COMMON FIXED POINTS OF NONEXPANSIVE MAPPINGS BY ITERATION

PETER K. F. KUHFITTIG

The purpose of this paper is to present an iteration scheme which converges strongly in one setting and weakly in another to a common fixed point of a finite family of nonexpansive mappings.

Let X be a Banach space and C a convex subset of X. Suppose $\{T_i: i = 1, 2, \dots, k\}$ is a family of nonexpansive self-mappings of C. Define the following mappings: set $U_0 = I$, the identity mapping; then for $0 < \alpha < 1$ let

$$egin{aligned} U_{1} &= (1-lpha)I + lpha T_{1}U_{0} \ , \ U_{2} &= (1-lpha)I + lpha T_{2}U_{1} \ , \ & \dots \ & U_{k} &= (1-lpha)I + lpha T_{k}U_{k-1} \ . \end{aligned}$$

THEOREM 1. Let C be a convex compact subset of a strictly convex Banach space X and $\{T_i: i = 1, 2, \dots, k\}$ a family of nonexpansive self-mappings of C with a nonempty set of common fixed points. Then for an arbitrary starting point $x \in C$, the sequence $\{U_k^n x\}$ converges strongly to a common fixed point of $\{T_i: i = 1, 2, \dots, k\}$.

REMARK 1. The sequence $\{U_k^n x\}$ can be expressed in the following form: let x_0 be an arbitrary element in C and let

$$egin{aligned} x_1 &= (1-lpha) x_0 + lpha T_k U_{k-1} x_0 ext{ ,} \ x_2 &= (1-lpha) x_1 + lpha T_k U_{k-1} x_1 ext{ ,} \end{aligned}$$

and, in general,

$$(*)$$
 $x_{n+1} = (1 - \alpha)x_n + \alpha T_k U_{k-1}x_n$, $n = 0, 1, 2, \cdots$.

Observe that for k = 1, the sequence (*) becomes

(1)
$$x_{n+1} = (1 - \alpha)x_n + \alpha T_1 x_n$$

which converges to a fixed point of T_1 by Edelstein's theorem [3]. The sequence (*) is clearly a generalization of this result.

Proof of Theorem 1. We first note that the mappings U_j and $T_j U_{j-1}$, $j = 1, 2, \dots, k$, are nonexpansive and map C into itself. It

is also easy to check that the families

$$\{U_1, U_2, \cdots, U_k\}$$
 and $\{T_1, T_2, \cdots, T_k\}$

have the same set of common fixed points.

Since the sequence (*) has the same form as (1), $\{U_k^n x\}$ converges to a fixed point y of $T_k U_{k-1}$ by Edelstein's theorem. We wish to show next that y is a common fixed point of T_k and $U_{k-1}(k \ge 2)$. To this end we first show that $T_{k-1}U_{k-2}y = y(k \ge 2)$. Suppose not; then the closed line segment $[y, T_{k-1}U_{k-2}y]$ has positive length. Now let

$$z = U_{k-1}y = (1-lpha)y + lpha T_{k-1}U_{k-2}y$$
 .

By hypothesis there exists a point w such that $T_1w = T_2w = \cdots = T_kw = w$. Since $\{T_i\}$ and $\{U_i\}$ have the same common fixed points, it follows that $T_{k-1}U_{k-2}w = w$. By nonexpansiveness

$$(2) || T_{k-1}U_{k-2}y - w || \le || y - w ||$$

and

$$\|T_k z - w\| \leq \|z - w\|$$
.

So w is at least as close to $T_k z$ as to z. But $T_k z = T_k U_{k-1} y = y$, so that w is a least as close to y as to $z = (1 - \alpha)y + \alpha T_{k-1}U_{k-2}y$. Since X is strictly convex, we conclude that

$$\| \, y - w \, \| < \| \, T_{_{k-1}} U_{_{k-2}} y - w \, \|$$
 .

This contradicts (2), so that $T_{k-1}U_{k-2}y = y$. It now follows from

$$U_{k-1} = (1 - \alpha)I + \alpha T_{k-1}U_{k-2}$$

that $U_{k-1}y = (1 - \alpha)y + \alpha y = y$ and $y = T_k U_{k-1}y = T_k y$. Consequently, y is a common fixed point of T_k and U_{k-1} .

Since $T_{k-1}U_{k-2}y = y$, we may repeat the argument to show that $T_{k-2}U_{k-3}y = y$ and that y must therefore be a common fixed point of T_{k-1} and U_{k-2} . Continuing in this manner, we conclude that $T_1U_0y = y$ and that y is a common fixed point of T_2 and U_1 . Thus y is a common fixed point of $\{T_i: i = 1, 2, \dots, k\}$.

REMARK 2. If the family $\{T_i: i = 1, 2, \dots, k\}$ is commutative, then the assumption that the set of common fixed points is nonempty may be omitted (DeMarr [2]).

THEOREM 2. If X is a uniformly convex Banach space satisfying Opial's condition (in particular, if X is a Hilbert space) and C a closed convex subset of X, and if the family of mappings $\{T_i: i = 1, 2, \dots, k\}$ satisfies the conditions in Theorem 1, then for any $x \in C$ the sequence $\{U_k^n x\}$ converges weakly to a common fixed point.

Proof. Since $T_k U_{k-1}$ is a nonexpansive self-mapping of C, the sequence $\{U_k^m x\}$ converges weakly to a fixed point y of $T_k U_{k-1}$ (Opial [4]). By the argument in the proof of Theorem 1, y is a common fixed point of $\{T_i\}$.

Suppose, in addition, that C is bounded and the family $\{T_i\}$ commutative. Then, since X is strictly convex and reflexive, the assumption that the set of common fixed points is nonempty may again be omitted (Browder [1]).

Since Theorem 2 remains valid for C = X, the iteration scheme can be applied to the solution of systems of equations of the type

(3)
$$x - S_i x = f_i, \quad i = 1, 2, \dots, k$$

where each S_i is a nonexpansive self-mapping of X and each f_i a given element of X. To do so, it is sufficient to consider the family

$$T_i x = f_i + S_i x$$
, $i = 1, 2, \cdots, k$,

each member of which is also a nonexpansive self-mapping of X, since x is a solution of the system (3) iff x is a common fixed point of $\{T_i\}$.

If C is a proper subset of X (as in Theorem 1) and each S_i a self-mapping of C, then the above procedure applies provided that each T_i maps C into itself.

References

1. E. F. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U. S. A., 54 (1965), 1041-1044.

2. R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math., 13 (1963), 1139-1141.

3. M. Edelstein, A remark on a theorem of M. A. Krasnoselskii, Amer. Math. Monthly, 73 (1966), 509-510.

4. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597.

Received May 27, 1980.

MILWAUKEE SCHOOL OF ENGINEERING MILWAUKEE, WI 53201