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ORDERS OF FINITE ALGEBRAIC GROUPS

K. F. LAI

Let G be a simply connected simple algebraic group over
a finite field Fq of q elements. The order of the group
G(Fg) of Fg-rational points of G is well-known (cf: Stein-
berg, Carter). The proof makes use of the Bruhat decom-
position and the study of polynomials invariant under the
action the Weyl group. In this paper we deduce the order
of G(Fq) from an explicit formula for the integral M(s, Λ)
which occurs in Langlands' theory of Eisenstein series.

First of all, according to a theorem of Lang G is quasi-split
(cf: Lang [9], Satake [13] p. 105) and from Steinberg's theorem (cf:
Steinberg [14], Kneser [6] p. 255) G is either a Che valley group or
a twisted group of one of the following types: 2Ax(l ^ 2), 22>X(I ̂  4),
2Eβ,

 3A, 2#2,2G2 and 2F±. To simplify matters we shall assume that
the characteristic of Fq is not 2 and 3 and exclude groups of the
type 2B2,

2G2 and IF4. Furthermore we can assume that there exists
a quasi-split simple algebraic group G defined over a p-adic number
field F such that the residue field of F is isomorphic to Fq, G
splits over an unramified Galois extension E of F and G reduces
modulo p to G (cf: Weil [17]).

1. Fix a Haar measure dx on F such that the volume of the
ring R of p-adic integers in F is one. Let ω be a left invariant
highest jP-differential form on G. Then ω and dx determines a
Haar measure on G(F) which will also be denoted by ω (cf: Weil
[17]).

LEMMA 1. Let m be the dimension of G and \G(Fq)\ be the
order of G(Fq). Then

(1) \G(Fg)\=q

This is proved in Weil [17] p. 22.

2* Let B be a Borel subgroup of G defined over F and A a
maximal torus of G in B. Then by assumption the Galois group
Gal {IEIF) acts on the group X(A) of rational characters of A, This
gives rise to a representation

π: Gal (E/F) > Eng (X(A) ® Q) .
z
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For seC, let

(2) L(s, A) = (det(/-(/-τr(σ)))-1,

where σ is the Frobenius automorphism in Gal (E/F).
Let N (resp. N) be the unipotent radical of B (resp. the Borel

subgroup opposite to B). For geG(F), if g = nak with neN(F),
a e A(F) and k e G(R), is the Iwasawa decomposition of g, then we
denote a by α(#).

The data (G, 5, A) determined a root system I7, a subset 2"+ of
positive roots, and a basis j of Σ. Let <o be the half sum of the
positive roots in Σ. Then p defines a homomorphism on A(F).
(We denote this homomorphism also by p.) Let

( 3 ) Λf = ί p\a(n))dή .

Λf is in fact a special value of the linear transformation M(s, A)
(cf: Langlands [10] p. 237) in the case A is p and s is the Weyl
group element which takes all the positive roots to negative roots.
Rapoport ([12] p. 4-10) showed that

(4) M=L(1,A)\ ω.
JG(B)

Comparing with (1) we get

(5) \G(Fq)\ = q™ML(l, A)-1 .

We shall use this formula to calculate \G(Fq) .

3* As we have already pointed out Steinberg's theorem im-
plies that G is obtained by twisting a .F-split group G by a one-
cocycle

σ > φo G Z1 (Gal (E/F), Aut G) .

And φa comes from the action of the Frobenius σ on the Dynkin
diagram of G. In fact, if we denote the action of σ on a e A by
σa, then this means that aoφσ = σa. Moreover, since A forms a
basis of X(A) ® z Q, the representation π in § 2 is determined by
the effect of π(σ) on j . And for a e A we have

( 6 ) π{σ)a — σa .

LEMMA 2. Let ΩQ be the set of orbits of σ in A- For s? e Ωo,
I d? I denotes the order of the orbit έ7. Then for s eC,
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( 7 ) Us, A)= Π (1 - tf-8'01)-1

Proof, Suppose t? e ΩQ and | & | = n, then we can write

( 8) g ? — {a, σ a , , σ ^ a ) , f o r s o m e aej.

Let π(σ, #) be the restriction of π(σ) to the subspace of X(A) (x) Q
spanned by &. Then with the basis in the order listed in (8),
it is a trivial consequence of (6) that

( 9 ) det (1 - q~sπ(σ, 0?))

Finally noting that the action of σ is broken into orbits, we see
that the matrix of π(σ) is broken into blocks on the diagonal. Since
each block has determinant similar to that given in (9), the lemma
is proved.

4* In X(A) 0 jβ we choose a scalar product ( , ) invariant
under the Weyl group of the root system Σ. For every root aeΣ,
we denote by a: X(A) 0 R —> R the linear form defined by

cc{ζ) = 2(ξ, α)/(α, a) .

Let I7 = {ά\aeΣ} and / = {ά\ae j}. Then Σ is a root system with
base Δ. It is well-known that there exist a complex semisimple Lie
algebra g and a Cartan subalgebra d of g such that the root system
of (g, ά) is Σ and the Cartan matrix of g is the transpose of

if Δ - {«!, •••, α j .
Choose jffx, •••J3ι6ά so that £(#<) = f(αέ) for all f eHom z(X(A),

Z). In g choose root vectors X±at belonging to ± α ^ such that

[X%if X_»ai) = Ht !<,%-&/.

If σ e Gal (E/F), let o α = σα for α e j . Extend this action linearly
to ί\ This means that the orbits of σ in Σ and J? corresponds
bijectively. Moreover there is an automorphism (also denoted by)
σ of the Lie algebra g so that

σ{Ht) - Hs and σX^ - X*a. ,

if o-^ = αΛ (cf: Jacobson [5] Chap. VII).
Let Ω (resp. ΩQ) denote the set of orbits of the Frobenius auto-

morphism σ(ε GSL\(E/F)) acting on 1 + (resp. / ) . Let Ωx be the
set of those elements of Ω not in ΩQ. We shall pick a representa-
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tive in each orbit and label each orbit by the corresponding repre-
sentative . Suppose

{^{a) = {<$, σά, , σn~1a)

is such an orbit, we use n(ά) to denote the order of the orbit ^ ( α )
and define the number η(ά) by

(10) σnX*a = η(a)X^ .

5* Following Bhanu-Murthy [1], Gindikin-Karpelevich [4] and
Langlands [11], Lai [8] (p. 56) has calculated the integral (3)—in the
notations of previous section—

(11) M= Π 4 - 1

THEOREM. Let G be a simply connected simple algebraic group
over a finite field Fq of q elements, G not of the types 2JS2,

 2G2 and
2FA. Then the order of the Fg-rational points is given by

Π (1 ~ S A

(12) \G(Fq)\ - q & &
Π Λ ( 1 - Ύ](6ί)q-n{a)a{p))

) U& (a)

More specifically, if G is a Chevalley group and dίf 1 <. i <* s its
exponents then

(13)

For

(14)

(15)

(16)

(17)

the twisted

n
W,)l

\G(Ft)\ = q*

groups we have

| A(F.) | =*'<'-»(*•

Dm\ = t\q*-V

= q*\q% - l)(qs + 1

ίli ( 1~

ί + 1
2 Π(9 ι

ΐ = 2

I

+1)]

)(q6 —

g (ίM -

Proof As we have already pointed out the orbits of σ in Σ
and Σ corresponds, so we can substitute (7) and (11) into (5) to get
(12) if we note that a(p) — 1 and η(a) = 1 for ά e £. We shall use
(12) to calculate \G(Fq)\ case by case.

6. In case G is a Chevalley group the calculation is well-known.
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We shall only sketch the arguments. The exponents d{ are integers
so that ΠUi (1 + tUi~x) is the Poincare polynomial of the compact
real form of G. According to an observation of Shapiro and of
Steinberg [15] (for proof see Kostant [7]), the set of numbers

is the same as the set of numbers

{ά(p)}Λ«e£+-2 U

Together with the fact that σ acts trivially so that Ω = Σ+, Ωo—I
and n(a) = η(a) — 1, we get from (12) immediately the formula
(13). This formula is due to Chevalley [3].

7* The case of the twisted group 2A2k i.e., the group obtained
from a group of type A2k by a twisting by the Frobenius of the
quadratic extension E/F. The Dynkin diagram is

We have circled together the elements of the same orbit.
Hereafter we shall use an abbreviation for a root by indicating

only the coefficients. For example in the case of 2A4, the symbol
( 1 1 0 0) denotes the root άx + ά2; in the case of 2A2k, the symbol
(0 0 11 -11 0 0) denotes the root άk^ + ak + άk+1 + αfc+2.

By looking at root table it is easy to see that the orbits in Σ+

have either one or two roots. In fact the one element orbits: <!7{a)
are (O Ol lO O), (O -Oil i l l O O), •••(Ol l l.- 10) and
(1 11 1); the respective values of ά(p) are 2, 4, , 2fc — 1 and
2k. The value of τj(a) in each of these cases is —1. The rest of
the orbits have two roots in each of them and in all these cases
7)(a) = 1. It is easy to see that ά(p) equal to the number of Γs in
the symbol of a. One now writes down all the factors occurring
in the right hand side of (12). After removing those terms that
occur both in the numerator and denominator we get

<Γ(i-<r4Xi+<r3) ,-(2fc+l)\ 2fc+l

ί=2
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Since m = 4(ά2 + k), we get (14) for the case I = 2&.

8* Similar computations can be made in the case G is of the
type 2A2k__1. The orbits of the twisted action on the Dynkin diagram
are

The right hand side of (12) after removing like terms from the
numerator and denominator is

= fΠ(H
i=2

= ?* ( 2*-1 )Π
2k

Π<
i=2

This is just (14) when ί = 2k - 1.

9* As for the case of 2DU the Dynkin diagram is

We have used an arrow to indicate the action of σ. That is σ
interchanges aι_1 and άi and fixes the rest of the simple roots.
Using root tables to calculate the right hand side of (12), we found,
after removing the like terms from the numerator and denominator,
that the denominator has only one term 1 — q~ι corresponding to
the root aι + + cίt; whereas, the numerator contains the terms
1 - q~\ 1 - q~\ 1 - q-\ 1 - q~\ - , 1 - g-(2ί~2) corresponding to
the roots άlf ά1 + ά2 + άs, <$r_3 + 2αr_2 + ά^ + aίf ά^ + 2(<$t_3 +
α,.2) + a^ + άlf ••-,«,. + 2(α2 + + αt_2) + at_x + α t respectively,
and the term 1 — q~2ί corresponding to the orbit {(αx + + άt_lf

ax + - - + ctχ-2 + <$i) As a result we get
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Since m = 2Ϊ2 — I we get (15) immediately.

lO The next case is ID4. The Dynkin diagram with the action
of Probenius indicated by arrows is:

Direct calculation shows that for all orbits η(a) = 1. The values
of n{ά) and ά(p) are given in the following table.

n(ά)

a(p)

3

1

1

1

^(*i+a,)

3

2

^(fix+fi. + fi.)

3

3

1

4

^ ( α 1 + 2 α 2 + α 3 + α 4 )

1

5

In this case m = 28. The right hand side of (12) is

- <r 6 χi - ^-2)(i - g - 9 )(i - <r12)(i - g~5)(i - g-6

- D(ϊβ

and we get (16).

II* The last case is 2Eβ. The Dynkin diagram with Galois
action indicated by arrows is

a,
o—

-f+ has 36 elements breaking up into 24 orbits with atmost 2 ele-
ments in each orbit; τj{a) is always 1. Let us write (fc1 fc6) for
the root

a = k1ά1 + + k6άQ .

Then ά(p) = kx + + fce. The 2 elements orbit are:
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{(100000), (000001)} , {(010000), (000010)} ,

{(110000), (000011)} , {(111000), (001011)} ,

{(111100), (001111)} , {(111110), (011111)} ,

{(011000), (001010)} , {(011100), (001110)} ,

{(011011), (111010)} , {(122110), (012121)} ,

{(112110), (012111)} , {(112121), (122111)} .

The rest of the orbits are

(001000), (000100), (111111), (111011) ,

(011010), (001100), (012110), (011110) ,

(123221), (123121), (122121), (112111) .

Evaluating the right hand side of (12) leads to

which is just (17). This completes the proof of the theorem.

12* It is sometimes convenient to express formula (12) in
terms of determinants. Let h be an element in the adjoint group
of g such that

for ί e i Take an orbit ^ ( α ) of the action of the Frobenius auto-
morphism σ. As (7 is an isometry on the real vector space spanned
by Σ (cf: Carter [2] p. 201), we have

for δ
Let ύ(a), ft be the subalgebras of g spanned by {X$\6 e

{X$\βeϊ+} respectively. Then σ on n(α) has matrix

/o

\
I

0

0

*

0 /

where I is the identity matrix. The matrix of σ on ή is broken
into such blocks on the diagonal and the blocks are parametrized
by Ω. Thus we get
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Π (1 - tf(α)flr ι ί ) ( l + ί"»)
Λ A

r (a) e Ω

= det*(l - q-'σh)

where detπ* means the determinant of 1 — q^σh acting on ft.
Let fti be the subalgebra of g spanned by X$ for β e έ?(ά) and

e Ωt. Then similar argument leads to

Λ Π Λ (1 -

= det.^1 - σh) .

The following corollary is now immediate.

COROLLARY.

(19)
^ (1 - σh)

13* Finally we would like to point out that our formula agrees
with the standard formula for the order of finite twisted ^groups
(as given for example in Carter [2]).

For 1 <; i <: ϊ, we can assume that {Hit X^., X.«J forms a basis
of a 3-dimensional simple Lie algebra. Put

H = Σ Hi> X — Σ Xa,-> Y = Σ -^-«ΐ
% % i

and let I be the 3-dimensional subalgebra with basis {iί, X, Y}. If
(Zx, , dt are the exponents of G, then according to Kostant [7], Q
as an 3-module under the adjoint representation decomposes into
irreducible submodules b̂  of dimensions 2ώ£ — 1 for 1 <; i ^ ϊ. On
the other hand it is clear from paragraph 4 that σ leaves invariant
H, X and Y and hence we can arrange the decomposition Q — φb^
in such a way that σ leaves each factor bf invariant and acts on i>i
by the root of unity et. Moreover the element h of paragraph 13
belongs to the connected subgroup of Ad(o) with Lie algebra 3 and
so h also leaves each submodule ί>, invariant.

If άeϊ+ let o{a) be the sum of the coefficients of a relative
to the basis /. Then we group the eigenvalues {q-ola)\άeΣ+} of
the restriction of h to ft according to the decomposition 9 = 0 ^ . In
fact, let 4 be the set of άeϊ+ such that the eigenvector corres-
ponding to the eigenvalue q-°la) lies in b{. The corresponding set
with Σ+\Λ+ replacing Σ+ will be denoted by Δ\. Then we get im-
mediately,
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detί(l - q~ισh) = Π Π (1 - etq-™*)W)

and

detni (1 - σh) = Π Π (1 - β,?-β(β)) .

The procedure of Shapiro as proved in Kostant [7] says that for
1 ^ i ^ ϊ, the set of integers

is the same as the set of integers

{o(ά)}^eΔ. U {dt} .

It is immediate from these formulas that (19) yields

\G(Fq)\=q™π(l-sίq-
dή.

This is the standard formula for the order of finite twisted
groups.

14* We would like to thank the referee for his suggestions in
particular with regard to paragraphs 12 and 13.
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