ be the self-representation ofG = SU(n), SO(n),
or Sp(ri). Then

(a) jc(σ) - κ{σ) = 1 if G = SU(n),
(b) κ(σ) ^ 4 i/ G = SO(n),
(c) Λ:(σ) ^ 4 i/ G =

Proof (a) This follows from Hewitt and Ross [9, (D. 30)].
(b) If AeMn(C), write A = B + iC, where B, CeMn(R). Then

max{|ίr(AO)|:0 6SO(^)} ^ max{|έr(-BO)|: 0 e SO(^)}, and similarly for
C. By Gantmacher [7, p. 286] we can write B — \B\O19 where OLe
O(n). If n is odd then 0, or -O.eSOin), and so max{ | ί r (^0) | :
OeSO(ri)} ^ trIJB| = HBJI^ (thus κ(σ) ^ 2 for odd n). If w is even
and Oj.eSOiri) this inequality still holds. If det Ox = — 1, let Z) =
diag (1, , 1, —1,1, * , 1), the " — 1" appearing in position jf where
βά is a minimal diagonal entry of \B\. Then
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max{Itr(BO)\: 0eSO(n)} ^ \tr(BO{D)\ = tr(\B\D)

= βί + + βn - 2/3,

^ (l - ^-)(/31 + + β.)

similarly for C. Hence for » ^ 4 we have

IIA 11^:2 \\B\\H 2Ϊ
71

Thus, once n ^ 4, /t(tf) ^ 4 holds, while £(#) ̂  dσ <; 4 for ^ < 4.
(c) Recall that Sp(n) consists of all 2n x 2n unitary matrices

of the form T = [__ ^ jΠ where U, VeMn(C). If AeMJC), write

A = [ f ^ ] with X, Γ, Z, TFeMw(C). Then taking TeSp(n) as

above with F = 0, we have

max{|tr(-AΓ)|: TeSp(n)} ^ max{ |M^^+ WU)\: Ue U(n)}

^j(\\X\k+\\W\\Φ) by Lemma 1.

Similarly, taking T e Sp(n) as above with U = 0, we find

max{\tr(AT)\:TeSp(n)}^ 1( | | Γ||#1

There follows

: TeSp(n)} .

5* Sidon sets on products* In § 6 below we shall need the
existence of infinite Sidon sets for certain infinite products. This
we now establish.

(5.1) Let G be a compact connected group which is the carte-
sian product ΐlaeAGa of normal subgroups Ga, each of which is
isomorphic to one of the four groups SU(na)9 Sp(na), SO(na), or
Spin(na) for some naeN. Let σaeGa be the self-representation in
the first three cases, and in the fourth case let σa = τα°τ/rα, where
ψa: Spin(na) —> S0(na) is the covering map and rα is the self-repre-
sentation of S0(na). Let P = {σaoπa\ae A} £ G, where πa:G->Ga

is the canonical projection.
Taking notice of the fact that the decomposition ϊ[aεAGa of

such a group is unique up to reindexing, we see that the set P (J
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P £ G depends only on G. We shall call P U P U {1} the Figά-
Talamonca-Rider set (FTR set) of G, since these authors in [6]
constructed what is essentially the set P in the case in which Ga=
SU(na) for each a.

We shall proceed to show that the FTR set (and hence P) is a
Sidon set. We shall also give a description of all local Sidon sets
for such a group G, in terms of the FTR set.

PROPOSITION 5.2. Let G be the product Π«e^Gα of a family
of compact groups, for each a e A let Pa Q Ga be a Sidon set, and
let πa: G —»Ga be the canonical projection. Then the set P =
\JaeA(Pa°iCa) £ G is a Sidon set if and only if sup α £(PJ < °°.

Proof. If P is Sidon, then so is Paoπag, P, and hence by
Lemma 1 of (2.2), Pa Q Ga is Sidon with fc(Pa) = fc(Pa°πa) ^ κ(P) <
oo. Thus supa/c(Pa) £ κ(P) < oo.

Suppose conversely that supα ιc(Pa) = K < oo. Applying Lemma
2 of (2.2) with Q = {1}, we may assume that l(Pa for each a. The
union \Ja(Pa°πa) is then disjoint. Let feTP(G). Then / = Σ « / «
with /α ^ 0 for only finitely many α ?s, and for all a, fae TPaO7Za{G),
so that fa = ^oττα for some gaeTPa(Ga).

Now for each α e i , there exists an element xa e Ga such that

Il^αlli^^llflf«l|co = ί:|flrα(»«)l, and so \\f\\, = Σ«llΛlli = Σ J I ^ I I i ^
if Σ« I #«(#«) I It is elementary that for some θe{l,i, —1, — i) we
have

where Λ = {α e A\Re[θga{xa)] > 0}. Since 0£Λ e TP (Gα) and 1 g Pα,

we have I θga(x)dx = 0, whence Re(θga(ya)) ^ 0 for some ya e Ga

(we may take ya — xa if aeAJ. There follows

11/11, ̂  AKRe(θ Σ ̂ ω )

- 4KRe(θf(y)), where y - (j/β) e G

This shows that P is Sidon.

COROLLARY 5.3. Let G be as in (5.1) and let PQQG be its FTR
set. Then Po is a Sidon set.

Proof. With the notation of (5.1), we have PO = P U P U { 1 } .
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Hence the statement follows from Lemma 2 of (2.2), (5.2) and
Lemmas 1 and 2 of (4.5), since σa = σa save when Ga = SU(na).

Note that the Sidonicity of P was established by Hutchinson
([12, (9.5)], [13]) by methods different from ours.

(5.4) Next we prepare the way for our description of all local
Sidon sets for G with three lemmas.

LEMMA 1. Let G be the product of the family (Ga)a€A of com-
pact groups. For each a, let σa e Ga, with σa = 1 except for finitely
many α's. Let σeG be the representation of G corresponding to
(σa) (see Hewitt and Ross [9, (27.43)]). Then κ(σ) ^ ΐlaιc(σa).

Proof Let A1 = [a e A\σa Φ 1}. For aeA1 choose fa e T,a(Ga)
with ||/β||oo = l and \\}a\\x = /c(σa). Define f.G-^C by /(α) =
ΠβeiiΛW for # = fe) e G. One sees routinely that

ι ι / ι i i = π ι i Λ i i i = π *(*.) = π *(*«)•
aeAi aeAi aeA

LEMMA 2. Let G and H be compact groups and let P Q G and
Q e ff be finite. Let P x Q denote {σ x τ | σ e P, τ e Q} c (G x fly
α^cί Zeί /r = tc(P x Q) 6e its Sidon constant. Then tc^[mm {Σσep dσ,
Σreρ^r}]1/2 As a consequence, P x Q is never Sidon if P and Q
are infinite.

Proof. Let s = card P, t = card Q, let P = {σ(1), . - , σ(s)}, Q =
{τ(1), , τ(<)}, and put m - Σ σ e p dβ, ^ - ΣreQ dr. Put ώ(fc) = dσ{k)

(1 <. k £ έ) and e(l) = dr(l) (1 ̂  Z ̂  ί). Fix orthonormal bases for the
representation spaces of all σeP and all τeQ, and denote the
corresponding coefficient functions by (σ$)ϊ%Ll9 (r#)<,/L (1 ̂  A ̂  β,
1 ^ Z ̂  t). If A = (αti) is any [m n complex matrix, partition the
rows and columns of A using the scheme m = da) + d{2) + + d{8\
n = β(1) + + e(ί). Thus A consists of an s x ί matrix of blocks,
and the (fc, ϊ)th block is a d{k) x β(i) matrix. Denote by afό the
(i, i)th entry of the (A, Z)th block (1 ̂  ΐ ^ ώ(fc), 1 ̂  i ^ d(I)). For
any such A, the function

g : {Xy y), > Σ αjjσ

belongs to TPXQ(G x i ϊ) , and hence we have

Σ ai}σ$\x)τfl(y)\: xeG, yeH} .

Let p = m ί n {m, ^} and let 5 be a p x p unitary matrix all of
whose entries have modulus p~m. Take for A above the matrix
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with entries

bij9 1 ^ ΐ, j S P

0, otherwise.

Because |σ f ( ^ ) | ^ l for all xeG (and likewise for t h e τ's) t h e
previous inequality yields

i e i h e . ^ e C , [£,| ̂  1, \VA ̂  h all if j}

= /c max I <βηt ξ) \

Thus it ^ p1/2 as claimed.

LEMMA 3. Let G and H be compact groups. Let P Q G be
finite and let Q Q H be Sidon. Then P x Q S= (G x HT is Sidon,
with

Σ
σ e P

dl)κ{Q) .

Proof. If / is any continuous function on G, and if σ e P, r e

ζ), then ||/(<7 x τ)\\Φl£dΛ \\fx(τ)\\Φλdx, where we write fx for the

function # h-> /(x, ^/). If / e TPXQ(G x i ϊ ) then

Σ ) «(Q) 11/.
aeP JG

PROPOSITION 5.5. Lei G = Π^e^G,, with Ga a simple connected
compact Lie group of rank la. Let P be any local Sidon set in G.
Then there is a partition A = A1 U A2 U Az of A and a subset Pό of
Gjf the dual of Gj = I L e ^ G<* U = 1, 2, 3) such that

( i ) PQP.x P2 x P3,

( ϋ ) P1 = {lh
(iii) swp [la\a eA2} < <^ and sup {dσ\a eP2} < oo,
(iv) G3 is as described in (5.1) awcϊ P 3 is iίs FTR set.

Conversely, all sets P satisfying these conditions are local Sidon.
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Proof. Each Ga is a quotient GJKa9 where Ga is a simple con-
nected simply-connected compact Lie group. Let ψa:Ga~^ Ga denote
the quotient map.

Each σ e G may be regarded as a family (σa)aeA, where σa e Ga

and where only finitely many σa's are nontrivial. Let A1={aeA\σa

is trivial for every σ = (σa) e P}. With C the constant of Prop-
osition 4.4, let A2 = {α e A\Λ | ία ^ (C/co(P))3}. Finally, let A8 =
A\(AX U A2), and let P, - {(σa)aBΛi\(σa)aBΛ e P} £ G, (j = 1, 2, 3). Ob-
viously (i) and (ii) hold. Also sup {la \ a e A2} = I ̂  (C/ro(P))3 by de-
finition of A2. By the classification theorem, this imples that there
are only finitely many pairwise nonisomorphic groups in the set
{Ga I a e A2}. Proposition 4.3 then entails sup [dOa \ a e A2y σ e P} —
d < oo. But for each aeA there can be only finitely many τ eGa

with dτ ^ d, by the Weyl dimension formula (3.5). Accordingly,
if a — (σa) 6 P, let Nσ denote the number of aeA2 with σa Φ 1. If
sup {NσIα1 eP} = oo, then the foregoing remarks show that for each
n6N there exists σeP with σa equal to the same nontrivial repre-
sentation, τ say, for at least 2n α's in A2. Then by Lemmas 1 and
2 of (5.4) we obtain κo(P) ^ κ(τ x τ x x τ) (2n factors) ^ d(τ x
τ x x r)1/2 (w factors) = d?/2^2W2, a contradiction. Thus sup {Nσ\σ e
P} = N< oo, sup{dσ |σeP2} ^ d^ < oo, and (iii) holds.

Turning at last to AZ9 suppose τ e P and α e A3. Then Zα >
(Ctco(P)y, and so ταoψα e {1, σXί, σλl}, since otherwise /co(P) ^ ΛΓ(Γ) ^
/r(τα) = fc(τaoψa) ^ iy3/C by Proposition 4.4.

Moreover, τa Φ 1 holds for at most one a e AB. For supposing
the opposite, let τa and τβ be both nontrivial with a,βeA3, aφβ.
Then again by Lemmas 1 and 2 of (5.4) we obtain κo(P) ^ ιc(τ) ^
Λ(T« x T )̂ ̂  min {rf1^2, rf1^2} ̂  min {̂ '2, ίV2} > (Cyco(P))3/2 ̂  Λ:0(P), another
contradiction. Thus P3 is contained in the FTR set of G3. If we
redefine P3 to be the FTR set, then (i) through (iii) remain valid
while (iv) becomes valid.

The converse follows from Lemma 3 of (5.4), which shows that
P x Q is local Sidon whenever sup {cZJσeP} < oo and Q is local
Sidon.

(5.6) In a special case, (5.5) even affords a description of all
Sidon sets.

COROLLARY. Let G = ΠSU SU(n). Then E £ G is a local Sidon
set if and only if it is a subset of P' x P", where for some nQ ̂  1,
P' is a finite subset of (UZ°SU(n)y and P" is the FTR set of
ΐlno+ιSU(ri). Hence E is a local Sidon set if and only if it is a
Sidon set.

Proof. The set A2 of (5.5) must be finite, so the first assertion



314 DONALD I. CARTWRIGHT AND JOHN R. MCMULLEN

holds. Lemma 3 of (5.4) shows that subsets of P ' x P " are always
in fact Sidon.

(5.7) Specializing on another front yields a counterexample to
Hutchinson's conjecture ([12, (9.1)], as abstracted in [14]). We
write PSU(w) for the quotient of SU(n) by its center:

COROLLARY. If G = T[»=zPSU(n) then G has no infinite Sidon
sets, although it has infinite central Sidon sets, is connected, and
is not a semisimple Lie group.

Proof. The first statement is an application of (5.5), as again
A2 must be finite. The second was proved by Rider [17].

6* Sidon sets for compact connected groups* We give in
this section our main criterion for the existence of an infinite Sidon
set in the dual of a compact connected group. We give the criterion
in two different forms, as Theorems 1 and 2 below.

(6.1) Notation. Let G be a compact connected group. Then the
extended structure theorem (see Price [16, (6.5.6)]) guarantees an
epimorphism π: G* —> G, where G* has the form A x G19 with A a
connected compact abelian group and G± a cartesian product ILe/S,
of compact simple simply-connected Lie groups. The kernel K of π
is totally disconnected and central.

The symbols G,G*,π, A, Glf Se (eel), and K will have these
fixed meanings throughout this section.

(6.2) Here is our main result in its first form.

THEOREM 1. Let G be a connected compact group. Then the
following are equivalent: (i) G has an infinite Sidon set] (ii) G has
an infinite local Sidon set) (iii) there is a continuous homomorphism
of G onto one of the following groups:

(a) T
(b) an infinite cartesian power Sc of a simple Lie group S,

or (c) a group of the form (Πfc=o Lk)/K0, where Lo is a compact
linear semisimple Lie group, Lk — SU(nk), SO(nk), or Sp(nh) for k=
1, 2, 3, , with 1 ̂  nx < n2 < nz, , and where (with I denoting
the appropriate identity matrix) Ko = {(xk) e Π?=o Lk\x0 = λ l and
xk — λ"1/ for all k^l and some λ e C}.

Proof. I t is evident that (i) implies (ii). We show first that
(ii) implies (iii). To this end, assume that G admits an infinite local
Sidon set, and that there is no continuous homomorphism of G onto
groups of type (a) or (b). Thus with the notation of (6.1), A={1},
and for each I e N there are only finitely many eel such that the
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rank lc of Sc is equal to I (see (6.3) below). By (5.5) then, there
are a partition / = B U G, an infinite local Sidon set P = {plf p2, }
of G and an injection kv-+ ck of N into C such that P°π Q (G*)~ has
the form {pkoπ = τ x ^j^eiV}, where Te(ILe*S<)~ is fixed, BQI
is finite, and σk is the canonical projection ΐ[ceCSc —> S,fc followed by
the representation α>fc of S,4 corresponding to the fundamental
weight λlβ Let Lfc denote the image of SejB under the representation
ωk. Then Lk = SU(nk), SO(nk), or Sp(nk) for some nkeN. Reduc-
ing and reordering P if necessary, we may assume that nλ<n2<- .
Let Lo — τ(Tlees Se), let σ: ΐlcec Sc -> Π?=i ^ be the obvious surjection,
and consider the homomorphism

τ x σ: G* - Π S, x Π S, ^ Π L , .

If now x = (xe)teIeK, then 1 = pkoπ{x) = τ x σΛ(a?) for each
keN, whence τ((aθ<es) ® Λ>*fefc) = -ί If Γ and S are diagonalizable
operators and T ® S = ί, then T = λJ and S = λ"1 J for some λ6C,
with / denoting the identity operator on the appropriate spaces.
Hence for each x e K we have τ x σ(x) eKQ~ {{ζk) e ΠϊU Lk\ζ0 — XI
and & = λ"1/ for all ΛeiV and some λeC}. Hence r x σ induces a
continuous homomorphism of G onto a group of type (c).

Now we assume (iii) and show that (i) holds. Thanks to Lemma
1 of (2.2) we need only show that groups of type (a), (b), and (c)
have infinite Sidon sets. For groups of type (a) this is classical,
and for those of type (b) we choose a fixed nontrivial peS and
apply (5.2) with Pa = {p} for each a. Let G = (ΠϊU Lk)/K0 be of
type (c). Let τ be the self-representation of Lo and let π, be the
canonical projection ΠϊU Lh —• Lά followed by the self-representation
of L3. Then {τ x π3-\j eN} £ (IKUl/jbΓ is a Sidon set by (5.3) and
Lemma 3 of (5.4). Clearly τ x πs is trivial on Ko and so induces
an irreducible representation pά on G. The set {pό\jeN} is the
infinite Sidon set we require.

(6.3) Some alternative criteria

PROPOSITION 1. Let G be a compact connected group. Then the
following are equivalent:

(a) G admits T as a homomorphic image;
(a)' G admits an infinite abelian quotient;
(a)" A^{1};
(a)'" G admits a nontrivial connected abelian normal subgroup.

PROPOSITION 2. Let G be a compact connected group. Then G
is not tall if and only if (a) it admits an infinite abelian quotient,
or (b) it admits an infinite power Sc of a simple Lie group S as
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a homomorphic image.

Proof. If (a) or (b) holds, G is clearly not tall. If, conversely,
G has no quotients of the stated kinds, then A — {1}. Also, since
KQG* is central, there is a surjection of G onto G* — G*/Z(G*).
But G* = Gc = ILe/S,, so Z(G*) = UtezZiSt), and so G* is isomorphic
to ΐlcei(S(/Z(Sc)). By hypothesis, only finitely many of these factors
lie in each isomorphism class. Consequently the same holds for the
product G* = ILei& Thus G* is tall, and therefore G is tall.

The correspondence between the factors of G* and of G* noted in
the last proof may be exploited once more to yield the following fact.

PROPOSITION 3. Let G be a compact connected group. Then the
following are equivalent:

(b) G admits an infinite power Sc of a simple Lie group S as
a homomorphic image;

(b)' infinitely many of the Sc (c e I) are pairwise isomorphic;
(b)" G admits infinitely many pairwise isomorphic connected

normal subgroups that are simple Lie groups.

(6.4) When A = {1} and I is infinite we shall call the kernel K
of π almost trivial if there are disjoint subsets B and C of I which
are finite and infinite respectively, and if there exists an element
T e(ΐ[ίeBScy with the following property: for each x = (xe)ceIeK,
there is a complex number λ such that τ((xc)ceB) — XI and ωc{x) =
λ"1! for all c e C, where ωc is the representation of St which corres-
ponds to the fundamental weight λx (ωe is the self-representation
unless Sc — Spin (n) for some n), and where I denotes the identity
operator on the appropriate space.

If K is almost trivial, let πQ denote the projection of G* onto
its subproduct H = Tissue Sc. Then πo(K) is clearly a finite cyclic
central subgroup of H, and its order must divide that of Z(Se) for
each ce C.

We now state our main result in a second form.

THEOREM 2. Let G be a connected compact group. Then the
following are equivalent: (i) G has an infinite Sidon set; (ii) G has
an infinite local Sidon set; (iii) either G is not tall, or G is tall
and the kernel K of π is almost trivial.
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