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TENSOR PRODUCTS FOR SL2 (!) II, SUPERCUSPIDAL
REPRESENTATIONS

C. ASMUTH AND J. REPKA

Certain pairs of quadratic extension Weil representa-
tions of SL2(t) have as their tensor product the quaternion
Weil representations. This fact is used to develop a method
for decomposing tensor products of certain pairs of irre-
ducible supercuspidal representations of SL2{ί).

1* The object of this paper is to give decompositions of tensor
products of certain pairs of supercuspidal representations of SL2(ΐ)
where f is a p-adic field of odd residual characteristic. These
tensor products are summands of the quaternion Weil representation.
The second section includes preliminaries concerning the quaternion
Weil representation and its relation to quadratic extension Weil
representations.

The third section sets up the basic mechanism by which the
tensor product summands in the quaternion Weil representation are
analyzed. It ends with what is the central theorem of the paper.
This theorem provides information on decompositions of tensor
products in terms of characters of certain multiplicative subgroups
of the quaternions.

The fourth section is a catalogue of data on characters of multi-
plicative subgroups of the quaternions. It is based on [3] and to
an extent on [5]. Unifortunately, the work in [5] excludes the cases
needed here. For that reason I would like to particularly thank L.
Corwin for a manuscript version [4] which includes some specific
computations for the quaternion case. The computations in [4] and
[5] are similar.

The fifth section gives the decompositions of tensor products
explicitly. The main result of §3 and the data in §4 combine to
produce the end results.

The sixth section is independent of the others. It gives a
(brief) description of how these and other results ([6] and [7]) can
be used to give partial results for the tensor products of pairs
of supercuspidal representations not covered in the above work.
Specifically, we can describe which tensor products contain a con-
tinuous part in their decompositions, and give the multiplicities
explicitly. We can also give the multiplicities for some of the
discrete components.

2* Let ϊ be a p-adic field with odd residual characteristic. Let
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o be the ring of integers and let p denote its prime ideal. Let
K = o/p be the residue class field of order q. Let Q = {ε, π, επ}.
Then for ΘeQ and λ e ϊ x , we obtain a Weil representation T(θ,x)
of SL2(ΐ) with representation space CTilivΊf)). Here C™{k{VΎ))
denotes the space of C-valved compactly supported locally constant
functions on f(i/T). (T(θ, λ) corresponds to D(Φh Ϊ(l/T)) in [10]
where Φ is some fixed character of ϊ+ and Φλ(x) = Φ(xλ).)

Let ^ be the norm map of ϊ(]/~¥) over ί. Let C° •= {ae ϊ(ι/ 0):
z (̂aθ = 1}. From this group we get the decomposition

T{θ, λ) - π τ(θ, λ, ^) ([lo]).

Each T(0, λ, ψ) has the representation space C?(θ, ψ) = {/ 6 CΓ(f(l/^~)):
Vα 6 (7, /(zα) = /(z)^(α)}.

Let .D denote the division algebra of quaternions over ί. Let
P denote the prime ideal of its ring of integers. For λ e fx we
have a Weil representation T(D, λ) of G = SL2(ϊ) in C?(D). An
explicit formula for T(D, λ) is found in [9]. While all choices of λ
give equivalent representations, we retain this parameter in order
to easily express the quaternion Weil representation as a tensor
product.

Let vD be the reduced norm of D over ϊ. Set Γ — {7 eD:
vD(i) = 1}. For Uef, let Ωσ denote its character. Then the space

{ J JC?(D, U) = {/eCΓCD): J „ f(zy)Ωσ(y)dy = /(z)J is invariant and we

have the corresponding decomposition

λ) = π Γ(A λ, ί7).

We will need to choose specific imbeddings of the various !(i/ β)
in D for ^ 6 Q. A basis for D over f can be given by the set
{1, i, j , k} where i2 — ε, j2 = πy and ij = —ji — k. We choose
imbeddings of f(1/ ε ) and f(1/ TΓ ) in £> to consist respectively of
elements of the form a + hi and α + &y. If —1 is a square in ϊ,
we may imbed l(λ/επ ) in D as elements of the form a + δft. If
not, let ζ be a fixed primitive q2 — 1 root of unity in f(VΎ) c D.
Then choose l(\/επ ) c ΰ to consist of elements of the form a + 6ζj.
We shall refer to these imbeddings as primary imbeddings of the
various ϊ(l/~0") in D.

Let t(θ) 6 D be given by ί(ε) = j and ί(ττ) = t(eπ) — ί. This
allows us to identify t(\/Ύ) φ t{\/Ύ) with J5 by the map (u, v) h^
u + vί(^). Using this identification along with formulae from [9]
we have the following.

PROPOSITION 2.1. For 0 Φ xet and ΘeQ, there exists a unique
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λ' e ϊ such that T(β, λ) (x) T(θ, λ') - T(D, λ) where (/ (g) flr)(u +

Thus it will be tensor products of the form T(θ, λ, ^ (x) T(θ, λ', ψ2)
which we analyze in this paper.

Let Uef be a nontrivial representation. Then T(D,\U)
consists entirely of supercuspidal summands. Let U correspond to
φeC* as given by [3]. Let σδ be the nontrivial character on the
units in the integers of f(1/ δ) whose kernel is the squares. Then
by [1] we have, considering σδ restricted to Cδ, T(D, λ, U) ~
[deg. U]2[T(δ, λ, φσδ) + T(δ, λ*, φσδ)] where x*/x<*vδ(t(\/T)). Here,
as in [1], we assume ςr ^ 1 if δ Φ ε.

For x G {1, ε, π, eπ), let i ί κ = {/ e C?(D): f(z)Φθ=^ze ]/^"Γ(fx)2}.
Let H*(U) - Hxf)CT(D, U). From [1] we see that H\U)@H\U)
under T(D, λ, ί7) is isomorphic to [deg Z7]2CΓ(δ, ̂ σ̂ ) under T(δ, λ, ̂ σ^).
Let {δlf δ2} - Q - {δ}. Then the action of T(D, λ, f7) on Hδί(U) (&
Hδ2(U) is equivalent to [deg U]2 copies of Γ(δ, λ*, φσδ). If C/2 Ξ 1
and U is nontrivial then each HX(U) is G-invariant and distinct.
Let rz: C?(D) —> C7{zΓ) for ^ e ΰ b e the restriction map. The follow-
ing lemma is easily derived from the facts in [10] and [1].

LEMMA 2.2. Let W be a G-ίnvarίant subspace of C?(D). Let
V be an irreducible supercuspidal summand meeting Hδ{U). If
z 6 V x Γ(tx)2 then the multiplicity of summands of type V in W
which also meet HX(U) is equal to the dimension of rz(WΠ HX(U)).

Let H{ψly ψ2) £ C?(D) be the subspace identified with CT(Θ,
CΓ(0, ^2) as prescribed in Proposition 2.1. LetHz(^rl9 ψ2) = rz(H(ψl7 ψ2)).
Let CT(zΓ, U) = re(C7(D, U)). Lemma 2.2 says that our main object
should be to compute the dimensions of the spaces Hz(ψlf α/r2) Π
C7(zΓ, U).

3. Let B = (Γ x Γ)/{±(1, 1)}. We define a map Φ: B -> zΓ given
by (δ, 7) -^ δ^zy. Φ is clearly a well defined surjection. It follows
that the map Φ* given by Φ*/ = foφ is an injection of C7(zΓ) into

cr(5).
In what follows, if M is a group and L is a subgroup with a

one-dimensional representation Γ, we denote by JΛ(Λί, T) the set
{/ G CΓ(ΛΓ): Vx G L, / ( ^ ) = T(x)/(z)}. We also set /X(M, T) = {fe C7(M):
VxeL, /(2ίc) = T{x)~λf{z)}. If Z7 is any irreducible representation of
M, we set R(M, U) and L(Λf, U) to be right and left regular repre-
sentation subspaces of type U respectively.

Let W(z) be the trivial representation of the group {(zyz'1, 7):
7GΓ}/{±(1, 1)}. Then we have
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PROPOSITION 3.1. Φ*(C?(zΓ)) = IB(B, W(z)). We think of B as
{Ux Ve(Γ x ΓΓ: U(-l) = F(-l)}.

PROPOSITION 3.2. Let Uz(y) = U(zyz~ι).
Then we have the decomposition

IB(B, W(z)) = Π [IB(B, W{z)) n R{B, ϋ* (x) U)] .
Ueϊ<

.Eαcfo summand is irreduble under the right regular representation
action of B.

Proof. This is a simple consequence of group character com-
putations.

Let ζ be the fixed q2 — 1 root of unity of §2. For θ e {π, ε} we
define

ω(θ) =
ζ if θ = ε

j if θ = π .

Since for our purposes of computation, π and επ are interchangeable
we discuss only θ = π and ε.

Let Bθ = <Γ x Γ, (ω(θ), ω(θ)))K(x, x): xet). Let Φ be t h e obvious

well defined extension of Φ to B°. Notice that [B6: B] = 2. As
before, we construct the dual map Φ*: C?(zΓ) -> C7(B°). Let ̂ (z) be
the trivial representation of the subgroup of B° given by the ele-
ments of the form (zyz~\ 7) for γ e ΰ .

Let s: C?(BΘ) -> CΓ(β) be the restriction map.

PROPOSITION 3.3. Γ/iβ following is a commuting diagram of
bisections.

IB{B\ W(z))
Φ*/

C7{zΓ) - ^ IB(B, W{z))

Proof. Φ* is an injection since Φ is a surjection. Φ* and Φ are
both clearly surjections by the definition of induced representation.
If p: B -> B° is the inclusion, then Φ = φop, hence the diagram
commutes. Therefore s is also a bisection.

Now set Zft (zB° to be the subgroup of B° generated by images
of Cθ x Cθ (considered as a subgroup of Γ x Γ given by the primary
imbedding of t^Ύ)) and (α>(0), ω(θ)). Since α>(5) centralizes C ,̂ we
may express irreducible characters X of Zθ as triples (pl9 p2y w) where
p1{-l)p2(-l) = 1, 1 restricted to CθxCθ is p,® ρ2J and Z(α)((?), ω(θ)) =
weC.
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PROPOSITION 3.4. Let X = Oψyf2, ψ^ 2 , f2(^(^)"1^>W)) Then
Φ*(Hz(ψlf ψύ) = IL(BΦ, X).

Proof. We need to pull right translation by elements in Zθ

back to CT(zΓ) and see what happens. A simple calculation gives
(/ (x) g){a-\u + vt{θ))β) = (/ <g) g)(u + vt(0))tif2{a)f λf 2(β) for (α, β) e
Cθ x (7 and /(x) g e CT(Θ, ψ±) x CT(Of ψ2). Similarly (/ (x) g)(ω{θ)~\u +
vt(θ))ω(θ)) = (/ <g) flf)(w + vt{θ))<f2(ω{θ)-ιώ{θ)). The definition of induced
representation gives containment. Equality follows from the fact
t h a t ψΊ (x) o/r2 —• (^!^ 2, ^1^2, ^2(ft>(^)~1(^(^))) is one to one.

PROPOSITION 3.5. Φ*(H,(ψ19 ψ2)) - U ^ e / [Λ(^, Λf) n IB(B9, W{z)) n
IL{BΘ, X)] with X as in Proposition 3.4. The dimension of each
summand is the multiplicity of X in M\zo where R(BΘ, M) Π
IR{BΘ, W{z)) Φ {0}.

Proof. Clearly, by Propositions 3.3 and 3.4,

φ*(HM{ψ» ψ*)) - [h(Bθ, W(z)) n UB\ X)] n π R(B°, M).

We need to see that intersection commutes with direct sum in this
case. We may write IR{B\ W{z)) - ]lM&^IR{Bd, W{z)) n R(BΘ, M).
Similarly IL(B\ X) - ILrβS* h{B\ X) Π L{B\ M) = J\M^Bo IL(BΘ, X) Π
R(B\ M). This is what was needed.

By Proposition 3.3 we see that the multiplicity of summands of
type M in IR(BΘ, W(z)) is either one or zero since the same is true
for IR(B9 W{Z)). (Proposition 3.2) We now look at the somewhat
elaborated expression for Φ*(Hz{ψl9 ψ2)),

Π [iR{B°, w{z)) n R{B°, AΓ)] n [iL(B°, X) n L{B\

For M occuring in IR(B\ W{z)), the left hand expression in square
brackets is an irreducible right regular subspace of type M of
C™(BΘ). The right hand half is a sum of left regular subspaces of
type M. This fact gives the rest of the proposition immediately,
since irreducible spaces of these two sorts have intersections of
dimension one.

4* Two make use of Proposition 3.5, we need to determine the
characters on Zθ of representations of Bθ. Since [Be: B] = 2, we
know that a representation of Bθ is either an extension or is induced
from a representation of B.

From [3], we obtain a parametrization of f. When — l£(ϊ x ) 2 ,
we choose secondary imbeddings of t(]/π) and ϊ(]/επ) in D. Let
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f = ζ9"1. Then these imbeddings are given by elements of the form
a + bζj and a + bξζj respectively. The norm one subgroups in these
imbeddings are denoted Cχ/ and Cz~' respectively. Cπ and C~' are
conjugate in D but not in Γ. Thus when —1 is not a square, we
have a set of norm one subgroups Cδ where 3 e Q' = Q (J {τc\ επ'}.
Elements of Γ are expressed as U = £7(S, 0) where δ e Q or Qf as
appropriate, 9 6 (7 and we require that φ2 φ. 1 if S ̂  ε. The only
equivalences occur when — 1 g (f*)2 and δ =£ ε where Z7(δ, 0) = U(δ, φ).

The following information on characters is derived directly from
[4]. The methods in [5] can be extended to produce the same
results. Let U= U(δ, ψ) as above. We denote by ϊf(U,θ) the
character of U restricted to C°. Let Dθ be <Γ, ω(θ)) if θ = ε and
<Γ, ω(θ))l(ω(θf) if θ Φ ε. Let ^ be the subgroup of Dθ generated
by ω(θ) and Cθ. If VeD°, we let if (F, θ) denote the character of
its restriction to E°.

Since π may be chosen to be any generator of p, we lose nothing
by considering only the cases θ = ε and θ — π. Also, in what follows,
if X is any multiplicative subgroup of D, we let XN denote J n
(1 + PN) where P is the prime ideal of the integers in D.

LEMMA 4.1. Let θ ~ ε. Let U — U(δ, φ) have conductor ΓN.
(a) If δ = ε we write &(U, ε) = Σ,o6c'ε apP where

2 if conductor pφ — C; and 4|(ΛΓ — 1 — s), and s < N .

0 otherwise
ao =

Furthermore if we set c^{φ) = {p e Cc: ap == 2}, we have the property
p £ c^{φ) if and only if φ e r^(p).

(b) If δ Φ ε then &{U,ε) is the sum of all characters of Cc

which are trivial on CZ

N = Cε f] (1 + PλΊ and agree with φ on — 1 .

We now consider the case θ = π.

LEMMA 4.2. Let U = U(ε, φ) have conductor ΓN. Then ctf{U, π)
is the sum of all characters trivial on Cr

N which agree with φ on
— 1

When U = U(δ, φ) and δ Φ εy the situation is more complicated.
Let Φ be a fixed character of ϊ+ with conductor p. Let S =
{xelVε dD:x = 0 or xq2~ι = 1}. If N is even, we may express
elements of ΓN_JΓN in the form 1 + ajN~ι where aeS. Any τ e
{ΓN-IIΓNT can be expressed as τ(l + aj^-1) = Φ(trace (βa)) for some
μeS. Here "trace" is taken to be of ϊ(i/T) over ϊ. If δ Φ ε and
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Φ 6 Cδ has conductor CN9 there exists a unique r e (ΓN_JΓNΓ such
that τ and ψ agree on JΓV.j. and τ is centralized by the quadratic
extension in D containing Cδ. Let μ(φ) denote the corresponding
element of S which gives r. If φ is trivial on CN-D set μ(0) = 0.

LEMMA 4.3. Assume that θ — π and δ — sπ or sπ'. Let U =
U(δ, φ) have conductor ΓN. If peCπ then μ(p) e S f l f . If we write

, π) = ΣpeΰxO'pP then

9 '—'

1 if μ{p) = 1/2 trace (a2μ(φ)) , aeCεΠS

0 otherwise .

LEMMA 4.4. Assume θ — π and δ = π'. (0/ course — lg( f x ) 2

ΐ case.) Lei ?7 = Z7(δ, ̂ ). ΓΛe^ ̂ ( ί 7 , 7r) = Σpecπbpp where

2 if for some aeCε f] S , μ(ρ) = 1/2 trace (a2μ(φ))

0 otherwise .

When δ — Θ — π, the situation is more complicated. For ^ e C "
we will construct a set ^(φ) as in the case θ = ε. If s is odd then
Cs/Q+1 can be identified with S Γ) ϊ by expressing elements in the
form 1 + ajs (modulo C?+1) where α e S f l ί . Let λ(s, u) be the
character on Cr;jCz

+l whose value at 1 + ajs is Φ(ua). Let Λ(s, u, φ) =
{peCz: pφX(s, u) = 1 on Cί}. Let

iV.'2

LEMMA 4.5. Lei U = U(π,φ). We write &(U,π) as Σpefc<*>Pp
where ap has the following values

(a) // - l e ( ϊ x ) 2 we have

1 for p = φ

2 for p 6 i f (0)

2 /or μ(|θ) = l/2(trace a2)μ(φ) , aeS f] Cε

0 otherwise .

(b) // — l£( f ) 2 x we /̂ α^e

1 for p — φ or p — φ

2 /or ρe^(φ) or ρe^(φ)
P ~ 2 for μ(p) = l/2(trace a2)μ(φ) , α 2 ^ ™ ! , α G S ί l C ε

.0 otherwise .

As before, we write irreducible representations of j? in the form
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U (x) V where U and V are irreducible representations of Γ which
agree on —1.

LEMMA 4.6. An irreducible component of W(z) extends to Bθ if
and only if the corresponding representation of Γ x Γ extends to
Dθ x Dθ.

Proof. This follows from definitions of Bθ and Dθ and Proposi-
tion 3.2.

LEMMA 4.7. // U ®V is a component of W{z), there is a unique
component of W(z) whose restriction to B includes U ® V.

Proof This follows from Proposition 3.3.
From [3] we get the following:

LEMMA 4.8. Let U = U(δ, φ) e f. Then U extends to D° if and
only if δ = θ or d — θf. Also U extends to Dθ if and only if Uz

does as well.

Now let U be an arbitrary representation of Γ. If U does not
extend to D°, then Uz (x) U induces irreducibly to B°. On the other
hand, if U extends to Dθ, then the unique extension of Uz (x) U to
βθ r e f e r r e ( i to in Lemma 4.7 is a restriction of certain extensions
of Uz x U to Ό° x Dθ. Let Fθ - (ω(θ)\ Γ) so that Fθ is an ex-
tension by central elements. \Ό°\ Fθ] = 2. Let {Ux} be the set of
extensions of U to F° where x ranges over some appropriate index
set. For any such Ux, let Uxl and Ux2 denote the two extensions
to Dθ. We may similarly identify extensions of characters of C& to
E°; since in fact two distinct extensions of U to D° differ by a
character of Eθ/C°, we may denote by {φxn} the set of extensions of
ό to E° where x ranges over the same index set and n = 1 or 2.
Under this arrangement, φxl and φx2 both agree with the central
character of Ux on the center of Dθ.

LEMMA 4.9. Let θ = ε and U — U(ε, φ) for any φeCε. Then we
may further order things so that for m — 1 or 2 we have

^ x m , ε) = φxm + ΣΣ

LEMMA 4.10. Let θ — π and assume that — le( ϊ x ) 2 . Let U =
U(π, φ) for some φeCπ with φ2 ̂  1. //SΓ(Z7, π) is written 'Σiped* Upp*
then
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&(Uβmf ε) = φX7Ά + Σ fti + px
α2 x2

LEMMA 4.11. Let θ = π and assume — 1? (ϊ x)2.
(a) If U = Z7(ττ, 0) αwd £?(E7, TΓ) = ΣPeΰπ aPp then

xm, π) = ^ m + (0

(b) If U = C7(π', ^) α^d #(C7, π) =

We now have listed sufficient information to give characters on
Zθ for 0_= ε and π. Let g^^C/, 0) be the character of Zθ correspond-
ing to Uz (g) U. We consider the case ε = θ first.

PROPOSITION 4.12. Let U = Ϊ7(ε, ^).
(a) 1/ ^(«) G (ϊx)2 U ε(ry then

Σ (Φ, ft

ft", t\/pσ{ξ)) .
t?(φ) ί = ±l

(b) 7/ yB(0) 0 (ϊx)2

Σ
(φ) ί = ±l

) 2 U ε ( ϊ x ) 2

if z(tf, ε) = (ίi, & *(£)) + Σ Σ (Λ ft ίl/^(|)) + (ft
pe&iΦ) t = ±l

+ 2 Σ Σ (ft σ, tVpσ{ξ)) .
ρ,σe'έ (φ) ί = ±l

Proof. In case (a), Uz = C7; in (b) J7S = Ϊ7. In either case,
U extends to Bθ. Then Wz(U,ε) is just the restriction of

U*iY, ε)Θ^(Uxl, ε) to Zθ. In case (a) we must have

Σ
where the product of any p9n and pyWf is trivial on the center of Dθ.
Thus if ρyn®σxm is a component of &((Uxl)

κ, e)<g)&(Uxl, ε), its
restriction to Z* is given by (p, σ, ρynσxm(ζ)). But (pynσxm(QY =
Pvn^xmfβ^ξ) = jόσ(£). Hence the result for (a) follows using Lemma
4.9. The computation for (b) is analogous.

PROPOSITION 4.13. Assume δ Φ ε and that U = U(δ, φ) has con-
ductor ΓN. Then <&Z(U, ε) is the sum of all characters (p, σ, w)
which are trivial on Zθ Π {ΓN x ΓN) and such that p( — ΐ) = σ(—-1) =



10 C. ASMUTH AND J. REPKA

Proof. Use Lemma 4.1 (b) and the fact that Uz(x)U induces
irreducibly to Bθ.

We now consider the case θ — π.

PROPOSITION 4.14. Let U — U{π,φ) and assume

(a) // vD(z) e (ϊ x)2 U (-τr)(ϊx)2 and - 1 e (fx)2, then

cg\υ, π) = (φ, Φ, l) + Σ Σ (Φ, p, t) + (p, Φ, t)
ap=2 ί = ±l

+ 2 Σ 2 α Σ i Σ (A σ, t).

(b) 1/ vD{z) ί. (fx)2 U (-π)( ! x ) 2 cmci - 1 6 (ϊ x) 2 ίfcew

g-z(ί/, π) = (Φ, Φ, 1) + Σ Σ (95, ft ί) + {p, 9, t)
α |0=2 t = ±l

+ 2ΣΣΣ(AM).

(c) // v ^ ) e (ϊ x)2 U (-τr)(! x)2 and - 1 £ (fx)2 ίfeβ^

g"2(ί7? π) = (^, ^, 1) + (φ, φ, 1) + (φ, Φ, 1) + (̂ , φ, 1) + Σ Σ [(& A 0

+ (ft φ, t)] + 2 Σ Σ Σ (Λ ^, «) .
α ( O=2 α σ = 2 ί = ± l

Proo/. In each case Uz x U extends to Bθ. We then use the
methods for Proposition 4.12 using data from Lemmas 4.10 and 4.11
as needed.

PROPOSITION 4.15. Assume that — l £ ( ϊ x ) 2 .
(a) Let U= U(π,φ) and assume vD(z) $ (fx)2 U (-π)(f x) 2. Then

Uz is of the form U(π\ φf) with μ(φf) = ξμ(φ). Let (U, π) = Σiped* aPp
and ξ(U% π) = Σ σ e ^ M as in Lemmas 4.5 and 4.4 respectively. In
particular

2 if 3α 6 Cε Π S: μ(σ) = 1/2 trace (a2ξμ(φ))

0 otherwise .

Then

Σ Σ
bσ=2 ί = ±l
+ 2 Σ Σ Σi(σ,p,t).

bσ=2 aσ=2 ί = ±l

(b) Let U= U(π', φf) and assume vD{z) e (fx)2 U (-π)(ϊ x ) 2 . Then Uz

is of the form U(π, φ) where μ{φ) = ξμ(φ'). Let £?(£/, π) = ΣipecπbPρ
and W{Ό% π) = Σ ^ e ^ ^ σ .
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(2 if 3α e Cε Π S: μ{p) = 1/2 ίrαce (azξμ(φ'))

(0 otherwise ,

and

+ 2 Σ Σ Σ (<r, ft t)
62 2 ί lσ =2 ί = ±l

Proof. In case (a) we may assume z*7"1 = ar 1 ! = ξ, the generator
of Ce/Cl. It is easy to see that z~ιCπz = C*' so that £/"* is of the
form U(π',φ'). We may write φ\a) = φizaz'1) for αeC 7 1 ' . (Note
that here Ό = J7.) Our choice of « forces μ(φ') = f^(^). The result
in (a) now follows from Lemma 4.11. Case (b) is more or less the
reverse of case (a).

PROPOSITION 4.16. Assume that — l£( f x ) 2 , U=U(π',φ), and
vD{z) e (ί x)2 U ( —τr)(£x)2 so that Uz = U. Let

Then

(2 if for some a, β eCπ Π S we have μ(σ) = \\2itrace a2μ(φ))

AσP = « and μ{p) = l/2(trace β2μ(φ)) .

0 otherwise

Proof. Here Uz(g)Uextends to B\ The extension of &(ΌZ, π)(g)
%?(U, π) to Zθ is obtained by using Lemmas 4.4 and 4.11(b).

PROPOSITION 4.17. Let U = U(δ, Φ) where δe{sπ,sπ'}. Then
write

ί?z{U, π) = Σ Σ Λ AσP(σ, p, t) .
ί = ±l σ,peCπ

(a) If -1 ί (ί x) 2 or yβ(«) 0 (ϊ x) 2 U (-π)( ϊ x ) 2 then

(1 ΐ/ //(<τ) αwd ^((0) e {1/2 ίrαce (a2μ(φ)): aeC'ΠS}

(0 otherwise .

(b) 1/ - 1 e (ϊ x) 2 α^ώ vD{z) e (ϊ x) 2 U ( —ττ)(£x)2 then

(1 i/ -^(σ) α^ώ μ{p) e {1/2 ίrαcβ (a2μ(φ)): aeCεΠ S}
A —

(0 otherwise .

Proo/. Clearly Uz (g)U induces irreducibly to Bπ in this case.
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Therefore &*(U, π) is induced from &(UZ, TΓ) (x) gf (*7, TΓ) on Cr x C\
Thus S?2(Z7, TΓ) consists of all characters (σ, p, ±1) such that σ is
a component of &(UZ, π) and ^ is a component of S?(Z7, TΓ). We lack
only the information on if (U% TΓ). Assume that Uz = Ϊ7(δz, 0Z). If
- 1 e (ϊ x) 2 and v(z) $ (!x)2 U (-τr)(fx)2 then Uz = £7 and ^z = 0. Then
the formula in case (a) follows from Lemma 4.3. If — 1 g (ϊx)2 and
y j D(^)e(ίx)2 U (-τr)(ϊx)2, we have ί> = U and the result in (a) holds.
If - l g ( ϊ x ) 2 and vD(z) g (ϊ x) 2 U (-τr)(ίx)2 we may take δ = eπ and
3β = sπr. We can also take μ{φz) = f^(^). Also /̂ (̂ ) = ζx for some
X6Ϊ. One can check that when - l £ ( ϊ x ) 2 , {tr (α2ζx): a e Cε Π S} =
{tr (α2fζx): α 6 Cε Π S). This also results in the formula in (a). In
case (b) we see that Uz = ϋ. We have δz = δ = eπ and ψz = φ so
that μ(02) = —μ(φ). Therefore (b) holds.

PROPOSITION 4.18. Assume U = Z7(ε, ^) feαs conductor ΓN. Then
&Z(U, π) is the sum of all characters (p, σ, w) of Zπ which are trivial
on Zπ n (Λv x ΓN) and such that p(-ΐ) = σ(-l) = φ(-ΐ).

Proof. This result is exactly analogous to Proposition 4.13.

5. Let θ = e or π. We may write T(θ, λ, a/rj (x) T(^, λ', ψ2) in
the form

m0T(D, 1, 1) 0 Π m(ε, 1, ^)Γ(e, 1, ^) φ m(e, TΓ, ^)T(ε, TΓ, ^)
όe6'ε

0 A Π m(τr, 1, φ)T(π, 1, ^) 0 m(τr, ε, ^)T(τr, ε, ^)
όet'π,Φ2^l

φ Λ Π m(sτr, 1, Φ)T(επ, 1, φ) 0 m(sτr, ε, p)T(ετr, ε,

One might well ask if m(ε, λ, ^) is well defined when φ is the unique
character of order 2 since T(ε, λ, 0) is reducible in this case. In fact
it is well defined since the corresponding representation U(ε, φ) is
centralized by all of D. Thus the dimension of Hz(ψl9 ψ2) Π
C?(D, U(ε, φ)) is independent of z. More details will emerge in proofs
in this section.

THEOREM 5.1. Let θ = ε. Set λ = 1 and λ' = TΓ. Let ψt and

ψ2 e Cε have conductors Cε Π ΓMn for n = 1, 2. Let ό e Cδ have con-
ductor cδ n rN.

(a) If a Φ ε, λ0 G ϊ x , α^cί 9 e Cδ wiίfe ^2 ^ 1 ίfee^

(1 i/JV r>max{Af1,M2}

(0 otherwise .

(b) For 9 e Cε cmcί ^ ^ 1 toe
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m(ε, 1, 0) = |

m0 -

2 if φe i f (tit*) ΓΊ ΐ f (tπ
1 if Φ^ψ^

if φ = ψ± and ψ2 =

0 otherwise

2 ϊ/ 0 e i f ( ^ 2 ) Π

m(ε, 7Γ, 0) = |

1 if φ = ^

0 otherwise .

| h i

Now let # = 7Γ. For ̂  e Cδ, δ ̂  ε, set
such that a2 Φ 1 and μ(p) = 1/2 trace (α2

= {p e CΓ: 3α e Cε Π S

THEOREM 5.2. Lei

n — 1, 2 αtid Ze£ ̂  6 Cδ

- l e ( f x ) 2 .
(a) Lβί δ = ε, λ 0 e fx and

f 2 e C r feα^e conductors C7:Γ)ΓMn for
conductor Cδ n ^ Assume also that

ε, λ0, Φ) =

φeC\ Then

1 if N > max {Mί9 M2}

(0 otherwise

(b) φeCπ such that φ2 ̂  1 we have

m(ττ, 1, φ) =

2 if ψλψ2 e ^(ψ) U &(φ, 1)

1 if φ — ψιty2 and ψxψ2 6

if φ = f f i

xf2 6 i f 0) U
U ̂ f e 1)
U ^ ( f , 1)

1 if φ — ψi and ψ2 =

0 otherwise

m ( ε , 7Γ, ̂ ) =

2
1

1

1

0

if ^ ^ 2 ̂

if Φ = ψi
if φ =: rJp^

%f φ = ijp^

otherwise

Ί^(Φ) U

ψ2 and

f2 and

and ψ

^{φ, 1) and ψi

ψ,ψ2 6 <ί?(φ)

ir2 e $f(φ) U

^, 1)

, 1)

(c) For 3 = επ and φ e Cε7Γ 1 we have
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(1 if N > max {Mlf M2)

m(eπ, 1, φ) =

m(επ, θ9 ό) —

1 if ψxΊJΓz and ^rιψ2 £ &Ό-9 Φ)

fi otherwise

1 if N > max {Ml9 M2)

1 if ψxψ2 and ^i+2

0 otherwise .

J y 1 — rψ2 —
0 otherwise.

THEOREM 5.3. Let θ = π wiί/z, 0, ^ , α/r2 as m Theorem 5.2.
Assume — 1 g (ϊ*)2 a%cί sei λ = λ ; = 1.

(a) Lei δ — ε wίifc 1 ^ φ e Cε. Let λ0 = 1 or π. Then

1 if N> max {Ml9 M2)

0 otherwise .

(b) For p

m(π, m(π9

Φ) =

= 7Γ, φ2 ^ 1, ϊβί ^^ = 9θ"ττ

2 ΐy* ^ i ^ 2 ^ ^ d ^1^2 ̂  •^r(f> 9)

2 ίy* ^1^2 ^^ώ Ψ Ί ^ ^ •^r(i> 9) u ^(Φ)

1 i / α/ΓiT/rg 6 {φ9 φ) and ψiψz G ϋ ? χ i , ^) U

iy* ψίψ z 6 {ζz>, (3} and ^1^2 ̂  «^r(l> ^) U

v 0 otherwise

2 i/ ^ !^ 2

 e &(ζ> Φ) and

m(π9 ε, ^;K) = -

U

2 ί/ ^ ^ 2 e ^ ( ξ , φ) and

Ψ1Ψ2 e ^ ( ^ ) U <if (0) U

1 if t i ^ 2 e {̂ , φ} and fLf2 e

1 i/ ^ ^ 2 e {φ, φ) and ψxψ2 e

0 otherwise .

, φ)

ξ, φ)

(c) Lei δ = ε r α7 (̂i Zei φ e Cεπ

9 φ2 ^ 1.

Ί if ψ^2 and ψ^* G ,

m(εττ, 1, ό) = m(επ9 ε, φ) = Ί if ψλψ2 and ψ^ G

,0 otherwise .

otherwise.

Proof of 5.1, 5.2, 5.3. Observe that Φ* sends Cr(sΓ, Z7) to



TENSOR PRODUCTS FOR SL2(ή II, SUPERCUSPIDAL REPRESENTATIONS 15

R(B, Uz (x) U). Thus, using the data from the propositions in §4 and
the formula in Proposition 3.5 we obtain dimension of the various
spaces Hz(ψl9 ψ2) Π C?(zΓ, U) where U=U(β,φ). By Lemma 2.2,
these numbers are in turn the multiplicities in H(ψlf ψ2) of represen-
tations T(δ, λ, φσδ) whose representation space in C?(D, U) includes
functions nonzero on z. By the remarks at the beginning of this
section we need consider only the cases z = 1 and z 0 ϊ(l/ δ) in D.
These choices will produce m(δ, 1, φ) and m(S, λ*, φ) respectively
where λ* gv3(ϊ(τ/T)).

There are a number of points requiring further comment. First
of all, when θ = ε and φ e Cε we have the relation p e ^(φ) if and
only if φec^(p). Thus the multiplicities given in 5.1(b) can be ex-
pressed neatly using this inversion.

In Theorem 5.3(b) we use sums of the form m(π, x, φ*) +
m(π, x, φ*). This is more expedient because in fact U(π, φ) and
Z7(ττ, φ) are identical. The values given here are obtained from
considering U(π, φ) and U(π\ όf) together. No information is lost
since T(π, x, φ*) and Γ(π, x, φ*) are equivalent.

Finally, in Theorem 5.2(c) we find m(επ, 1, φ) and m(επ, ε, φ) con-
sidered together. The corresponding values for z are 1 and ζ. The
question comes down to seeing whether ^ ( 1 , φ) = &(1, φr) in this
case. We may assume μ{φ) — xζ; μ(φf) = xξζ where xel. We then
check to see that the sets {trace (a2ξmζ): a e Cε Π S} are equal for
m = 0 or 1. (Recall that ζ*-1 = ξ; ξ generates Cε Π S.)

We now consider the remaining question of what happens when
T(θfXfψ) is reducible. The case when θ = ε and — le(ϊ*) 2 is
reasonably typical. For simplicity of notation we confine our discus-
sion to this case.

Assume ψλ e Cε is the unique character of order 2. Then
!Γ(ε, 1, ψλ) = T\6, 1, ψx) φ Γε(ε, 1, ^ ) . In general we may write
T*(e, 1, t i) ® Γ(6, π, ψ%) as

Π m;(ε, λ, ψdTKs, λ, t i) + II m%δ, \ Φ)T(d, λ, φ) ,
>? = !,-

where^δ, λ, and φ range over the same sets as given in the beginning
of this section. Thus, for φΦψλe C% we have m\δ9 λ, φ) + m%d, λ, φ) =
m(δ, λ, φ) and also m(ε, λ, α/r2) = X mj(δ, λ, ψλ).

THEOREM 5.4. iίere we describe how summands are distributed
between the two Tx(ε, 1, ψt) (g) Γ(ε, λ, ̂ 2 ) .

(a) For φ Φ ψ19 m%εy 1, Φ) = 0
(b) m;(δ, 1, ψ j = δ,,m(ε, 1, ψ J
(c) mβ(δ, x, φ) = m(δ, », 0) /or B = 1 or ε, δ ^ ε, φ e Cδ

(d) mx(ε, 7Γ, ζ5) - (l/2)m(ε, TΓ, 9) /or ^ e Cε.
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Proof. First of all, we note that it was valid to exclude m0

since fa was not trivial (Theorem 5.2(d)).
The space of Tx{ε, 1, fa) consists of functions supported on V x tCε.

Thus the space of functions in the tensor product is contained in
Hx φ Hπ φ Hεπ. (This can be verified by considering what elements
are represented by the various 3-dimensional anisotropic quadratic
forms over ϊ.) This is sufficient for parts (a), (b), and (c).

Let X: C?(D) ~> C?(D) be given by (Xf)(z) = f(zi). While X is
not an SL2(ϊ) isomorphism, it does take invariant subspaces to
invariant subspaces. In particular, if U — U{ε, φ), we have U% = U
so that X sends Hπ(U) φ Hε7ΐ(U) to itself. Moreover, X interchanges
the spaces of Tx(ε, 1, fa) (x) T(ε, π, fa) for x = 1 and ε. Since the
number of irreducible G-spaces of H"{U) φ Hεπ(U) is finite, the
number of such components accounted for by each Tx(ε, 1, fa) (x)
T(ε, π, fa) must be the same. Hence part (d).

6* The above methods apply only to the specific case of the
tensor product of two supercuspidals T(θ, λ, fa), T(θ, λ', fa) belonging
to the same quadratic extension ϊ(ι/0) and with λ and λ' related
as in Proposition 2.1. It is the purpose of this section to describe
what is known about tensor products of other pairs of supercuspidal
representations.

First we note that the contragredient of T(θ, λ, φ) is T(θ, — λ, ώ),
which is the same as T(θ, λ, φ) if and only if — 1 e vθ(ΐ(\/ θ)), which
is always true for θ = ε, and otherwise is true if and only if — l e
(fx)2. Then we remark that the principal series representations are
all self-contragredient.

We also note (see [8], Corollary 3.4) that the tensor product of
two supercuspidals can only contain a direct sum of supercuspidals
and (possibly) copies of the special representation and (possibly)
continuous direct integrals of principal series representations.

We apply the results of [6] and [7] to find, for example, which
such tensor products contain direct integrals of principal series
representations. The results depend on whether or not — le(f x) 2;
let us therefore consider first the case when — le( ϊ x ) 2 .

Consider the representation T(ε, \, ψ), ψ2 ^ 1. From [6],
Theorem 5, we see that for any principal series representation Tσ,
Tσ (x) T(ε, λL, ψ) contains 2 copies of T(ε, Xlf φ) for all φ such that
σ( — l)ψ( — l) — 0( —1), plus one copy of T(a, λ, φ), for each a Φ e and
for all φ such that (̂ — 1) = σ( — l)ψ( — l) and for each choice of λ;
and if σ( — l)ψ( — l) = — 1, one copy of T(ε, Xl9 fa), where fa is the
square-trivial character and this last representation contains two
irreducible components. By the main theorem of [7], and using the
above remarks about contragredients, we see that if ψ, φ Φ fa, then
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T(e, Xlf ψ) (x) T(ε, Xlf 0) contains 2 copies of the direct integral (with
respect to Lebesgue measure) of the principal series of appropriate
parity, T(ε, Xlf ψ) (g) T(a, λ, φ) contains 1 copy of the direct integral
of the right parity for either choice of a Φ ε and either choice of
λ, and the tensor product of T(e, Xlf ψ) with either irreducible piece
of T(ε, Xlf ψj) also contains 1 copy of the appropriate direct integral.
On the other hand, if XjX g vε(ϊ(l/T)), then T(ε, Xl9 ψ) (x) T(ε, λ, φ)
does not contain any continuous part (including the case φ — ψx).

A similar analysis, using [6], Theorem 6, shows that if {θlf θ) =
{π, επ} then T(θu Xlf Φd (g) T(β, λ, φ) contains one copy of the direct
integral of the principal series of the appropriate parity, for any
λ»» Φ (Φu Φ ^ ψι)> a n ( i T(ΰ> \ Φi) Θ T(θ, λ, φ) contains 2 copies of the
appropriate direct integral, while T(θ9 λx, φj 0 T(θy λ, φ) does not, if

If — lg(ϊ x ) 2 , the results are similar, except that for θ Φ ε, it is
T(β9 X, φ±) (g) T(θ, — λ, φ) which contains 2 copies of the direct integral
and T(θ, λ, φt) (x) T(θ9 λ, Φ) which does not.

The results involving the square-trivial characters can also be
read off without difficulty. Moreover, by [2] and [6], the special
representation occurs in any of these tensor products with the same
multiplicity (0, 1, or 2) as the direct integral of the even parity
principal series.

In addition, similar considerations allow us to compute the
multiplicities of certain supercuspidal components of tensor products
of pairs of supercuspidal representations. Indeed, if λ, λ' are related
as in Proposition 2.1, the results of §5 tell how to decompose
T(β, λ, φ) (x) T(θ, X', ψ) so reciprocity considerations give us the multi-
plicity of T(θ, —X', ψ) in the tensor product of T(θ, X, φ) with any
supercuspidal representation. The calculation is altogether trivial,
so we omit the details.

Our results so far are far from complete, but they are sub-
stantial. To summarize: In §5 we decomposed completely tensor
products of the form T(θ, λ, φ)®T{θ, λ', ψ); then we found the principal
series and special constituents of the tensor products of any pair of
supercuspidal representations; and we have just seen how to calculate
some of the supercuspidal constituents of any tensor product of two
supercuspidals (those belonging to the same θ as either of the factors
and, in each case, to the other choice of λ, i.e., — λ')

As yet we have no way to treat completely those tensor products
not covered in §5. We cannot calculate the multiplicities of those
supercuspidals associated to the other θ (or θ's) or to the other
choice of λ.
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