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GENERALIZED THREE-MANIFOLDS WITH ZERO-
DIMENSIONAL NONMANIFOLD SET

MATTHEW G. BRIN AND D. R. MCMILLAN, JR.

This paper investigates the statement (GM): "If X is a
compact generalized 3-manif old without boundary, and whose
nonmanifold set is O-dimensional, then X is the cell-like
image of some closed 3-manifold." Some necessary and some
sufficient conditions on X are given for (GM) to be true.
The question of whether (GM) is true in general is shown
to be inextricably tangled with the Poincar§ Conjecture:
(1) If the Poincarέ Conjecture fails, then there is an acyclic,
monotone union M of handlebodies whose one-point compact-
ification iff is a generalized 3-manif old, yet M is not the cell-
like image of any compact 3-manif old. (2) If X is a compact
generalized 3-manifold with zero-dimensional singular set S
and no ^-torsion in any sufficiently tight neighborhood of
S, then (modulo the Poincarέ Conjecture) X is the cell-like
image of a compact 3-manif old.

1* Basic definitions and notation* In this paper a generalized
Z-manifold (3-gm) X will be compact and without boundary, and so
will be a compact, finite-dimensional absolute neighborhood retract
(ANR) so that for every point xeX

H+{X, X - {*}) = H,(Sη .

We are using Sn to denote the unit sphere in Euclidean (n + l)-space
Rn+1. We will use Bn, An, Z and I to denote the unit w-ball, the
standard ^-simplex, the integers and the unit interval [0, 1] respec-
tively. All homologies will use Z for coefficients.

If X is a 3-gm, the singular set S = S(X) of X will be the set
of those points in X which have no neighborhood homeomorphic to
R\ The set X - S = M(X), called the manifold set of X, will be
a noncompact 3-manifold without boundary if S is neither empty
nor all of X. In this paper we will be concerned only with those
3-gms whose singular set is O-dimensional. As of this writing, the
status of (GM) for those 3-gms whose singular set has dimension
greater than 0 is not known. For solutions to the analogous problems
in dimensions five and higher, see [6] and [18].

A cell-like map is a surjection in which the inverse image of
each point is cell-like. (All "maps" are continuous.) A continuum
(compact, connected set) in an ANR is cell-like if it contracts in
each neighborhood of itself. If X is a 3-gm, then we say that X
resolves, or "admits a resolution/' if there is a cell-like map from a
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3-manifold onto X. A restatement of (GM) then says that a compact
3-gm X admits a resolution.

In this paper all spaces and maps of spaces will be, wherever
possible, in the PL category. In particular, all compact manifolds
will have a finite triangulation and all noncompact manifolds, in-
cluding manifold sets of 3-gms, will have a locally finite triangula-
tion. "Manifolds" are always connected. We will use oM and M to
denote the boundary and interior of M respectively. The relations
"contained in the interior of," "homeomorphic to," "homotopy equiv-
alent to" and "isomorphic to" will be written c , ^ , ~ and —,
respectively.

A closed manifold will be compact and without boundary, while
an open manifold will be noncompact and without boundary. An
acyclic manifold is one with the homology of a point. If a compact
manifold A is embedded in a manifold J3, it is properly embedded if
Af)dB = 3A. A surface is a (connected) 2-manifold. The genus of
a closed, orientable surface F is 1/2(2 — IF) where IF is the Euler
characteristic of F.

A handlebody of genus n is a space homeomorphic to a regular
neighborhood of a wedge of n simple closed curves in S\ Note that
the genus of a handlebody equals the genus of its boundary. A
complete set of cutting disks for a handlebody H of genus n is a
collection of n pairwise disjoint 2-disks, properly embedded in H,
whose union does not separate H. The boundaries of a complete
set of cutting disks for H comprise a meridinal system for H,
and each curve in a meridinal system is a meridinal curve.

If Xd Y are topological spaces and J is a loop in Y, then we
will say that J shrinks in Y mod X if there is a compact planar surface
(disk-with-holes) that maps into Y so that the map on one boundary
component gives J and the map takes all other boundary components
into X. Lastly, a group is perfect if it is equal to its commutator
subgroup.

2* Generalized three-manifolds: elementary properties and
a criterion for resolution* In Theorem 1 we show that a 3-gm X
with 0-dimensional singular set resolves if and only if the manifold
set of X embeds in a compact 3-manifold. Thus, conditions on X
that we show are sufficient to have X resolve (Theorems 3, 4 and 5.2)
can also be interpreted as conditions under which an open 3-manifold
embeds in a compact 3-manifold. These can be compared to [3;
Theorem 2] and [16; Theorem 2.4].

Only Lemma 1 below is needed for the proof of Theorem 1. We
have included Lemma 2 at this point because its proof is closely
related to that of Lemma 1.



GENERALIZED THREE-MANIFOLDS 31

LEMMA 1. Let X be a compact generalized 3-manifold and as-
sume that S(X) is O-dimensional. Then the manifold set can be
written as

M(X) - \J{Kt\l£ i< co} ,

where each K€ is a compact 3-manifold with nonempty boundary.
If we let Nt — (X — Kt), then the Kt can be chosen so that the
following are true:

(a) Each KiC:Ki+1 and each component of Nt has connected
boundary;

(b) For all i ^ 2 and k ^ 1, i*: πk(Ni) —> 7Ck(Ni_^ is trivial;
(c) For all i ^ 2 and for each component C of Nif

(cl) i%\ HtfC) -> H^N^ - Ni+1) is trivial;
(c2) if HX{C - S(C)) -* H^N^ - SiN^)) is trivial;
(c3) C — S(C) is orientable;
(c4) H2(C) = 0; and
(c5) i#: HiCC — S(C)) —> i?i(C) is cm isomorphism.

Proof. Since M(X) is an open 3-manifold, it has a locally finite
triangulation with a countable number of simplexes. We can obtain
conclusion (a) by taking regular neighborhoods of submanifolds,
simplexes and arcs. Since X is locally contractible, we can obtain
conclusion (b) by taking a suitable subsequence and renumbering.

Let C be a component of Ni9 i ^ 2 . Let x be a point in SiN^).
By the excision theorem and the definition of 3-gm,

if H^N^ - M) >H1(Ni_1)

is an isomorphism. Since every loop in dC shrinks in Nt_lf every
loop in dC bounds a singular, compact, orientable surface in NM — {x}.
Since this surface is compact, it lies in N^—Uoix) where U0(x) is a
neighborhood of x in N^ — dC. Since H^dC) is finitely generated,
there is a neighborhood Uix) of x in N^ — 3C so that

is trivial. Since S(Nt_ύ is compact and totally disconnected, there
exists a finite collection {U19 , ί7w} of pairwise disjoint open sets
in JSΓ<_1 — dC so that

and so that
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is trivial for all j , l^j^n. We can also require that each dϋ3- is a
compact 2-manifold in JV^ that is disjoint from SiN^).

We will use the Mayer-Vietoris sequence to show that

is trivial, where F = U {U3 \l <L j S n). This will establish (cl) by
taking a subsequence and renumbering. It suffices to show that

if HtfC) > H^N^ ~U,~ U2)

is trivial. Let A = N,_t - U, and let B = iV,_x - U2. Then AΓ)B =
Nt_t ~U1~U2 and, since Ĉ  n Ϊ72 = 0 , i U S = N^. We can write

JEΓ2(A) 0 H2{B) — iϊ^iV,,,) -^-> H,(A n B ) - ^ ^(A) © fl^B) .

Let J be a loop in dC. We know τ[J] = 0. We would like to show
[J] — 0 in H^A'ΓiB). This will be the case if 7 is one-to-one, which
in turn will be true if Im β = 0, which in turn will be true if a is
onto. The spaces with which a is involved, A, B and Ni_lf are all
subspaces of X that contract in X and that have 2-manifold boundary
components. Such a space has the property that the inclusion of its
boundary induces surjections on all homology groups. This can be
shown by a direct geometric argument, or by using excision and
(for example) the long exact sequences of the pairs (A, 3A) and
(X, X — A). Thus H^N^ is generated by 2-cycles in dN^. But
dA is the disjoint union of dN^ and dll^ By choosing the appro-
priate elements of H2(A) and the zero element in H2(B) we can show
that a is onto.

To show (c2), we note that each loop in C — S(C) lies in C — Ni+k,
for some fc^l that depends on the loop. Since the loop shrinks in
Ni_19 it is homologous in C — Ni+k to a sum of loops in dC U dNi+k.
We can now quote (cl) applied to dC and to the boundaries of the
components of Nι+k.

Conclusion (c3) holds since every loop in the 3-manifold C — S(C)
bounds in the 3-manifold Nt_x — SiN^).

To show (c4), we again make use of the fact that the contract-
ibility of C in X implies that H2(C) is generated by 2-cycles in 3C.
The boundary of C is a connected, orientable 2-manifold so that
H2(dC) is generated by [dC]. We will show that [dC] - 0 in H2(C)
by exhibiting the 3-chain that it bounds. Let {Ql9 •• ,QW} be the
components of Ni+2 in C. We know that C — U {Qd \ 1 ^ j ^ m} is a
compact, orientable 3-manifold with boundary. Form a compact,
orientable 3-manif old C by sewing handlebodies onto C —
U {Q3 \l ^ j ^ m} along the boundary components {dQlf , dQJ. We
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can define a map f\C'—>C by first letting / be the identity on C ~
U {Qj 11 ^ j ^ m) and then extending / to the handlebodies, skeleton
by skeleton, using (b).

Lastly, to show that i# in (c5) is one-to-one, let a be a loop in
its kernel. Since a is contained in C — S(C), it lies in C — Nί+k for
some k ^ 1. Since a bounds in C, it bounds in C and is homologous
in C — Ni+k to a sum of loops in dNi+k. But now α is zero homologous
in C — S(G) by applying (cl) to dNi+k. To show that i# is onto, let
/3 be a loop in C. Since each component of Ni+1 has connected
boundary, each arc of β Π Ni+1 can be replaced by an arc that has the
same endpoints and that lies in dNi+1. In this way we can obtain
a loop β' in C — Ni+1 so that β — βr consists of loops in Ni+1. But
now (b) says that βr is homotopic to β in C.

LEMMA 2. Let X be a compact generalized 3-manifold whose
singular set S(X) is O-dimensionaL Let (Nt), 1 ^ i < cof he a nested
sequence of neighborhoods of S(X) as given in the conclusion of
Lemma 1. Let C be a component of some Nίf i ^ 2. Then there is
a compact, orίentable 3-manifold M, a finite collection of pairwise
disjoint handlebodies {Hu , Hm} in M and a map f: M—>C with
the following properties:

(a) The restriction of f to M — U {Hβ [ 1 ^ j ^ m} is a homeo-
morphism onto C — Ni+3;

(b) T%0 induced map /* ίm TΓΊ is surjective;
(c) T%£ induced map f$ on Hλ is an isomorphism',
(d) The kernel P of /* is a perfect group.

Proof. The proof will be an elaboration of the proof of Lemma
1 (c4). In that proof, the components of Ni+2 Π C were replaced by
handlebodies to form a compact, orientable 3-manifold. We will do
almost exactly that here, but we will be more specific about the
attaching maps for the handlebodies, and we will replace components
of Nί+5 instead of Nw.

Let W be a component of C Π Ni+1 and let Y = W —Ni+3. Since
loops in Y bound in X, we can use [19; Theorem 3.1], Lefschetz
duality and the Universal Coefficient Theorem to embed Y in a closed,
orientable 3-manifold Z with H^Z) = 0 (see [3; proof of Theorem 2]).
Repeated applications of [19; Theorem 2.2] allow us to assume that
Z — Ϋ is a union of handlebodies. One component of dY is dW. One
complementary domain of dW in Z contains Y. Denote the closure
of this domain by W*.

We have 9W* = dW and W* is simply Y with handlebodies sewn
to all components of dY except dW in such a way as to give the
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following property: Every loop a in BY — dW bounds in W*. For,
we know that a bounds a singular surface F in Z. Since every
loop in 3Ni+2 bounds in Nί+1 — Nι+3, and since dNi+2 separates dNi+3

from 8Ni+1, we can cut F off on dNi+2 &nd replace F by a singular
surface lying entirely in W* and bounded by a.

Since 3W* — dW, we can remove W from C and sew in W*,
using the identity map: dW* —> dW as the attaching map. If
{Wlf ••, TFJ are the components of C Π Ni+ί, we can repeat this
process for each Wk, I ^ k ^ n. This creates a compact, orientable
3-manifold M which has been obtained from C by removing from C
the interiors of {Ql9 •• ,QTO}, components of C Π ΛΓί+3, and replacing
them by handlebodies {ίiΊ, , Hm) to satisfy a certain homology
condition. Namely, if H3 is a replacement handlebody, Qό is the
component of C Π ΛΓW that Ho replaces and Wk is the component of
Ni+ί containing Qjf then every loop in H3 bounds in W*.

We can define a map /: M —> C by first letting / be the identity on

M- I) {fly 11 ^ i ^ m} - C - U(4 | l ^ 3 ^ rn) .

The map can be extended to the handlebodies Hό as in the proof
of Lemma 1 (c4) so that each Hά is carried by / into a component
of Ni+1 Π C Since each Qά contracts in C and has connected boundary,
every loop in C is homotopic to a loop in C — U {Qj 11 ^ j ^ m}. This
says that /* and /# are surjections.

To show that /# is one-to-one, let α be a loop in M so that fa
bounds in C. Since loops can be homotoped off handlebodies, we
can assume a lies in M — U {H3\l ^ j ^ m}. Since / α bounds in C,
/ α is homologous in C — U {Q̂  11 ̂  i ^ m} to a sum of loops on
U {dQj\l <L j ^ m}. Thus a is homologous in M to a sum of loop on
U {dHj\l ^ j ^ m}. But this means that α bounds in M.

To show that ker/* is perfect, assume that β is a loop in
Λf - U {Hό 11 ̂  j ^ m} so that //3 shrinks in C. This says that fβ
is one boundary component of a singular disk with holes in
C — U {Qj 11 ^ i ^ m} whose other boundary components lie in
{J{dQj\l <* j ^ m}. Thus β is one boundary component of a singular
disk with holes in M — U {iϊ̂  11 ̂  j ^ m) whose other boundary com-
ponents lie in \J{dHs\ 1 ^ i ^ m}. But each of these other boundary
components bounds in the W* it lies in. Thus β bounds a singular
surface E in M so that generating curves for π^E) are mapped into
U {W*\l ^h^n}. But each W* is mapped into Wk by / and each
Wk contracts in C. Thus β is a product of commutators of elements
in ker/*. This says that ker/* is perfect.

THEOREM 1, Let X be a compact, generalized Z-manifold whose



GENERALIZED THREE-MANIFOLDS 35

singular set S is ^-dimensional. Let M be the open Z-manifold
X — S. Then, the following statements are mutually equivalent:

(A) X is the cell-like image of a compact (necessarily closed)
3-manίfold;

(B) M embeds in a compact S-manifold;
(C) For some compact YdM, M — Y embeds in R\

Proof We consider first the implication from (A) to (B). If N
is a closed 3-manifold and f:N-*X is a cell-like surjection, then /
is a closed mapping and

f\:N-f-\S) >X-S = M

is a cell-like, closed surjection between open 3-manifolds. Since the
restriction of / to the inverse image of each open subset of X
induces a T^-isomorphism, for each xeM the cell-like continuum
f~\x) has arbitrarily tight open neighborhoods U such that each of
U and U — f~\x) is connected and simply connected. By Theorem
1 of [10], for each xeM9f~\x) has an arbitrarily tight compact,
contractible 3-manifold neighborhood H for which

H _ f-i(x) ^s2x [0, 1) .

By H. Kneser's Finiteness Theorem (pages 252-255 of [7]), there
are only finitely many xeM for which f~\x) fails to be cellular
in N.

Now, as in Cor. 2.1 of [10], we can identify to a point each of
these noncellular point-inverses to obtain a closed 3-manifold K
differing from N by finitely many surgeries, each of which replaces
a fake 3-cell in N by a genuine 3-cell. There is still a cell-like
surjection g:K—>X, but now g~\x) is cellular whenever x&S. By
[1] K — g~\S) ^ M, so that M embeds in the compact 3-manifold K.
(In fact, g can be approximated by a cell-like mapping h so that
h"\x) is a single point whenever x&S. See [1] and Theorem 1 of
[5].)

Now, to show "(B) =* (C)", we suppose that M embeds in a
compact (without loss of generality, closed) 3-manifold K, By Lemma
1 (c3), for some compact YXCLM, M — Yί is orientable and thus lifts
homeomorphically to the orientable double covering of K. By [8],
for some compact Y2c:M — Yl9 M — (Yx U7 2) embeds in R3. Hence the
required Y is Yλ U Y2.

For the claim "(C) =» (A)", we suppose that for some compact
3-manifold Y c M there is an embedding

h:M- Ϋ >S* ,
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where h extends to an embedding of a bicollar neighborhood of dY.
Let N be the closed 3-manif old formed by glueing Y onto the image
of h, via fe | a r . Identifying to a point each compact component of
(S3 — Image h) yields a surjection

f:N >X' ™X .

As in part (c2) of Lemma 1, each point-inverse of / is acyclic over
Z in the sense of [13]. Since X1 is locally contractible, Theorem 3
of [13] implies that each point-inverse of / has property 1 — UV.
This, combined with their acyclicity, proves that each is cell-like.
Hence, / is cell-like.

3* Connections with the Poincare Conjecture* If the
Poincare Conjecture is false, then there is a compact, contractible
3-manifold that is not homeomorphic to a 3-cell. Such an object is
called a fake 3-cell and must have a 2-sphere as its boundary. If a
fake 3-cell exists, then (as is well known) a counterexample to (GM)
with one singular point can be constructed by taking an infinite,
disjoint, null sequence of 3-cells in the 3-sphere that converge to one
point, and replacing each by a fake 3-cell. In [3; Theorem 3] it is
shown that the existence of fake 3-cell implies the existence of a
counterexample to (GM) with one singular point and whose manifold
set is irreducible (i.e., every 2-sphere bounds a 3-cell).

Assuming the existence of a fake 3-cell, Theorem 2 below builds
a counterexample to (GM) with one singular point and whose manifold
set is an acyclic, monotone union of handlebodies. Thus, simplifying
assumptions on the manifold set of a 3-gm do not seem to avoid
the Poincare conjecture. We do not know whether an example can
be constructed with the properties given in Theorem 2 and with a
uniform bound on the genera of the handlebodies. The manifold set
of the example in [3] is a monotone union of compact 3-manifolds
each bounded by a torus.

THEOREM 2. If fake 3-spheres exist, then for some acyclic,1 mono-
tone union M of handlebodies, the one-point compactification M is a
generalized Z-manifold, yet M is not the cell-like image of any
compact Z-manifold.

Proof, Let Σ be a closed, simply connected 3-manifold not
homeomorphic to S3. Since Σ is closed and orientable, there are
handlebodies Kl9 K2 with Kλ U K2 = Σ and

dK, = ^ n JSΓ2 = dK2 .

Using [15; Theorem 3], Mean be constructed to be contractible.
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(For example, take K± to be a regular neighborhood of the 1-skeleton
of a triangulation of Σ, and let K2 = Σ — Kx.) Since πλ{Σ) — {1},
Lemma 1 of [15] yields a homeomorphism h of Σ onto I7 that is
isotopic to the identity, and for which the inclusion

is homotopic to a constant.
Hence, the continuum

X = Γ| hn(Kλ)

is cell-like and is defined as a nested intersection of handlebodies
hn(K^), where the superscript denotes iteration of h. Since some
self homeomorphism of Σ takes Kx into Σ — Kx (and hence X into
Σ — X), two copies of the open set

U= Σ - X

cover Σ. Further U is acyclic, by cell-likeness of X and duality. By
Corollary 1 of [14], U fails to embed in S\ even though it is the
monotone union of handlebodies h%(K2). (We remark also that the
one-point compactification U of U is topologically Σ with the cell-like
set X identified to a point. Hence, U is a generalized 3-manifold.
M will be a kind of "connected sum" of infinitely many copies of U.)

We need some technicalities before defining M. Let

V = (dA2 x A2) U (A2 x {q}) ,

where qedA2. ( F is a solid torus with 2-disk attached along a
longitudinal simple closed curve.) Wedge an interval J onto V at a
point of 3z/2 x (dA2 — {g}), and denote by P the resulting polyhedron.
Let g be a PL embedding of P into Σ so that flπX-X') consists of the
other endpoint of J.

Let

p: T > Σ - g(8A2 x A2)

be the universal covering of our homotopy solid torus. Put

Y = XU g[(dA2 x A2) U J]

and define

Λf - p-\Σ - Γ) .

Since X is a nested intersection of handlebodies, the inclusion

Σ -Y >Σ - g(dA2 x A2)
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induces a surjection on fundamental groups. Hence, M is connected.
(M is the covering of Σ — Y corresponding to the commutator sub-
group of its fundamental group.)

Attach a 3-cell Q to the two-point compactification of T along
its 2-sphere "boundary" to obtain a compact generalized 3-manifold
T* with the homotopy type of S\ Then M is obtained from T* by
identifying to a point the cell-like set

Q U p-\X U g{J)) .

It follows that M is acyclic, and that M is a generalized 3-manifold.
We verify next that M is a monotone union of handlebodies.

Since any covering space of an open handlebody is a monotone union
of handlebodies, it suffices to show that Σ — Y is a monotone union
of handlebodies. First, note that cutting Σ — Y along g(22x{q}) yields

Σ - X - g(P) ** Σ - X ,

which as a monotone union of handlebodies, is irreducible. Hence,
Σ — Y is irreducible. Now let Z be a given compact 3-polyhedron
in I7 — Y, with each component of Z a compact 3-manifold. As in
§2 of [11], apply simple moves to Z in Σ —Y to obtain a simple ZQ.
(That is, cut Z along properly embedded 2-disks, fill in spherical
holes, add 2-handles, and run tubes to join up with 3-cell components,
until no more of these "moves" can be done nontrivially. See [11]
for details.)

We claim that Zo is a 3-cell. If not, then Lemma D of [11]
implies that each component of dZ0 is incompressible in Σ — Y and
none is a 2-sphere. Then, using irreducibility of Σ —Y and standard
"cut and paste", ZQ can be isotoped to miss g(A2 x {q}). Thus, the
interior of some handlebody in Σ — X — g(P) contains the isotoped
ZQ. This is a contradiction, since no handlebody contains an incom-
pressible closed surface. Hence, ZQ is a 3-cell. Theorem 1 of [11]
then gives a handlebody in Σ — Y containing Z.

Now suppose that M were the cell-like image of a compact 3-
manifold. Then by Theorem 1, there is a compact CczM and an
embedding of M — C into Rύ. But only finitely many components of

p-\Σ - X - g{P))

can intersect the compact set C. Thus, most such components embed
in i?3. Since p embeds each such component, each is homeomorphic
to Σ — X. This contradicts the fact that Σ — X fails to embed in
i?3. The proof is complete.

ADDENDUM 1. Any fake 3-spheve Σ contains a continuum Y
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(with the "shape" of a circle) such that the covering space M of
Σ — Y corresponding to the commutator subgroup of πx(M —Y), has
the properties claimed in Theorem 2.

ADDENDUM 2. // M is the open Z-manifold constructed in the
proof of Theorem 2, then the fundamental group of each connected,
open subset of M is torsion-free.

Proof. It suffices to show that if £/cT* is connected, open,
and either contains the cell-like set

or is disjoint from it, then π^U) is torsion-free. In the latter case,
U Π Q = 0 and hence each compact subset of U embeds in the con-
nected sum of finitely many copies of Σ, which is again a homotopy
3-sphere. It is well-known (Theorem 31.2 of [17]) that the funda-
mental group of no open, connected set in a homotopy 3-sphere can
have torsion in its fundamental group. In the former case, some
neighborhood R of Q in U is simply connected and has frontier a
bicollared 2-sphere. Hence,

where U — R is an open set disjoint from Q, so that the previous
argument applies.

Theorem 3 presents a condition on a 3-gmI with O-dimensional
singular set sufficient for X to resolve. The condition asks that each
compact subset of the manifold set of X should embed in a 3-
manifold in a manner that reflects the local simple connectivity of
X. (There are also some "irreducibility" requirements.) This is used
in Theorem 4 which, assuming the Poincare conjecture, establishes
another condition sufficient for X to resolve. (Namely, there should
be a "full" set of disjoint surfaces with nice properties, properly
embedded in but not separating a tight neighborhood of the singular
set.) Corollaries 1 and 2 show what positive results can be obtained
from those portions of the Poincare Conjecture that are already
known.

THEOREM 3. Let X be a compact, generalized Z-manifold whose
singular set S is O-dimensional. Let M be the open 3-manifold
X — S. Suppose that for some expanding sequence

Ko c Kλ c K2 c

of compact 3-manifolds exhausting M the following is true: For
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each n^l, the inclusion X — Kn —> X — Kn_x is homotopic to a
constant; for each n ^ 2 there is an embedding

h.:K. >NΛ,

where Nn is a closed 3-manifold that is separated by each com-
ponent of hn(dKn), where for n ^ 3 each component of Nn — hn(Kn_2)
is irreducible (For n = 2, we assume only that each component of
N2 — h2(K^) is irreducible), and the inclusion

Nn - hn(K%) > Nn - hn(Kn_λ)

componentwise induces the trivial πx-homomorphism. Then for each
n^2, some homeomorphism Φn: Nn —> Nn+1 extends

Further, M embeds in N2, and for some n, M — Kn embeds in /?3.

Proof We collect some facts for later reference. First, since
each loop in X — Kn contracts in X — K^-^n ^ 1), we conclude that
each component of M — Kλ is orientable. In fact, for n ^ 2, each
component of Nn — hJJC^ is orientable since by the above this is
true of hn(Kn — iQ, since each component of hn(dKn) separates Nn,
and since each loop in Nn — hn(Kn) is contractible in Nn — hn{Kn_^).
Second, each component of hn{dKn_τ) separates Nn9 for 0 ^ i ^ n — 1.
For such a component F (considered as a 2-cycle over Z) is homo-
logous in hn(Kn — Kn_i_^ to some 2-cycle in hn(dKn), and hence is
homologous to zero in Nn — hn(Kj).

We now show that for n ^ 2 the inclusion

Nn - hn(Kn^) > Nn - hn(Kn_2)

componentwise induces zero on πλ. For, since each component of
hn(dKn) separates Nn, a given loop in Nn — hn(Kn_^ is homotopic to
a product of finitely many loops each conjugate to a loop in hn(Kn — Kn_^)
or to a loop in Nn — hn(Kn). Each loop of the latter type is con-
tractible in Nn — ftnCδΓn_i) by explicit hypothesis. Each loop / of
the former type contracts in Nn — hn(Kn_2) as follows: / ' = h*\f) is
a loop in Kn — Kn_λ and thus / ' contracts in X — Kn_2; use this to
homotope / ' in Kn — Kn_2 to a product of conjugates of loops in dKn;
apply hn to this last statement to homotope / in hn(Kn — Kn_2) to
a product of conjugates of loops in hn(dKn) (which then contract in

Now, we show how to extend φn to a homeomorphism Φn:Nn-^
Nn+I(n^2). Let C be a component of Nn-hn{Kn^). Then dC =
C Π hn(Kn_^) is connected and C is irreducible. It suffices to extend
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ΨΔBO to a homeomorphism of C onto the (irreducible) component C*
of Nn+1 - K+ι{Kn_ύ with δC* = φn(dC). By Lemma 2 of [12], it is
enough to show that <pn \ dC extends to a mapping C ->C* that induces
a TΓi-monomorphism. Thus, we fix basepoints in dC and 3C* and
decide how to map a given loop / in C to one in C*. (The map is
thus defined between the 1-skeleta. The extension to the 2-skeleta
follows from the fact that the definition is invariant for the homo-
topy class of /. Asphericity completes the job.)

Now, as in our "first fact" above, / is homotopic in C to a loop
/ ' in hn{Kn - Kn_x). We define

This definition is independent of choice of /', and is well-defined
on the homotopy class of /, by our proof's second paragraph. To
show that Φ'n\0 induces a ^-monomorphism, consider a loop / ' in
hn(Kn — Kn_x) for which hn+1 © h~\f) — f" is a contractible loop in
C*. Then / " is homotopic in hn+1(Kn — JKΓΛ_1) to a product of con-
jugates of loops in hn+1(dKn). Applying hnoh~\x to this last statement
shows that / ' is homotopic in hn(Kn — Kn_λ) to a product of conjugates
of loops in hn(dKn). Since each loop in hn(dKn) contracts in Nn —
hn{Kn_-ΐ), f contracts in C as desired. Hence, the required homeo-
morphism Φn exists for n ^ 2.

Finally, we define an embedding F:M—>N2 by

F\Kn = Φ^ - o 0 - i o φ~χx o h n + 2 \ K n ( n ^ 2 ) .

Our last conclusion is immediate from Theorem 1.

THEOREM 4. Let X be a compact, generalized Z-manifold whose
singular set S is Q-dimensional. Let M be the open Z-manifold
X — S. Suppose that for some expanding sequence

of compact Z-manifolds exhausting M the following is true: For each
n ^ 1, the inclusion X — Kn ^ X — Kn_x is homotopic to a constant;
for each n ^ 1 and each component C of X — Kn, dC is connected
and there exist disjoint orientable, compact surfaces

Su - - , S9Jg(C) - genus dC - 1 - \ UpC)
\ /ml

in C — S such that C — U St and each dS3 — S, Π dC are connected.
Then if the Poincare Conjecture is true, M embeds in a compact
Z-manifold and hence X is the cell-like image of a closed Z-manifold.



42 MATTHEW G. BRIN AND D. R. McMILLAN, JR.

Proof. (Unless specified otherwise, the index i is always un-
derstood to range over the values 1, 2, , g(C). The correct choice
of C should be clear from the context.) As in the proof of Theorem
3, each component of M — Kλ is orientable. By taking a subsequence
of the Kn's, if necessary, and reindexing, we assume that (for n i> 0)
the union of all the S/s associated with the components of X — Kn

is contained in Kn+1.

For each n^2 and each component C of X — Kn, let Tn{G) be
an associated handlebody disjoint from X with dTn{C) ^ 3C. (If
C Φ C, we choose Tn(C) disjoint from Tn(C).) For fixed n ί> 2 and
component C of X — Kn, attach Tn(C) to K along its corresponding
dC via a homeomorphism that induces a bijection between the union
of the boundaries of a complete set of cutting disks for Tn(C) and
the components of U dSt. (Note that dC — U dSi is connected.)
Denote the resulting closed 3-manifold by Nn and let hn be the
inclusion of Kn into Nn.

We must verify the hypotheses of Theorem 3. Towards this
goal, we construct some mappings with degree one. Let C be a
component of X — Kn(n >̂ 2). Then, some mapping

UaiC >Tn(C)

extends the identity dC -*dTn(C), and hence induces a TΓi-surjection.
To define fntC, we first send each Si onto the cutting disk of TJC)
with the same boundary by squashing an appropriate finite graph in
Si to a point. Next, we extend the map to take a bicollar neighbor-
hood of each Si to a bicollar neighborhood of the corresponding
cutting disk in a level-preserving way. Finally, we extend to all
of C by mapping C minus its bicollar neighborhoods into Tn(C)
minus its bicollar neighborhoods (a 3-cell) by the Tietze Extension
Theorem.

Now let Tn(CQ) be a component of Nn — hn(Kn), and let B be
the component of Nn — hn{Kn_^ containing Tn(C0). Denote by Br the
component of X — Kn__1 containing Co. Then, by piecing together all
the fntC for which CCJB' , we obtain φ\ B' —> B that extends the
identity on B' Π Kn, and induces a consistent diagram

ψ\

The top inclusion is homotopic to a constant and the vertical arrows
induce TΓi-surjections. Hence, Tn(C0) ^ B induces zero on πlf as
required.
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It remains only to show that each component of N2 — h2(K^ is
irreducible, and that for n ^ 3 each component of Nn — hn(Kn_2) is
irreducible. First, using the result of the previous paragraph and
the hypothesis that X—Kj

cz^X—Kj_1 is homotopic to a constant for
each j ^ 1, one easily verifies that for fixed n ^ 1, each inclusion

Nn - K(Kn_k) <-—*Nn- /αit-.-i) , k = 0, 1, ., n - 1 ,

componentwise induces zero on πx. (Use induction on k.)
In the following, let either (n, k) — (2, 1), or k = 2 and n ^ 3.

Suppose that a 2-sphere F in Nn — hn(Kn_k) is given. Then by the
above, F separates the component of Nn — hn(Kn_k) containing it.
Since each such component has connected boundary, F bounds a
compact 3-submanifold L of Nn — hn(Kn_k). Since dL is simply con-
nected,

induces a πv-monomorphisrn. Hence L is simply connected. Since dL
is connected, L is (modulo Poincare Conjecture) a 3-cell. Thus, each
component of Nn — hn(Kn_k) is irreducible. The proof is completed
by applying Theorem 3.

COROLLARY 1. Assume all the hypotheses of Theorem 4. In
addition, suppose that each Kn is a handlebody of genus k or less.
(Hence, S is a single point.) Assume that each homotopy ̂ -sphere
of genus k or less is a genuine 3-sphere. Then, for some embedding
F: M —> S3, X is homeomorphic to the quotient space of S3 obtained
by crushing to a point the cell-like set S3 — F(M).

Proof. We note, in particular, that a byproduct of the recently
proven Smith Conjecture (no reference available) is that our corollary
applies for k = 2.

We simply work through the proof of Theorem 4, observing
that (even without the full strength of the Poincare Conjecture)
-Λî  ̂  S3 for each n ^ 2. For, the union of Kn and the surfaces
associated with X — Kn embeds in S3. Thus we can construct (in
the manner used to obtain the fn,c'& in Theorem 4) a mapping / : S3 —>
Nn with f\f-i(κn) & homeomorphism. Such a mapping clearly induces
a TΓi-surjection. Hence, Nn is a homotopy 3-sphere of Heegaard
genus <; k. Thus, Nn ^ S3 and the manifolds considered in the last
paragraph of the proof of Theorem 4 are irreducible, as required.

The proofs of Theorems 3 and 4 show that M embeds in N2 ^ S3.
The proof of "(C) => (A)" in Theorem 1 (with Y = 0) shows that X
is the cell-like image of <S3 in the manner claimed.
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COROLLARY 2. Let X be a compact, generalized 3-manifold whose
singular set S is a single point. Let M he the open 2-manifold
X — S. Suppose that for some expanding sequence

of compact ^-manifolds exhausting M, each 3Kn is a torus and Kn

embeds in S\ Then for some embedding F: M —> S3, X is homeo-
morphic to the quotient space of S3 obtained by crushing to a point
the cell-like set S3 - F(M).

Proof. Our hypotheses guarantee that each Kn is topologically
either a solid torus (^ Sι x A2) or a knot space (S3 minus the interior
of a solid torus with knotted core). We assume without loss of
generality that each inclusion X — Kn —> X — Kn^(n ^ 1) is homotopic
to a constant. As in Lemma 1 (cl) we also arrange that each inclusion

itt: dKn > Kn+1 - Kn_, (n ^ 1)

induces zero on H1 (first homology).

Using the exact homology sequence of the pair (X — Kn_ί9 X — Kn)
and excision, we have:

Let en embed Kn in S\ Since in induces zero on H1 and since

en+1(dKn) - — S 3 - en+1(Kn)

induces a surjection on Hlf it follows that

S3 - en+i(Kn) — S3 - eΛ+1(Jt-i)

induces zero on Hλ. Hence, for n ^ 1,

and this last group is Z. Since H^dKJ = Z x Z and since dKn <=->

X ~ Kn induces a surjection on Hι for n >̂ 1, there is, for each

n ^ 1, a simple closed curve in 3Kn which, when considered as an

integral 1-cycle, is homologous to zero in X — Kn (and so, by Lemma

1, in M - Kn), but not in dKn.

By the previous paragraph, there is for each n ^ 1 an orientable
compact surface Fn properly embedded in M — Kn such that M —
Kn — Fn and 3Fn are connected. Returning to the proof of Theorem
4, we need only show that each Nn ^ S\ Let gn embed Kn U Fn in
Ss. Then, as in Corollary 1, it follows that Nn is a homotopy 3-
sphere. If Kn is a solid torus, then Nn has Heegaard genus <; 1,
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and thus is S3. If Kn is a knot space, then S3 — gn(Kn) must be a
solid torus. Further, gn(dFn) is then homologous (and hence homotopic)
to zero in Ss — gn(Kn). Hence, the union of Kn and a 2-disk attached
along 3Fn embeds in S\ It thus follows that Nn *** S3 in this case
also. The proof is now completed as in Corollary 1.

4* The torsion-free case: resolution modulo Poincare Con-
jecture* Theorem 4 of §3 is used to establish Theorem 5.2. The
latter assumes the Poincare conjecture to show that a 3-gm X
with O-dimensional singular set S resolves if S does not have arbi-
trarily small neighborhoods whose fundamental groups have torsion.
This condition is shown to be necessary by Theorem 5.1. We note
that [3; Theorem 1] shows that this "no torsion" assumption is not
needed if S has arbitrarily small neighborhoods bounded by tori.

LEMMA 3. Let X be a compact generalized 3-manifold whose
singular set S(X) is O-dimensional. Let Ni9 1 ^ i < °o, be a nested
sequence of neighborhoods of S(X) as given in the conclusion of
Lemma 1. Let C be a component of some Ni9 i ^ 2. Assume that
every closed neighborhood Nf of S(C) in C with 2-manifold boundary
has no torsion in πλ(N'). Then there exists a closed neighborhood E
of S(C), not necessarily connected, with C Π Ni+ι c E c C and so that
for each component E' of E, dE' is a connected 2-manifoldf and there
exist pairwise disjoint, compact, orientable surfaces {Fl9 •- ,Fg{E,)},
g(E') = genus (dE'), embedded in E'- S(E') such that E' - U
{Fill ^ j S g{E')} and each dFό = Fό Π dE' are connected.

Proof. In order to motivate the proof and to establish an outline,
we will state and prove a simpler theorem that deals entirely with
3-manifolds. Portions of the proof will be referred to in the proof
of Lemma 3. (A different proof of this result is given by the second
author in [9; Lemma 1].)

LEMMA 3' (McMillan). Let Mbea compact, orientable, irreducible
Z-manifold with nonempty, connected boundary. Assume that every
closed, orientable 2-manifold embedded in M separates M. Let N
be a compact, connected 3-manifold embedded in M. Assume that
i*: π^dN) —> πλ(M) is trivial. Then N is contained in a handlebody
in M.

Proof of Lemma 3'. Since every loop in 3N shrinks in M, dN
can be completely compressed in M until what is left of the boundary
is a union of 2-spheres. The sequence of compressions that accom-
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pushes this can be thought of as a sequence of modifications to N.
Let N(j) denote the result of the first j of these modifications. If
a compression of dN(j) is to take place along a disk contained in
N(j), we may say that the compression removes a l-handle from
N(j). If a compression of dN(j) is to take place along a disk con-
tained in the closure of the complement of N(j) in M, we may say
that the compression adds a 2-handle to N(j). Removing a l-handle
from N(j) is accomplished by removing from N(j) the "half open"
3-cell Cj+1 = [B2 x (0, 1)] which is embedded in N(j) so that

Cj+1 Π 3N(j) = [dB2 x (0, 1)] .

Adding a 2-handle to N(j) is accomplished by adding to N(j) the
3-cell C i+1 = {B2 x [0, 1]} which is embedded in M so that

Cj+1 Π N(j) = {dB2 x [0, 1]} .

In either case we will refer to Cj+1 as the l-handle or 2-handle.
It is possible that a 2-handle may pass through space in M

occupied by a previously removed l-handle. In this case we require
that the boundary of the 2-handle be in general position with respect
to the boundary of the l-handle. We make no special requirements
when a l-handle consists partly of portions of an N(j) that are
contained in some previously added 2-handle. We always require
that the annulus dB2 x (0, 1) removed from dN(j) by the (j + l)st
compression be disjoint from all previous 1-handles or 2-handles
involved in the first j compressions.

In order to reconstruct N from the fully compressed state, it
is necessary to remove the 2-handles and add the 1-handles. If
instead the 2-handles are left in place and the 1-handles are restored
(even though they intersect the 2-handles), a submanifold N' of M
is obtained that contains N. Since N is connected, N' is connected.

If a complementary domain of Nf in M had two differed; com-
ponents of dN' in its closure, then neither of those boundary com-
ponents would separate M. Since everything in sight is orientable,
this would violate a hypothesis. Thus the complementary domain of
JV' in M containing dM contains only one component F of dN' in its
closure. Let AT* be the closure of the complementary domain of F
in M containing N'. We will show that iV* is a handlebody.

Our aim will be to find a collection of pairwise disjoint simple
closed curves {Jlf , Jn) on 3iV* so that each Jk shrinks in AT* and
so that each component of dN* — U {Jk \ 1 ^ k <£ n) is planar. It is
then easy to show, using the irreducibility of M and the presence
of dM, that N* is a handlebody.

The boundary of iV* is made of pieces of three possible origins:
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Portions of that part of dN untouched during the entire compression
process; portions contained in annuli of the form dB2 x (0, 1) that
were removed and later restored as part of the boundaries of 1-
handles; portions contained in disks of the form B2 x 3[0, 1] that
were added when 2-handles were added. Our collection of simple
closed curves on dN* will draw from two sources. First, our collec-
tion will include all boundary components of annuli of the form
3B2 x [0, 1] along which 2-handles hit the appropriate dN(j), and all
boundary components of closures of annuli of the form dB2 x (0, 1)
along which 1-handles hit the appropriate dN(j). Secondly, our
collection will contain all simple closed curves in dN* arising from
intersections of those parts in the boundaries of 2-handles of the
form B2 x 3[0, 1] with those parts of the boundaries of 1-handles of
the form dB2 x (0, 1). By our general position assumption, these
intersections are unions of simple closed curves.

We now have our collection {Jlf , Jn}. Each Jk shrinks in N*
since it is contained in a 3-eell in N*. There are enough curves in
{Jl9 , Jn} so that no component of dN* — U {Jk | 1 ^ k <Ξ n} intersects
two or more of the sources of dN* as described in the last paragraph.
Since dN was completely compressed to spheres by the addition and
subtraction of handles, the components of dN* — U {Jk | 1 ^ k ^ n}
coming from the uncompressed part of dN are all planar. The por-
tions from the boundaries of 1-handles and 2-handles are subsets of
annuli and disks and therefore are planar. This completes the proof.

Proof of Lemma 3 (continued). All of the action of this proof
will take place inside C. For this reason and to simplify notation,
we will limit our scope and renumber the neighborhoods of S(X).
We will regard C as the only component of some neighborhood called
No and what used to be C f] Ni+lf C Π Ni+2, will now be called
Nu N2, . This notation which will be maintained throughout the
rest of the proof, has the secondary advantage that it frees the
letter i for general use.

In order to imitate the proof of Lemma 3', we must define what
we mean by compression. Ordinarily, compression removes an annulus
from a surface and adds two disks. Our compression will remove
an annulus and will add two surfaces with connected boundary but
of unknown genus. Thus our handles, these surfaces cross an in-
terval, will have bumps. We will call them jagged 1-handles and
jagged 2-handles. Conditions will be placed on them to make them
look algebraically like real 1 and 2-handles. We will also place strict
requirements on how they may intersect. Because of this we will
have to give partial definitions of first jagged 1-handles and then
jagged 2-handles before we can finish listing all their properties.
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Lastly, we will require that new jagged handles stay away from
the high genus surfaces introduced by old jagged handles. This is
the source of the surfaces Gt in the following description.

Let N be a closed neighborhood of S(C) in C containing N2 so
that each component of dN is a 2-manifold. We do not require that
N be connected. Let {Gu •••,(?»} be a pairwise disjoint collection
of compact surfaces in dN so that each 3G{ is connected. Assume
that

F = dN- U{G*|1 ^ ί ^ m)

has nonzero genus. Let J be a simple closed curve in F so that [J]
is not in the normal closure of the elements [dGt] in πt(F). Assume
that J bounds a surface S in N. We will put three requirements on
S, one to be described now, and two others to be described after
the definition of a jagged 2-handle. We require of S:

( i ) S is compact, orientable and properly embedded in N — N2

with dS = J; (ii) and (iii) later. A jagged 1-handle in N with core
S is a closed regular neighborhood U of S in N of the form
S x [-1, 1] where

S = S x {0} , and U Π dN = J x [ - 1 , 1]

is an annular regular neighborhood of J in dN, We can compress
N along S by removing S x ( — 1,1) from N.

Note that this removes the open annulus J x ( — 1,1) from dN
and adds the surfaces S x {±1}. We can remove several jagged 1-
handles from N in sequence if, after each compression, we add to
the collection {GJ the surfaces S3 x {±1} where each S3 is the core
of a jagged 1-handle.

Now let N be obtained from Nλ by removing a sequence of jagged
1-handles. Let {(?* (1 <£ i <£ 2m} be exactly the collection of surfaces
{Sy x {±1}|1 ^ i ^ m}, where the S3 are cores of the jagged 1-
handles. Let F and J be defined as above. Assume that J bounds
a surface S with the following properties:

(iv) S is compact, orientable and properly embedded in C — N
with dS = J;

. (v) For all j , 1 <; j ^ m, each component of S Π (S, x [ — 1, 1])
is of the form Ss x {£}, ί e( —1, 1); and

(vi) S - U {S5 x [-1, 1] 11 ^ y g m} is a disk with holes.
Then a jagged 2-handle with core S attached to N along J is a closed
regular neighborhood U of S in C — N of the form S x [ — 1, 1] where
S — S x {0} and ί7 Π 3iV = J x [ — 1, 1] is an annular regular neigh-
borhood of J in dN and so that each component of U f] (S3 x [ — 1, 1])
is of the form S, x [α, 6], - 1 < a < h < 1 for all j , 1 ^ j ^ m. We
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can compress N along S by adding S x [ — 1,1] to N.
Note that this removes the open annulus J x ( — 1,1) from dN

and adds the surfaces S x {±1}. From now on we will look at
neighborhoods of S(C) obtained from N± by a sequence of compres-
sions that consist of removing jagged 1-handles and adding jagged
2-handles. If N(k) represents the result of applying to JVj. a sequence
of k compressions, then the collection of surfaces {Gt | 1 <; i <£ 2k} will
consist of the introduced surfaces {S3- x {±1}|1 ^ j ^ k}, where the
Sj are the cores of the jagged handles used in the compressions.
The surfaces F(k) will be defined as

F(k) = dN(k) - U {Gt\l ^ i ^ 2k} .

We can now state the two remaining requirements of cores of
jagged 1-handles. Let N(k), {GJ and F(k) be as described in the last
paragraph. Let J, S and U = S x [ — 1,1] be as in the definition of
jagged 1-handle. Let

{Sit 11 ^ j \ < < j r ^ k}

be the cores of all the jagged 2-handles added to get N(k). We ask
that S satisfy the following additional requirements:

(ii) Each component of S Π (Sjt x [ — 1, 1]), 1 ^ i ^ r, is of the
form Sj. x {t}, ί e ( - l , 1); and

(iii) every loop in S — U {Sj. x [ — 1, 1] 11 ^ ΐ ^ r} must shrink
in JSΓX mod the loops 8Sίt, 1 5* i ^ r.

We can now define a complexity of each JV(&), denoted KN(k),
to be the sum of the squares of the genera of the components of
F{k). That KN(k) = 0 if and only if F(fe) is a union of planar
surfaces, that KN{k) ^ 0 for all k, and that jBΓiV(A?) < KN(jk - 1) for
all k > 1 are all standard observations.

At this point it is not clear that even one compression can be
performed on Nλ. Most of the effort of this proof will go into
showing that in fact a sequence of compressions can be performed
on JVΊ at the end of which the complexity will be zero. Toward
that end we will prove the following:

CLAIM. Let N(k) be obtained from Nt by a sequence of k com-
pressions, k ^ 0. Assume that KN(k) is greater than zero. Then
there exists a simple closed curve J in F{k) with [J] not in the
normal closure in nxF(k) of [dSό x {±1}], 1 ^ j ^ k, if k > 0, and
there exists a surface Sk+1 bounded by J along which N(k) can be
compressed.

Proof of Claim. We outline the proof.
( I ) Find a loop L in F that satisfies the algebraic requirements
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mentioned above for / and that shrinks in a complementary domain
of dN(k) in Cmod the surfaces {S3 x {±1} 11 g j £ fy.

(II) Modify the complementary domain of dN(k) in C mentioned
in (I) and show that L shrinks in this new domain without the aid
of the surfaces {S, x {±1} 11 ^ j g k}.

(III) Use Dehn's lemma and the loop theorem, or use Lemma 2
and Theorems 1 and 3 of [4] to obtain the J and Sk+1 of the claim.

We are actually going to introduce two modifications of comple-
ments of dN(k) in C. One of them will be an exact counterpart of the
space N' used in the proof of Lemma 3'. However in that proof N'
did not appear until all compressions were done. In the current
proof N' will have a counterpart for each k and these will be used
in several places in the proof. They will be defined in the next
paragraph. The other modification to a complementary domain of
dN(k) in C will have a more temporary use and will be defined later,
when needed.

Let

N'(k) = N, U[ϋ{SSi x [-1, 1] 11 £ i £ r}]

where the Sdi are the cores of the jagged 2-handles as mentioned
above. In words, N'(k) is JVΊ to which the jagged 2-handles have
been added without removing the jagged 1-handles. Observe that
from property (vi) of jagged 2-handles, N'{k) may be obtained from
Nλ by adding spaces of the form Eh x [ —1, 1], 1 ^ i <ί r, where each
Eh is a disk with holes and, for each i,

(Eh x [-1, 1]) n Ή = (βEu x [-1, 1]) .

A useful property of the space N\k) is that every loop in each
of the surfaces Ss, 1 ^ j £ k, shrinks in N\k). For, since Nλ is
contained in N'(k), property (iii) of the definition of a jagged 1-handle
tells us that every loop in that part of the core Sd of jagged 1-handle
that is not in a jagged 2-handle of lower index must shrink in
N'(k) mod the boundaries of cores of jagged 2-handles of index lower
than j . Property (vi) of the definition of jagged 2-handle gives a
similar statement with the roles of jagged 1-handles and jagged 2-
handles reversed. Property (ii) assures us that those parts of cores
of jagged 1-handles in jagged 2-handles of lower index are simply
parallel copies of cores of jagged 2-handles of lower index. Property
(v) repeats the same with role reversal. The statement at the
beginning of this paragraph now follows by induction.

We now attack step I of the outline. Since each component of
Ni contracts in C, every loop in SiVΊ shrinks in C. Since every loop
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in an S3 shrinks in N'(k), it follows that every loop in dN(k) shrinks
in C.

Let

{Gt\l^i£ 2k}

be the collection of surfaces

{Ssx {±1}\1 ^ j£k} .

Let H be the monotone decomposition of C whose only nondegenerate
elements are the surfaces {Gi 11 g i <; 2k}. Let q be the projection
map q: C ^>C/H. Since each surface Gt has only one boundary com-
ponent, qdN(k) is a union of surfaces. By Lemma 1 (c4), each
component of dN(k) separates C. Thus each component of qdN(k)
separates C/H. Since every loop in dN(k) shrinks in C, every loop
in qdN(k) shrinks in C/H.

If it were true that the inclusion of each component of qdN(k)
into the closures of the various components of C/H — qdN(k) induced
monomorphisms on the fundamental groups, then πλ{C/H) could be
obtained by a sequence of free products with amalgamations where
the groups involved in the products as factors would be the funda-
mental groups of the components of C/H — qdN(k) and the amalga-
mating subgroups would be the fundamental groups of the components
of qdN(k). This would imply that the inclusion of each component
of qdN(k) into C/H would induce a monomorphism on the fundamental
groups. This contradicts the fact that every loop in qdN(k) shrinks
in C/H.

Since each component of qdN(k) is a surface, and since there are
only a finite number of points of the form qGιf any loop in qdNik)
can be homotoped in qdN(k) so that it misses all points of the form
qG,L. We can thus find a loop on a component of qdN(k) that misses
the qGi9 that shrinks in the closure of a component of C/H-qdN(k)}

but does not shrink on qdN(k). Since q is one-to-one off the surfaces
Gi, we can call this loop qL. This reflects the fact that there is a
loop L in F(k) which, when composed with q, gives the loop that
we have called qL.

Since each of the surfaces G% has a product regular neighborhood
in C — S(C), and, again, since q has an inverse off the surfaces Gίf we
know that L shrinks in the closure of a component of C — 3N(k) mod
some of the surfaces Gt. This is established by cutting off the
disk bounded by qL on some level of the product neighborhoods of
the Gi as carried over by q. We also know that [L] is not in the
normal closure of the classes [3GJ in πx of the component of F(k)
containing L. This follows from the fact that qL does not shrink
on qdN(k). This completes step I.
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There are now two possibilities, either L shrinks in a component
of N(k) mod some of the surfaces Gt, or L shrinks in a component
of C — N(k) mod the Gt. We will describe in detail the arguments
for steps II and III only for the first possibility. The second
possibility is very much simpler, and at the end of the proof of
the claim we will indicate how the argument that we give should
be modified to handle this case.

Assume that L shrinks in N(k) mod the surfaces Gt. We need
only work in the component of N(k) that contains L, so we will
assume that N(k) is connected for the rest of the proof of the claim.
Since each F(j), 1 5̂  j ^ ft, is a subset of dNl9 L lies in dNx. It need
not be true that L shrinks in N(k) or N^ It is the case that L
shrinks in JV'(ft). We will also describe a new space created from
Ni in which L shrinks. This space is unfortunately not a subset of
C in general, but it does have the advantage of being geometrically
simpler than AT (ft).

Each curve dSjf 1 ^ j <̂  ft, lies on dNx. As before let

{S
Sl,

be the cores of all the jagged 2-handles. Let N(k, 2) be the space
obtained from Nt by adding 2-handles of the form (B2 x [ — 1, l])y.,
1 ^ i ^ r, to JVΊ where each

(B2 x [-1, l])h f)Nλ = (dB2 x [-1, l])y,

is the annular region (dS3 . x [ — 1, 1]) on dN± along which N(jt — 1)
and the jagged 2-handle (Shx[ — 1, 1]) intersect. Contained in N(k, 2)
is a family of surfaces that correspond naturally to the cores of
jagged 1-handles. Let

{ S q ι , •• , S J , l ^ q , < •.. < q s ^ k ,

be the cores of the jagged 1-handles. Let (Sj. x [ — 1, 1]) be a jagged
2-handle that one of the surfaces SQu intersects. Corresponding to
each component (Sh x {ί}) of (Sh x [ — 1, 1]) Γt Squ, introduce a disk
(£). x {ί}) in N(k, 2) and attach it to the surface SQu Π Nt. If this
is done for all jagged 2-handles that SQu intersects, we obtain a
surface in N(k, 2) that we will call TQu, This can be done for the
cores of all the jagged 1-handles. We will have occasion to reverse
this operation later.

We will now show:
(a) The loop L shrinks in iSΓ(ft, 2);
(b) every loop in a surface TQu shrinks in N(k, 2); and
(c) πxN{k, 2) is naturally isomorphic to the subgroup of πλN\k)

that is generated by all loops in Nλ.
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Statement (a) will complete step II. The other two statements will
be used to finish step III.

Statement (a) is equivalent to the statement that L shrinks in
Nx mod the curves {3Sj{ 11 ^ ί ^ r}. Thus, statement (a) will follow
inductively when we demonstrate that the following two statements
are true. First, if Sk is the core of a jagged 2-handle, then L
shrinks in N'(k — 1) moddSk and the surfaces {Sj x {±1} 11 <: j <; k — 1}.
Second, if Sk is the core of a jagged 1-handle, then L shrinks in
N'(k - 1) mod the surfaces {Sό x {±1} 11 ^ j ^ k - 1}. The second
assertion is clear since, in that case, N\k — 1) and N'(k) are identical
and we have already shown that every loop in Sk shrinks in N'(k).
To see the first assertion, let A be the disk with holes that demon-
strates that L shrinks in N(k) mod the G> Put A in general position
with respect to dNλ and remove the jagged 2-handle (Sk x [ — 1, 1]).
This punches more holes in A and all the new boundary components
lie in the annulus dSk x [ — 1, 1].

To show (b), we note that every loop in TQu is homotopic to a
loop in TQu Π Nt. By property (iii), every loop in

τQu n JVί = s f . - u {sJt x [-1, i] 11 ^ ί ^ r}

shrinks in A^mod boundaries of cores of jagged 2-handles of index
lower than qu. But all such curves are trivial in N(k, 2).

We start the argument for (c) by observing that' N± is a subset
of both N(ιk, 2) and N'(k). Let the inclusion maps be

g: N, > N(k, 2) and h: N, > N'(k) .

The map g* is a surjection on πλ. It suffices to show that ker g* ~
ker h*. A loop in ker g* shrinks in N± mod the curves {dSj. \ 1 ^ i ^ r}.
A loop in ker h* shrinks in N± mod the curves {dSά \ 1 ^ j ^ k} (see
the observation at the end of the paragraph in which N'(k) was
defined). We are done if every curve in {dSj \ 1 <J j ^ k) shrinks in
N(k, 2), and if every curve in {dSj. \ 1 ^ i <L r) shrinks in N\k). The
first condition holds because of statement (b) and the definition of
N(k, 2) while the second condition was proven immediately after
N'(k) was defined.

We can now start on step III in earnest. We concentrate on
the fact that L shrinks in N(k, 2). We would like to replace L by
a simple closed curve. However N(k, 2) is not a 3-manifold and the
loop theorem and Dehn's lemma are not available. We will use
Lemma 2 and the results of [4] to complete the proof of the claim.
Since N(k9 2) contains N19 and N2 contracts in N19 we know N2

contracts in N(k, 2). This allows us to conclude from Lemma 2
that there exists a compact, orientable 3-manifold M formed by
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replacing components of N4 by a collection of handlebodies {HΓJ, and
there exists a map f:M-*N(k,2) so that / carries M— U {H3)
homeomorphically onto N(k, 2) — JNΓ4, /* is a surjection on πx, and P,
the kernel of /*, is perfect.

The map / when restricted to M — U {Hό} has an inverse which
we will denote by /. We know that fL is a loop in dM with [fL]
in P. If we let K be the normal subgroup of πλ{3M) generated by
the curves in

{fdGt 11 ^ i ^ 2k} ,

then our choice of L says that [/L] is not in K. By the hypotheses
of Lemma 3, πιN\k) is torsion free. Then, using statement (c)
above and the fact that /* is surjective, we can say that π1N{k, 2)
and πλ{M)jP are torsion free. This allows us to use [4, Theorem 1]
to conclude that there is a simple closed curve J' in a regular
neighborhood of fL with [J'] in P but in K. Thus, J = fJ' is a
simple closed curve in F(k) that shrinks in N(k, 2), and [J] is not in
the normal closure in πj)N(k, 2) of the curves {dGi |1 ^ i ^ 2k}. Since
dN(k, 2) contains F(&), we have that [J] is not in the normal closure
of πxF{k) of the curves {dG, \l^i^2k}. The curve J will be the
boundary of the core of new jagged 1-handle.

Since all of the cores of the existing jagged 1-handles miss ΛΓ2,
all of the surfaces in {TQu 11 ^ u ^ s} have homeomorphic copies in
M — \J{Hj}. Also since every loop in a Tq% shrinks in N(k, 2),
every loop in fTQu represents an element in P in π^M). We also
observe that since N2 contracts in N(k, 2), every loop in fdN2 repre-
sents an element in P. We can now apply [4, Theorem 3] to
conclude that J bounds a compact, orientable surface J" so that T"
is properly embedded in M — fdN2f so that every loop in T repre-
sents an element of P, and so that I" is disjoint from all of the
surfaces fT9u.

The surface T = fT in N(k, 2) - N2 may not intersect the 2-
handles (B2 x [ —1, 1])^ nicely. However, by pushing out radially
from each ({0} x [ — 1, 1]), we can isotop T to a surface Tk+1 for which
each component of the intersection of Tk+1 with a 2-handle is of the
form B2 x {£}, t e( — 1, 1). This can be done so as not to disturb the
surfaces TQu.

We can now apply to Tk+U the inverse of the operation that
turned the surfaces Sqv into the surfaces TQu. This gives a surface
Sk+1 in N(k) that satisfies properties (i) and (ii). Every loop in T'
represents an element of P. Thus, every loop in T and in Tk+1

shrinks in N(k, 2). This says that Sk+1 also satisfies property (iii).
This completes the proof of the claim in the case that L shrinks



GENERALIZED THREE-MANIFOLDS 55

in N(k) mod the G> If L shrinks in C — N(k) mod the Gτ, then a
space similar to N(k, 2) is defined. It is gotten by sewing 2-handles
along the dSQu, boundaries of cores of jagged 1-handles. Surfaces
T5. are also defined but these are all disks. The new space is a
3-manifold and the claim follows using Dehn's lemma and the loop
theorem. This finishes the claim.

Proof of Lemma 3 (continued). We can now let k be an integer
so that KN(k) = 0, i.e., each component of FQc) is planar. The space
N\k) now corresponds to the space N' in the proof of Lemma 3'.
Note that because of the intersections of jagged 1-handles and jagged
2-handles, N'(k) may have fewer components than either Nλ or N(k).
However it cannot have more.

The following steps are identical to corresponding steps in Lemma
3'. From Lemma 1 (c4), we know that every closed, orientable surface
in C — S(C) separates. Let V be a component of N'(k). One boundary
component of V has a complementary domain whose closure E'
contains V but does not contain dC. Other components of N'(k) may
be swallowed up by E', but this does not matter. Since all loops
in cores of jagged handles shrink in N\k), a system of pair wise
disjoint simple closed curves {Kl | 1 ^ i ^ m) exists on dEf so that
each \K[~\ = 1 in π^E') and so that every component of

dE' - Ό{Kl\l<,i^m}

is planar.
Since E' is not a 3-manifold we need an extra argument. Consider

3Ef in limbo and attach 2-handles along disjoint annuli {Kl x
[ — 1, 1] 11 ̂  i <; m}. A complex is formed which embeds in a handle-
body with dEr as boundary. Let

{Kt 11 ̂  i ^ genus(S£")}

be a complete system of meridinal curves for this handlebody. In
π^dE'), these curves are in the normal closure of the curves
{K- 11 ̂  i ^ m}. Thus these new curves shrink in E'. We can now
use Lemma 2 again and use [4, Theorem 3] repeated genus(9JS") times
to obtain the surfaces required in E' in the conclusion of Lemma 3.
There are a finite number of components of N'(k) not contained in E',
and the process of the last two paragraphs can be repeated. The
component Ef may be swallowed up by another component during
this process, but this is also no matter. This completes the proof
of Lemma 3.

THEOREM 5. Let X be a compact generalized 3-manifold whose



56 MATTHEW G. BRIN AND D. R. McMILLAN, JR.

singular set S is ^-dimensional. Consider the statements:
(a) X is the cell-like image of a compact 3-manifold; and
(b) there is a neighborhood U of S so that if N is a neighborhood

of S in U, then π±(N) has no torsion.
Then (a) implies (b), and (b) together with the Poincare Con-

jecture implies (a).

Proof. The forward direction follows from Theorem 5.1 and the
proof of Theorem 1. The reverse direction is given as Theorem 5.2
which uses a hypothesis that is minutely weaker than statement (b).

THEOREM 5.1. Let f be a cell-like mapping of the closed 3-
manifold N onto the Hausdorff space X. Suppose that the closure
S of the set

{x 6 XI f~x(x) contains more than one point)

is zero-dimensional. Then, the fundamental group of each com-
ponent of each sufficiently tight neighborhood of S in X is torsion-free.

Proof. Since each component of f~\S) is cell-like, it follows
from Theorem 3 of [11] that each component of some compact neigh-
borhood U of f~\S) in N is a homotopy handlebody (i.e., a homotopy
3-cell with orientable 1-handles attached to its boundary). In par-
ticular, the fundamental group of each component of U is free. By
Theorem 31.2 of [17], each open connected subset of U has torsion-
free fundamental group. Further f(U) is an open neighborhood of
S in X. Hence, if Vczf(U) is connected and open in X, with Vf] S
both open and closed in S, then the restriction of / to f~\ V)czU
induces an isomorphism between π^f-^V)) andπ^F). Hence, πx(V)
has no elements of finite order.

THEOREM 5.2. Let X be a compact generalized Z-manifold whose
singular set S is ^-dimensional. Assume there is a neighborhood U
of S so that if N is a closed neighborhood of S bounded by 2-manifolds
and NaUf then π^N) is torsion free. Then, modulo the Poincare
Conjecture, X is the cell-like image of a compact 3-manifold.

Proof. This follows from Lemma 3 and Theorem 4. We use this
space to make the following remarks. If every compact generalized
3-manifold X with O-dimensional singular set S admitted a resolution,
then there would be a "loop theorem'' for closed neighborhoods of
S with 2-manifold boundary. It was our hope that an independent
proof of a "loop theorem" would lead to the existence of resolutions.
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The "loop theorem" is obtained for neighborhoods whose fundamental
groups have no torsion from Lemma 2 and the results of [4]. The
torsion free requirement comes entirely from [4]. Lemma 3 shows
how a "loop theorem" can be used to verify the hypotheses of
Theorem 4. If a "loop theorem" without a torsion free restriction
could be found, Lemma 3 would then be valid with its torsion free
hypothesis removed. (See Thickstun's announcement in Bull. (New
Series) Amer. Math. Soc, 4 (1981), 192-194, especially his last Co-
rollary.)

We also note that if the manifold set of X embeds in a compact
3-manifold, then the results of [2] say that it embeds in a closed
3-manifold so that its complement is a nested intersection of unions
of handlebodies. The proof of Theorem 1 then says that there are
arbitrarily small neighborhoods of the singular set which are cell-like
images of unions of handlebodies. The neighborhoods constructed by
Lemma 3 are such neighborhoods.
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