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Jacquet and Langlands have proved the existence of a
deep relationship between the representation theory of the
group GL (2) over a local or global field and of the group
of invertible elements in a quaternion algebra over the same
field. It is the purpose of this thesis to extend these results
to the case of GL (8) and a central division algebra of rank 3.

0. Introduction. The theorems are deduced as consequences
of the Arthur-Selberg trace formula. The proofs have been patterned
after those used in [17] in comparing the representation theory of
the groups GL (2) over two distinet fields.

The two main theorems of this thesis are as follows.

Let F' be a nonarchimedean local field of characteristic zero, let
G =GL (@3, F), and let G’ be the group of invertible elements in a
central division algebra of rank 3 over F. Define admissible ir-
reducible representations # of G and z' of G' to be related, and
write © ~ 7', if 0.(9) = 6.(¢") for all pairs of elements geG and
¢’ € G’ which have the same irreducible characteristic polynomial,
where 6, (resp., ©.) is the character of 7= (resp., #').

THEOREM 1. The relation ~ establishes a 1-1 correspondence
between the set of tisomorphism classes of admissible irreducible
representations of G' and the set of isomorphism classes of admis-
sible irreducible representations of G which are special or super-
cuspidal.

Now let F' be a number field, let A be the adele ring of F, let
G=GL (8), and let G’ be the group of invertible elements in a central
division algebra D of rank 8? over F. Let S be the set of places v
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of F' at which D does not split. Define irreducible representations
T=@Q,7, of G(A) and 7’ = @, 7, of G'(A) to be related, and write
7 ~a', if 7, = =) for almost all v& S.

THEOREM 2. The relation ~ establishes a 1-1 correspondence
between the set of irreducible cuspidal automorphic representations
7" of G'(A) and the set of irreducible cuspidal automorphic represen-
tations T = @, w, of G(A) for which w, is special or supercuspidal
for all veS.

Moreover, if T ~ ' for such @ and 7', then

i) @, ==, for all vesS
and

i) w, ~ . for all veS.

Using the theory of L-series rather than that of the trace
formula, Jacquet, Pyatetskii-Shapiro, and Shalika [14] have obtained
related results.

It is a pleasure to extend my sincerest thanks to R. Langlands,
who first suggested the topic of this research to me and then
provided me with both encouragement and technical advice. Others
who have been especially helpful to me while working on this thesis
are my advisor J. Tate, D. Kazhdan, and J. Arthur.

1. Disconnected spaces. In this paper a topological space T
will be said to be a disconnected space if it is Hausdorff, locally
compact, and totally disconnected; it amounts to the same to say
that T is Hausdorff and that every element of 7T has a fundamental
system of compact neighborhoods which are open in 7. A locally
closed subspace of a disconnected space is a disconnected space.

Let T be a disconnected space. Define C(T) to be the space of
locally constant complex-valued functions on T with compact support.
Define D(T), the space of distributions on 7, to be the space
Hom, (C(T'), C). An element D of D(T) is said to be positive if
D(f) = 0 for each f € C(G@) that assumes only nonnegative real values.

Let Y be an open subset of T and let X be a closed subset of
T. The maps ty: C(Y)— C(T) and 7r,: C(T)— C(X) are defined as
follows:

iy(f) is the extension of f by zero to T, and

#.(f) is the restriction of f to X.

ProrosiTiON 1.1. Let X be a closed subspace of T. Then the
following is an exact sequence:

0— C(T — X) 2% 0Ty -5 0(X) — 0 .
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Proof. Only the surjectivity of 7, is not obvious. Let fe C(X).
It must be shown that f is in the image of »,. In fact, it may be
assumed that f takes only one value different from zero, say a. Let
Z = fYa}. Z is compact and open in X. It is immediate that Z
may be written Z = XN W, where W is a compact open subset of
T. Then f= r.(g), where ¢ is a times the characteristic function
of W.

For a closed subspace X of T, D(X) may be viewed as a sub-
space of D(T) via the map adjoint to »,.

PRrOPOSITION 1.2. Let {X,|ac A} be a family of closed subspaces
of T. Then D(Noes Xo) = Naes D(X,).

Proof. It is clear that D(Nees Xo) C N D(X,). If A ={1, 2},
the opposite inclusion may be proved by chasing the exact commu-
tative diagram below.

DT—-X) «—DIT «— DX) —0

I I I

DX, — (X, N X)) «— D(X,) +— DX, N X;) «——0

T I |

0 0 0

The case in which A is any finite set follows from this by induction.
Now let A be arbitrary, and let Je,.,.D(X,). The exactness
of

DT — N Xo) —— D(T) «—D() X.) <0

implies that in order to show that JeD(N,., X.) it suffices to show
that J(f) = 0 for each fFe€C(T — Noes Xo). Let fFeC(T — Naes Xo)-
Because the support of f is compact, there exists a finite subset B of
A such that f € C(T — Ny X;). By the result above, J € D(N;.5 X3);
hence J(f) = 0 as required.

This proposition justifies the

DEFINITION. Let De D(T). The support of D, written supp D,
is the smallest closed subspace X of T such that De D(X).

For a disconnected space T and complex vector space V, define
C(T, V) to be the space of locally constant functions from T to V
with compact support. It is evident that C(T, V) = C(T) R V.

Let X and Y Dbe disconnected spaces. Define the map
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S: C(X, C(Y)) — C(X x Y) by the formula Sf(x, y) = flz)(y).
PROPOSITION 1.3. S is an isomorphism.
Proof. Triviality.

A topological group G will be said to be a disconnected group
if it is a disconnected space. Such a group is one which contains
an open profinite subgroup. See [7], p. 118, and [10], p. 62. If H
is a closed subset of d disconnected group G, then the homogeneous
space H\G is a disconnected space.

Let G be a disconnected group. Define actions L and R of G
on C(G) and L and R of G on D(G) as follows. Fors, ge @G, fe (@),
and D€ D(G), then

L(s)f(g) = f(s79)  L(s)D(f) = D(L(s™)f)
R(s)f(g) = f(gs) E(s)D(f) = D(R(s™)f) .

An element D of D(G) is said to be left invariant if L(s)D = D for
all seG. A Haar measure on G is a nonzero left invariant positive
element of D(G).

ProOPOSITION 1.4. The subspace of left imvariant elements of
D(G) has dimension one and contains a Haar measure. There exists
a continuous homomorphism 4y from G to the multiplicative group
of positive real numbers such that R(s)D = 4,(s)7'D for all s€ G and
all left invariant D e D(G).

Proof. Let K be a compact open subgroup of G. The space
C(@) is spanned by functions of the form L(s)X,, where X, is the
characteristic function of an open subgroup N of K and seG. Thus
a left invariant element J of D(G) is uniquely determined by its
values on the X,. But J(Xj) is determined by J(Xy) through the
formula J(Xy) = Q/(K: N))J(Xx).

Conversely, it is easy to see that by using this formula a left
invariant distribution taking a prescribed value on X; can be
constructed.

The homomorphism 4; is certainly continuous, for K is contained
in its kernel.

G is said to be a unimodular if 4, is identically one.

Let H be a closed subgroup of a disconnected group G. Define
actions R of G on C(H\G) and of G on D(H\G) as follows. For
se@, ge H\G, feC(H\G), and De D(H\G), then

R(s)f(7) = f(gs)  R(s)D(f) = DR(s™)f) .
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An element D of D(H\G) is said to be G-invariant if R(s)D = D for
all se@.

ProposIiTION 1.5. Assume that H and G are unimodular. Then
the subspace of G-invariant elements of D(H\G) has dimension one
and contains a monzero positive element. If D is a monzero G-in-
variant element of D(H\G), then the kernel of D is spanned by
Sfunctions of the form R(s)f — f, where se G and fe C(H\G).

Proof. The second assertion is a consequence of the first. The
first follows from a study of the map P from C(G) to C(H\@) defined

by Pflg) = S f(hg)ue(h), where p is a Haar measure on H. Specifi-
H

cally, one must show that P is surjective and that the kernel of P
is contained in the kernel of a Haar measure on G. Details are left
to the reader.

DEFINITION. Let se€@, and let fe C(G). Ad(s)fe€C(G) is defined
by the formula Ad(s)f(g9) = f(s~'gs). Define I(G) to be the space of
conjugation invariant distributions on G; that is, I(@) is the set of
D e D(@) such that D(Ad (s)f) = D(f) for all se G and f€C(G). For
each closed subset X of G, let I(X) = D(X) N I(G).

2. Orbital integrals. Let F be a nonarchimedean local field of
characteristic zero with valuation ring B. Let G be GL (3, F'), let
K be GL (3, R), and let Z be the center of G. For an element v of
G, write cl(v) for the set of elements of G conjugate to v, and
write G(v) for the centralizer of v in G. If X is a subset of G,
write X¢ for the set of elements in G which are conjugate to an
element of X.

For a maximal torus T of G, write 1" for the subset of its
regular elements; that is, for the (open) subset of all its elements
which have three distinet eigenvalues. These are precisely the
elements whose centralizer in G is T. Write W, or just W for the
finite group N,/T, where N, is the normalizer of T in G. Some
useful facts about a maximal torus T are assembled in the elemen-
tary

LemMmA 2.1.1. If t is a regular element of T, then there exists
an open closed conjugation invariant mneighborhood of cl(t) in G
which s contained in the open subset T'C¢.

2.1.2 Let W act on T' x T\G via (&, §)* = (wtw, w™'g). Then

’ G
the map " X T\Cgi::g_lt g realizes T'¢ as the quotient space oy

T x T\G by the action of W.
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T—>FxFx F*
2.1. :
3 The map char: ~ | cy(t), ex(t), ¢5(t)

polynomial of t is \* — c,()\* + c,(E)N — ¢,(¢), 1s a propver map.
2.1.4 If t is a regular element of T, then cl(t) is closed in G,
T\G —ecl(®)
g—97'tg

where the characteristic

and the map 18 a homeomorphism.

Given a maximal torus 7 and a G-invariant measure @ on T\G,
define the map F'* = F from C(G) to functions on 7" by the formula

F(t) = S flg7'tg)w(g). The integral converges because the restric-
tion of f to cl () has compact support, cl () being closed in G.

LEMMA 2.2. For feC(G), F; is locally constant, has support
which 1s relatively compact in T, and s invariant under conjuga-
tion by elements of W.

Proof. To check that F'; is locally constant, it is enough, by
2.1.1, to consider the case in which the support of f is contained in
T'¢, in which case the result follows from the properness of the
map in 2.1.2 together with Proposition 1.3.

The support of F, is contained in char~* (char (supp f)) N T,
which is compact by 2.1.3.

The invariance of F'; under W is clear.

LEMMA 2.3. The map F:C(T'¢) — C(T")” 1is surjective, where
C(T")" 1is the set of W-comjugation invariant elements of C(T").

Proof. That the map is defined, that is, that F'; has compact
support for f in C(T"%), follows from the properness of the map in
2.1.2. For surjectivity, note that the map

C(T" x T\G)— C(T")
f—(t—1\_ 1t 90@)

is onto. This is a W-map, and so its restriction to a function from
C(T"%) = C(T" x T\G)" to C(T")" is also onto.
If v is any element of (G, semisimple or not, cl(v) is locally
closed in G, cl(v) is homeomorphic to G(v)\G, and G(v) is unimodular.
For v in G and f in C(G), let D(v, f) equal ng\af(g"lvg)dg,
where dg is the G-invariant measure on G(v)\G which assigns
measure 1 to G(")\G(v)K. That this integral converges even in the

case in which cl (v) is not closed may be seen from the expressions
in Table 1.
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Table 1

D:(f) = D(v, f) = ¥i(x)

2 —_ 2 — 1 2
DXf) =D@: f) = 1=/ (1/q>2"1f'f(x; x)

5 _ 3 _ 1 3
DXf) =D0i f) = (1—_(—1—/(1))2“/0(90, x)

vy Di,(f) = D%, f) = ——yix, )
[z — y|

1

Dgy =D 3:,11; =
v#Y Deul) = DO 1) = iy Te =T

Vi@, ¥)

where
x 0 0 x 1 0
v=1x-1, v =(O X 1> vi =(0 X 1)
0 0 z 0 0 =«
x 0 0 x 1 0
rFY vi,y=( x 0) v;,,,:(o % 0)
0 0 y 0 0 y
and
vi®@) = f(r)
x 0 A
¥, v) = | f<k1<0 z B)lc)ddedB
0 0 y
x A B
¥, v) = | f<lc—1(0 z C k)ddedBdC
0 0 vy
k varies over K L dk =1
and

A, B, C vary overFS dA:S dB:S dC =1
R R R
x, ye ™.

The unexplained symbols at the left of each line of the table are
to be defined by the equations in which they appear. Note that
Py € C(F™*) and that %, % e C(F™ X F™*).

The derivation of the formulas in Table 1 is quite similar to
that of the analogous formulas for orbital integrals on lie algebras
appearing in [18]. More precisely, for each element v of G, a parabolic
subgroup P(v) containing G(v) may be selected such that G = P(v)K,
and an algebraic subgroup H(v) of P(v) may be selected such that
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G(v)N H(v) = {1} and G(v)H(v) is open and dense in P(y). For
instance, one can take P(v:,) = {(a;)|ay, = a, =0} and H(v:i, =
{la;pley; =1, a, =0, and a,; =0 if 7 > j}. By standard lemmas,
if feC(G(7)\G), then

[ @7 = /A Wb
GG H() <K

where dh and dk are suitably normalized Haar measures on H(v)
and K. Writing this integral formula explicitly in each case and
keeping careful track of the Haar measures which must be used
leads directly to the formulas in Table 1.

DEFINITION. For ze F'™*, let %, be the set of elements in G
with characteristic polynomial (A — x)’. For (x,y)eF* X F* — 4,
where 4 is the diagonal set in F* x F*, let %, be the set of
elements in G with characteristic polynomial (A — z)*(n — ¥).

Note that if X is a compact subset of G such that 2/, N X
(respectively, 2r,,N X) is empty, then G — X contains an open
closed invariant neighborhood of %7, (respectively, #,,,).

LEMMA 2.4. Let xcF* and let feC(G) be such that DXf) =
Di(f) =Dif)=0. (Respectively, let x,yecF* X F* — 4 and let
FeC(G) be such that D2 (f) = D: (f) =0.)

Then there exist functions @, € C(@) and elements g;€ G such that
f— 3 (Ad(g)p; — @) wanishes om an invariant closed neighborhood
V of Z, (respectively of Z,,,).

Proof. Suppose feC(G) is such that DiXf) = Di(f) = Dif) = 0.
Because f is zero on cl (7)), the restriction f of f to cl(v2) has
compact support. Proposition 1.5 applies to produce funections
@, eClcl (v2)) and elements g, G such that f— 3 (Ad(g)P, — @,) is
identically zero. After extending the @, by zero to the set el (vi) U
el (v2) which is closed in G, then further extending to elements @, €
C(G@) in any way, which is possible by Proposition 1.1, and then
replacing f by f— > (Ad(g)p; — ®,), it may be assumed that f is
zero on cl(vi) Uecl(v?). The argument just used on ecl(v?) now
applies to ¢l (v2), which proves the desired result.

The proof in the respective case of Z,, is similar. The chain
cl(v) cel(¥h) Uel (v3) €z, of closed subsets of G must be replaced
by el (v,,) © Z.,,-

LEMMA 2.5. Let all hypotheses be as vn Lemma 2.4. Then there
exists an open compact subgroup B of G such that D(f) =0 for all
D e I(¥1B%) (respectively, for all De I((~2,B)%)).
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Proof. Choose B to be an open compact subgroup contained
within (v;)'V (respectively, (v%,)~'V).
A major tool is

THEOREM 2.6 (Howe). Let H be a compact open subgroup of G

and X a compact subset of G. Then the map of I(X% into D(G/H)
has finite rank.

Proof. This is conjecture 2 of [11]. A proof for GL (3) is an-
nounced on page 379 of that paper.

THEOREM 2.7. Let H be a compact open subgroup of G.

(1) Let xe F*. Then there exists an open compact subgroup
B of G such that the image of I(v:B®) in D(G/H) is contained in
the span of the images of D:, D2, and D} in D(G/H).

(2) Letwx,ycF* x F* — A. Then there exists an open compact
subgroup B of G such that the image of I(7:,B)°) in D(G/H) is
contained in the span of the images of D:, and D:, in D(G/H).

Proof. Since the proofs of (1) and (2) are altogether similar, only
(1) will be proved.

Let V, = {f e C(G/H)|Di(f) = DXf) = DXf) = 0}.

Let Vi, = {f € V,|D(f) = 0 for all De I(viK%)}.

By Theorem 2.6, V,, is of finite codimension in V,, whence by
Lemma 2.5 there is an open compact subgroup B contained in K¢
such that I(v1B®) annihilates V,. This B fills the bill.

COROLLARY 2.8. Let T be a maximal torus of G and let @ be
a G-invariant measure on T\G.

(1) Let xcF*. Then there exist locally comstant fumctions
A, A2, A2 on T' such that for each fe C(G)

Fy = @137 + i, @42 + 45, 0)42°

on the intersection of 1 and a meighborhood of . which depends

on f.
(2) Let x,ycF* X F* — 4. Then there exist locally constant
functions A2: and A2} on T such that for each feC(@)

Fy = i, y)42y + i@, )42

on the intersection of T' and a meighborhood of 73, which depends

on f.

Proof. The only assertion that this corollary makes beyond that
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of Theorem 2.7 is that the A2* and 42; are locally constant. But
this follows from the fact that F'¢ is locally constant together with
the existence of functions fe C(G) satisfying any one of the follow-
ing three conditions:

(1) Df) = DXf) = 0; Dif) =+ 0.

(ii) Di(f) = 0; Df) # 0.

(i) D2,(f) = 0; DZ,(f) 0.

A maximal torus T of G will be said to be split, quadratic, or
cubic, depending upon whether the characteristic polynomials of
regular elements of T split over F, have an irreducible quadratic
factor, or are irreducible. The conjugate classes of quadratic
(respectively, cubic) tori of G are in natural one-to-one correspondence
with the quadratic (respectively, cubic) field extensions of F.

Let {T,|a € A} be a (finite) set of representatives of the conjugate
classes of maximal tori of G. In the rest of this paper it will be
assumed that the split element of this. collection is the group of
diagonal matrices of G and that each quadratic element is a subgroup
of the group of matrices of the form (a,;) with a;; = @, = a5, = a5, = 0.
This assumption implies that the nonregular elements of each T,
are all diagonal matrices. Let A’ be the set of &« ¢ A for which T,
is cubic.

For each a € A choose a G-invariant measure @, on T,\G. When
used as an index, T, and w, will be systematically replaced by «.
For future purposes of comparison with division algebras, it will be

assumed that the w, have been chosen so that F4t) = S g tg)w(g)
zZ\G

for all o€ A’, where w is a fixed invariant measure on Z\G inde-
pendent of «a.

THEOREM 2.9. Let {@,|a € A} be a collection of functions @, on
T,. The following two conditions are equivalent.

(1) There exists fe C(@) such that @, = F¢ for all ac A.

(2) (@) For each ac A, @, is locally constant, has support
which s relatively compact in T., and is invariont under conjuga-
tion by elements of W,, and (b) There exist functions o, € C(F*) and
ey s € C(F™* X F™*) such that:

For each x <€ F™*

Dy = u(@)AT" + a0, )AD7 A+ A, )AZ3

i o neighborhood of v: in T, all ae A; and for each x, ye F*X
F* — 4

D, = (@, YAZ; + (2, YAZ

in a neighborhood of i, im T all split and quadratic «e A.
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Moreover, if these two equivalent conditions are met, then n(x) =

@), (@, ¥) = Y@, ¥), and 5, ¥) = ¥, y).

Proof. That (1) implies (2) and the moreover clause is just a
restatement of Corollary 2.8.

Assume now that condition (2) is satisfied. Once a function
e C(G) is produced such that ) = +, ¥5 = o, and 4% = 4, Lemma
2.8 concludes the proof; for then @, — F'¢ will be in C(T")"« for all
ac A. In producing such f, five closed subsets of G, X,, X;, X;, X,,
and X,, will be needed. They are defined as follows.

X =7z X=X Uecl®)
reF*
X, =X, xEJF el (v2) X.=X; U el

2,y € F*¥X

X, =X, U cl(, ={9ecG|g has multiple eigenvalues} .

z,y € F*XIF*

The next five maps are all homeomorphisms.

(i) F*— X,
x— 7k
(i1) F* x GO\G — X, — X,
x g —97'7g
(iii) F* X Gv\G— X; — X,
x g —9'7g
(iv) (F* x F* — 4) x G \G— X, — X,
®, Y g — 975,09
(v) F* X F* — 4) X G )\G— X, — X,
z, Y g — 97,9 .

Note that the centralizer subgroups G(v3), G(73), G(v%,), and G(v3,)
which appear above do not in fact depend on z and y.

Using now Proposition 1.1 and the above homeomorphisms, the
next five maps can be seen to be surjective. This is precisely what
is required to produce the sought for fe C(G).

(i) C(G) — C(F'*)
fo— ()
(ii) C(G — X)) — C(F'*)
f =i, v
(iii) C(G — X,) — C(F'*)

fo i, @)
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(iv) CG—X;)— CF* X F* — 4)
(v) CG— X,)—> CF* X F* — 4)

fo e, ) .

For the application in mind, the germs A%' must be known ex-
plicitly for all ¢ € A4 and all x€ FF*. Recall that the w, have been
chosen so that F(t) = L\G flg7'tg)w(g) for all ¢ € A’, where @ is an
invariant measure on Z\G independent of a.

THEOREM 2.10. (1) For a split or quadratic torus T,, AP is
zero mear ..

(2) For acA’, A>' is a monzero comstant A(®w) depending on
o but independent of x and a. For = dz\dg, where S dg =1

and S dz =1, A(@) = 3¢~°/(1 — 1/g)(1 — 1/g). 5

Proof. (1) For T, split or quadratic, there are standard
formulas, q.v. [8], p. 92-93, which rewrite the integral defining F'¢.
If T, split, they imply directly that 4»* = 0. If T, is quadratic, they
together with the theory of orbital integrals on GL (2, F'), which is
presented in §4 of [17], imply that 42! = 0.

(2) This has been proved as Lemma 7.4 of [16].

The analogue of Theorem 2.9 for a division algebra is much
more trivial. Let G’ be the group of nonzero elements in a central
division algebra D of finite rank over a nonarchimedean local field
F' of any characteristic. Let v and = be the reduced norm and trace
from D to F. Let Z be the center of G', and let @' be a nonzero
invariant measure on the compact group Z\G'.

THEOREM 2.11. The following map s defined and surjective.
R: C(G") — C(G")™
P Rop: v S P(9779)@'(9) ,
zZ\G'

where C(G")™ s the set of class functions in C(G').

Proof. The integral converges, since Z\G' is compact. That Rp
is locally constant and has compact support is due to the fact that
conjugation preserves the valuation on D. Rg is clearly a class
function.
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If o' gives measure 1 to Z\G’, then the restriction of R to
C(G")™ is the identity; thus for any ', R is the multiple of a
projection onto C(G")™.

Let now F' be of characteristic zero, and assume that D is of
rank 3* over F. Let {T,|aec A’} be a set of representatives of the
conjugate classes of maximal tori of G’, where the indices « are the
same as those which index the cubic tori in the previously chosen
set of maximal tori of G. As is suggested by the notation, the
subgroups T, of G and T, of G’ will be frequently identified by
means of an isomorphism which will be fixed once for all. For ¢
C(@), define F?= = F'; to be the restriction of Ry to T,. It depends
on w'.

Let « be a nontrivial additive character of F. Let dx and da’
be the Haar measures on M, (F') and D respectively which are self
dual with respect to the characters 4-oTr and +oz. The invariant
measures (dz/|detz|}) on G and (d#'/|v(x')]}) on G' are said to be
associated. Invariant measures @ on Z\G and o’ on Z\G' are said
to be associated if @ = dz\dg and @’ = dz\dg’ where dg on G and dg’
on G’ are associated measures and dz is an invariant measure on
the center Z of G and G'.

THEOREM 2.12. There exists a linear map

C(G) — C(@)
p — f

such that
(1) For each pair ®, @' of associated measures on Z\G and

Z\G',
Fea = Fea for all acA’

(2) P@)=f() all zeZ
(3) D, f) =0 if YeG is not an element of a cubic torus.

Proof. Given @, f will be produced by Theorem 2.9. The func-
tions «, and +r; in that theorem are to be taken identically zero.
Because A*! is zero for split and quadratic «, @, can be taken
identically zero for such «.

Let w, @' be a pair of associated measures on Z\G and Z\G'.
For a € A’, take @, = F¢=. Theorem 2.11 implies that for each x € F'*,
®, = p(x)A(®") in a neighborhood of 2 in T%, where A(®') = S . o'(7).

Z\G'
Theorem 2.12 will be established upon verification that A(w) = 4(@’).
Let o' = dz\dg’, where dg¢’ is the invariant measure on G’
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determined by an additive character +» of F' of order zero and where
dz is such that S dz = 1. An easy computation shows that

Z(R)

If dg is the measure on G associated to dg’, then a similar computa-

tion shows that
Jodr= (=)0 =20 -5)

Comparing these results with Proposition 2.10 now concludes the
argument.

3. Local computations. Let F' be a nonarchimedean local field
of characteristic zero. Let G, G’, and all other notation in this
section be as in §2. Associated Haar measures dg on G and dg’ on
G’ and a Haar measure dz on Z will be fixed once for all. Denote
by @ and @ the quotient measures dz\dg and dz\dg’ on Z\G and
Z\G' respectively.

The Weyl integration formulas are as follows. See [8], Lemma
42. For each ac A, let v, be a Haar measure on Z\T,. For each
a € A (respectively, A'), let w, (resp., w}) be the invariant measure
on T\G (resp., T,\G') which is the quotient of ® by v, (resp., @’
by v.). Then for integrable f on Z\G and integrable ¢ on Z\G,

s 1 o
|, 00w = 52| o, | setoe.mmo
and
o P = Z |00, oo twrei@mo

where in both these formulas, 6(t) = |I1.x; X — 7:/7;) s, Where 7, 7,,
+, are the distinet roots of the reduced characteristic polynomial of ¢.

Let @ = Useu Z\T,. The union is to be regarded as a discrete
union. Define the measure ¢t on & by

1 1 S
= t)0(t )V (ts) -
|, FOMO = 5, 13T e GETEY Ve, 00
Let 7 be a unitary character of Z. Define the space &<*(%) to
be the space of complex-valued measurable functions f on U... T%
such that
(1) f=t) = nz)f(t) for all ze Z and all t € U e T
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(ii) the restriction of f to T, is invariant under conjugation
by elements of W,.

i | fofouo < .
(7)) is a Hilbert space with the inner product

o= | AT -

Let ' be an admissible irreducible representation of G’. Because
Z\G' is compact, 7' is finite dimensional. The character ©. of z’is
the function on G’ defined by the equation 6..(g) = Trace z'(g9). C(G")
acts on the space of 7’ via the formula

7(@) = | p@)m @)y .

The trace of 7'(¢) equals SGI 0.(9")p(g")dg'.

A representation 7’ of G’ is said to be an #»-representation for
a quasicharacter 7 of Z in case 7'(z) = 9(2)1 for all z€Z. For an
admissible irreducible 7-representation 7’ of G’, 6.(zg) = 7(2)0..(g)
for all ze Z and all ge G’. Denote by & (G', ) the set of equivalence
classes of admissible irreducible 7-representations of G’. By abuse
of notation an 7)-representation n’ will sometimes be identified with
its equivalence class in & (G, 7).

PROPOSITION 3.1. Let 7 be a unitary character of Z.

(i) {Oc}eerw.n is a complete orthomormal set for FX%).
(ii) Let pcC(G@) and let n’ e & (G, 7).

Then

Trace z'(@) = (O, Jopy

where
Jo(o) = S Po(g~teg)@'(9)
Z\G
and

Pop(g) = Szc,v(gz)v(z)dz .

Proof. The first assertion is a consequence of the Weyl integra-
tion formula and the Peter-Weyl theorem. The second follows from
the Weyl integration formula.

The analogous theory for G is much more difficult. Most
admissible irreducible representations = of G are infinite-dimensional;
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thus a character cannot be defined in the same manner as for G'.
It is true, though, that for all feC(G), n(f) has finite rank. It
has been shown, [9], p. 189, that there exists a locally constant
function 6, on U,.., T.¢ which is locally integrable on G and such
that

Trace 7(f) = | 6.(0)f(9)dg

for all fe C(G@). O, is called the character of x.

PROPOSITION 3.2. Let 7 be a unitary character of Z, let w be
an admissible irreducible n-representation of G, and let ¢ e C(G').

Let feC(G) be the image of @ under the map of Theorem 2.12.
Then

Trace n(f) = (O, J,»,

where J, 1s as in Proposition 3.1.

Proof. This is an immediate consequence of the Weyl integra-
tion formula and the fact that

Ji©) = Qfgeqalg)

where
Qo) = | foomez.

Let P be a parabolic subgroup of G. Let P= MN be a Levi
decomposition of P, with N the unipotent radical of P. Let o be
an admissible representation of M. Lift ¢ to P by demanding that
o(mn) = o(m). Let w = Ind% (o) denote the representation of G by
right translations on the space of locally constant functions f on G
with values in the space of ¢ and such that f(pg) = 4¥%(p)a(p)f(g)
for all pe P and geG. Because P\G is compact, 7 is admissible.
The importance of induced representations of this type is given by
a theorem of Jacquet, [12]; every admissible irreducible representa-
tion of G is a subquotient of Indf (¢) for some parabolic subgroup
P = MN and some admissible irreducible supercuspidal representation
o of M. In fact, for most ¢, Indé (¢) is known to be irreducible,
[2].

Let P be the subgroup of upper triangular matrices of G, and
let M be the subgroup of P consisting of the diagonal matrices.
Then Ind¢ (45*?) is not irreducible. It has an important quotient
representation which will be denoted Sp (1); this is an admissible
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irreducible unitary representation whose character is equal to the
Steinberg character; its existence is proved in [3]. For what follows
it is necessary only to know that the restriction of O, to Uses T%
is identically one, the same as the restriction of 6. to Uscs T
where 7' is the trivial one-dimensional representation of G'. For a
quasicharacter X of F™*, Sp (X) will denote the representation Sp 1) ® X
of G. Sp(X)is a X* representation of G. The representations Sp (X)
will be called the special representations of G.

Gelfand and Kazhdan have defined in [5] the concept of a non-
degenerate representation of G. It is known, see [1], p. 65, that
for a Jordan Holder series of Ind¢ (¢), with ¢ supercuspidal, exactly
one irreducible subquotient is nondegenerate. A complete list of the
isomorphism classes of admissible irreducible nondegenerate represen-
tations of G has been obtained in [15] by determining explicitly the
lattice of subrepresentations of Indf (¢) for all parabolic subgroups
P and supercuspidal representations ¢. The result includes

PROPOSITION 3.3. Let @ be an admissible irreducible mnon-
degenerate representation of G. Then exactly one of the following
18 true.

(1) 7 is supercuspidal.

(ii) = 1s special.

(iii) = 4s isomorphic to a representation Ind$ (o), where P =
{(a;)) cGla;, = ap, = 0} and o is an admissible irreducible but not
necessarily supercuspidal representation of

M = {(a;;) C Play, = ay = 0} .

COROLLARY 3.4. Let w be an admissible irreducible nondegenerate
representation of G which is neither supercuspidal nor special. Then
the restriction of 0, to Us.n T3 is identically zero.

Proof. The reason is that no element of .., T%7 is conjugate
to an element of P. Formally, one uses Theorem 1 of [9].

Let 7 be a quasicharacter of F'*. Denote by &,(G, 3) the set of
equivalence classes of admissible irreducible 7-representations of G
which contain either special or supercuspidal representations.

PROPOSITION 3.5. Let 7 be a unitary character of Z. Then
{B:)zes,em 8 am orthomormal subset of (7).

Proof. That the set of O, with supercuspidal 7 € &,(G, 1) is an
orthonormal set is precisely Theorem 17 of [8]. That the set of
Ospy With X a quasicharacter of F'* such that X* = 7 is an orthonormal
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set follows from Proposition 3.1 and the fact that O, gives the
same element of .&*(%) as the character of the representation Xoyp
of G'. It remains to be shown that O,; and ©. are orthogonal in
A7), where Sp (X), we &,(G, ) and « is supercuspidal.

More generally, let 7, and #n, be nonisomorphic admissible ir-
reducible 7-representations of G, with =, surercuspidal. It will be
shown that (6., 0.), =0. Let v be a unit vector in the (unitary)
space of 7,. Define the function f on G by the equation f(g)=
(v, m,(g)vy. Since 7, is supercuspidal, f has support which is compact

in Z\G. Define 7,(f) to be the endomorphism S flo)7(9)w(g) of the
Z\@

space of ;. Then 7,(f) is zero because 7, and 7, are not isomorphic.
Hence Trace7,(f) = 0. But

Trace ©,(f) = SZ\G 0-,(9)f(9)w(7)

- a§€;|4 [Wl’al Sz\r;, a(t)@”‘(t)gr

. S(97t9)@.(g)va(P) .

a

By Lemma 45 of [8], S flg7tg)w,(g) = 0 for all a¢ A’. For ac A,
T\G
1

STQ\G Ao~ tg)odg) = meas, (Z\T,)

|, fotao) .

Z\G

It is shown on p. 94 of [8] that there exists a nonzero constant d
such that

|, fetgee) = d-6.@

for all ¢€ A’ and all teT,. Thus
Trace m,(f) = (O, O-,>,, and the proof is concluded.

4. Independence of characters—nonramified representations.
Let now G be GL (n, F'), where F is a nonarchimedean local field
with valuation ring R, and let K be GL (n, R). Let ¢ be the module
of F.

For a representation (7, V) of G, let V* be the subspace of ele-
ments of V which are fixed by all elements of K. An admissible
irreducible representation (z, V) of G is said to be nonramified if V*
is not the zero subspace of V, in which case it has dimension one.
For this and other facts about nonramified representations used here
see [19] and [12].

The set of isomorphism classes of nonramified representations
of G is in one-to-one correspondence with the set C**/S,, where S,
is the symmetric group which permutes the factors of C**. The
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representation which corresponds to the n-tuple z = (2, - - -, 2,) may
be realized as an irreducible subquotient 7, of the G-representation
Ind§ (X,), where B is the group of upper triangular matrices, and X, is
the quasicharacter of B whose value on the matrix (b;;) is TT, z5™%.

LEMMA 4.1. If w, is a unitary representation of G, then
( 1 ) (Ely Y E%)Sﬂ(zl_ly Y z;1>7

and
(2) ¢ 2| S g, =12, n

Proof. (1) From the construction of z, it may be seen that
7; is isomorphic to the representation complex conjugate to =, and
that 7,-: is isomorphic to the representation contragredient to =..
If 7, is unitary, these two must be isomorphic.

(2) See [6], pp. 81-82.

Let X* = {z € C*" such that the two conditions of 4.1 hold}. Let
X be the compact Hausdorff space X*/S,.

Let H be the algebra of measures on G which are left and right
translation invariant by elements of K and have compact support.
Once a Haar measure dg on G is fixed, H can be identified with
C(G//K), the space of functions on G which are left and right trans-
lation invariant by elements of K and have compact support, via
the correspondence

CG/|IK)—H
f——5(9)dg .

In this section, though, this identification will not be made use of.
H acts on the space of every smooth representation (z, V) of

G; for pe H, n(y) is defined by the equation z(p)v =S w(g)ve(g)
G

for each ve V. This integral is actually a finite sum. The trans-
formation 7(¢) maps V into V*. Hence if (7, V) is admissible, then
w(y) is of finite rank so that the trace of =(y) is defined. Trace
() will be denoted by f(x).

H is a finitely generated commutative C-algebra whose structure
is completely known; H is isomorphic to C[Z, Z7%, ---, Z,, Z;']°",
where S, is the symmetric group on the indeterminants Z,, ---, Z,.
The isomorphism is such that p(z,) is equal to the value that the
polynomial in C[Z, Z7*, ---, Z,, Z;']°» corresponding to p takes on
the point (Z,, -+, Z,) = (2, -+, 2,)-

Let {F;|n€ 4} be a family of nonarchimedean local fields. Let
G; be GL (n, F;). Similarly R,, q,, K;, H;, X; will be used to denote
the previously defined unsubscripted objects when the local field F
is replaced by F;,. Let e, denote the identity element of H,.
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Let G, be the product of the groups G, restricted with respect
to the open compact subgroups K.

The notion of a restricted tensor product has been defined in
[13]. Let H, be @., H;, the tensor product of the H, restricted
with respect to the e,.

For each ) € 4, let (7;, V;) be an admissible irreducible nonramified
representation of G,, and let v; be a nonzero element of V%i. The
irreducible G ,representation and H -module 7 = @,,7; may be
defined. The isomorphism class of #x is independent of the w»,. The
7, are determined up to isomorphism by = and are each unitary if
w is a unitary G, representation. For each pre H,, =w(#¢) has rank
zero or one. Trace n(¢) will be denoted by fi(x).

THEOREM 4.2. Let {n* = Q n5|lac A} be a family of pairwise
nonisomorphic irreducible unitary representations of G, as above.
(The 75 are all assumed monramified.) Let {c,|ac A} be a family
complex numbers. Suppose that D, c.fi(n®) is absolutely convergent
to zero for all pe Hy Then ¢, =0 for all acA.

Proof. Let X, be the direct produet of the spaces X,. Each
representation 7* will be identified with the point 2* = (2§);c4 in X,
such that z§ is isomorphic to 7,,. Each pe H, will be identified
with the continuous funection £ on X,.

H, separates points of the compact Hausdorff space X, and con-
tains the constant functions. By Lemma 4.1, H, contains the com-
plex conjugate of each of its functions. Thus the algebra of func-
tions H, satisfies the hypotheses of the Stone-Weierstrass theorem;
H, is supnorm dense in C(X,), the space of continuous complex-
valued functions on X, Theorem 4.2 is now a consequence of

LEMMA 4.8. Let X be a compact Hausdorff space, and let B be
a demse subset of C(X). Let {z*|ac A} be a family of distinct ele-
ments of X, and let {c.|ac A} be a family of complex mumbers.
Suppose that >..,c.f(z%) is absolutely convergent to zero for all
feB. Then ¢, =0 for all acA.

Proof. Suppose ¢,,# 0. The hypotheses imply that >, |c.| < .
Choose a finite subset N of A such that >,,.,_»|c.| <1/6]c,|. Choose
f€ B such that

(1) lf@)] <2 all zeX
(2) [fe) =1
(3) | f(z [0z, all aeN — {a) .

=g ,
-|NI(1 + max {[c.||a@ e N})
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Then

e f(z9)] < M+2ﬁ‘ﬂs3ca .
lago S )|—a91§‘a0}3lN1 5 = 3| ol

This contradicts the hypothesis that >,., c.f(z*) = 0.

5. Independence of characters—general case. Let G be a
locally compact unimodular topological group, and let Z be a closed
subgroup of the center of G. Let w be a Haar measure on Z\G,
and let ¢ be a unitary character of Z.

In this section all representations of G will be understood to be
continuous representations of G by bounded operators on a Hilbert
space. A representation 7 of G will be called an g-representation
of G if 7(2) = &(z)-1 for all ze Z.

Let &G, &) be the Banach =x-algebra of measurable functions
f on G such that f(zg) = £7'(2)f(g) for all ze€Z and geG and for

which || f], = SZ\G |f(g)|w(g) is finite. Multiplication is given by

convolution:

ORI OO OR

The involution * is defined by the formula f*(¢) = f(g~"). For a
unitary g-representation # of G and function fe &PYG, &), define

w(f) = |, _fom0o@ .

LEMMA 5.1. Let B be a dense x-closed subalgebra of <F(G, &).
Let @ and the elements of the set {n®|a € A} be irreducible unitary
&-representations of G such that @ is mot isomorphic to @* for any
acA. Suppose that w(f) and w*(f) for all a € A are Hilbert-Schmidt
operators, for all feB, and write || | for the Hilbert-Schmidt
norM.

Let {c.|ac A} be a family of monnegative real numbers such
that DieeasCe |7(F)]|? ts finite for all feB.

Then for every ¢ > 0 there exists f€ B such that

(1) =(f)+#0
and

(2) Saeatllm NI = elln(H I

Proof. This lemma follows trivially from the simple remark on
page 496 of [13].

THEOREM 5.2. Let B be as in Lemma 5.1. Let {m*|ac A} be a
family of pairwise nonisomorphic irreducible unitary &-representa-
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tions of G. Let {c.|a € A} be a family of complex numbers. Suppose

that w(f) ts Hilbert-Schmidt for all ac A and feB, and that

Swea Ce Trace T*(ff™) is absolutely convergent to zero for all fe B.
Then ¢, = 0 for all ac A.

Proof. Suppose c,, = 0. For all acA and feB, Tra*(f*) =
|lz*(f)|]’. By Lemma 5.1 there exists fe B such that

S e Temi(f) < —feg | Tra(f7) # 0.

ae A—ia,

This contradicts the hypothesis that
> e Tras(ff*) = —co Tr moo( ™) .

ae d—{ag)

6. The Trace formula and the main theorems. Let F' be a
number field, A the adele ring of F, and A* the idele group of F.
Let G be GL (3), and let G’ be the group of invertible elements in
a central division algebra D of rank 3* over F. Let v be the
reduced norm from D to F. A* will be identified with Z(A4), the
common center of G(4) and G'(A). For finite places v of F, let K,
be the subgroup G(R,) of G, = G(F,), where R, is the valuation ring
of F,.

Let S be the finite set of places v of F' for which D, is a
division algebra. Since the degree of D is odd, S contains no
archimedean places. If v does not belong to S, then G, and G| are
isomorophic via an isomorphism which will be fixed once for all.
For such nonarchimedean », K, maps to a subgroup of G, to be
denoted K. Let G. equal [[..cn, Go, and let G2, equal [[.ren. Gi.

Let Z% be the group of ideles @ in A* such that a, =1 for all
nonarchimedean places v of F' and for which there exists a positive
real number » such that a, = » for all archimedean places ». Z3
can be viewed as a subgroup of G.. and GL.

Let dg = I, dg, be a Haar measure on G(A) and let d¢g’ = [], dg,
be a Haar measure on G’(A) such that for v¢ .S, dg, and dg), are

equal; for almost all finite v¢ S, S dg, = 1; and for all veS, dg,

and dg, are associated as in §2. ngt dz be a Haar measure on 7,
and let dg (resp., dg’) be the measure dz\dg on ZI\G(A) (resp., dz\dg’
on ZI\G'(4)).

Let £ be a unitary character of Zi. Let .&7%(@G, &) be the space
of measurable functions 8 on G(F)\G(A) satisfying

(i) 6(zg9) = &(2)0(g) for all z€ Z} and g€ G(A)
and

(i) 1ol= | 0(g) PG < .

Z56(NG ()
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G(A) is represented by unitary operators on <*(G, &) via right
translations. Denote this represention by A. It is an &-representa-
tion. Make the analogous definitions for the space &£*G’, &) and the
G'(A) representation \'.

Let (n;, %G, &) denote the discrete spectrum of the G(A)
representation (A, %G, ). The space of cusp forms in Z£*G, &),
denoted Fi(G, &), is a G(A) subspace of %@, ). The orthogonal
complement of 3G, &) in F%(G, £), to be denoted %G, &), is the
closed linear span of the characters of G(A) of the form X-det, where X
is a unitary Hecke character of A* such that X* restricts to £ on Z%.!
A representation of G(A4) is said to be cuspidal automorphic if it is
a subrepresentation of 7X@, &) for some unitary character £ of Z3.

Let K(G, £) be the linear span of the functions f on G(A) of the
form f(9) = fu(g) [anies fo(9,), Where the functions f, satisfy the
following four conditions.

(i) For finite v, £, € C(G,).

(ii) For almost all finite v¢ S, f, is the characteristic function
of K,.

(iii) f. is an infinitely differentiable function on G. and has
support which is compact in ZI\G...

(1v) fo(z9) = £7%(2)f=(g) for all ze Zf and g € G-...

For each fe K(G, &) and each unitary &-representation 7 of G(A)
define the operator 7(f) to be S s Ag)r(g)dg. Then A(f) acts on

LG, £) via the formula ©

MAOR) = | . f@)0hg)dg .
zhew

Denote by n(f) and n(f) the restrictions of AM(f) to &%G, & and
ZXG, &) respectively.

Let 4G, &) be the orthogonal complement in £¥G, &) of the
space 4G, £) which is the closed linear span of the functions X oy,
where X is a unitary Hecke character of A* such that X* restricts
to £ on Z5. A representation of G'(4) is said to be cuspidal auto-
morphic if it is a subrepresentation of £¥G’, &) for some unitary
character ¢ of Z3.

Let K(G', &) be the linear span of the functions @ on G'(4) of
the form @(9) = Pwu(gw) [Lanites Po(d,), Where the functions @, satisfy
the same conditions relative to G, that the f, appearing in the
definition of K(G, ¢) satisfy relative to G,. Each ¢ e K(G’, ¢) defines
an operator \'(@) on FXG’, &) by the formula

V@om) = |, ole)0he)dd -

3

1 Proof of this assertion in preparation.
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Denote by M\(@) the restriction of \(p) to LG, &). Because
ZEG'(F)\G'(A) is compact, it is not difficult to prove that \(p) is a
trace operator for each ¢ € K(G', &) and that (\/, &£%G, &)) decomposes
discretely with finite multiplicities.

Define a linear map from K(G’, &) to K(G, &) by mapping ¢ =
Poo * [Tsnices Po € K(G', €) to the function f = fu- [Tanue.f, € K(G, &),
where f. = @.; for finite v¢S, f, = @,; and for veS, f, is the
image of @, under the map of Theorem 2.12. This definition is
justified because K(G’, &) is a restricted tensor product in which the
functions @ of the form @ = @.- [Tanie, P» are the decomposable
vectors.

THEOREM 6.1. Let @€ K(G', ). Let fe K(G, £) be the image of
@ under the map above. Then N, f) 1s a trace operator, and
Tr () = Tr V().

Proof. This theorem has been proved by J. Arthur in work
yet to appear.

The rest of this thesis is devoted to the deduction of Theorems
1 and 2 from the equality in Theorem 6.1.

THEOREM 6.2. Let @ and f be as in Theorem 6.1. Then
Tr M(f) = Tr M(@) -

Proof. For a unitary Hecke character X, let m, (resp., @) be a
one-dimensional representation of G(A) (resp., G'(A)) whose character
is Xodet (resp., Xov). The representation \, (resp., A]) is isomorphic
to the sum of the =m, (resp., 7;) for which X* restricts to & on ZI.
It is enough to prove that Trz,(f) = Trz,(p) for all such X, and
that for @ of the form ¢ = [[, @,, with f=TII,f,. But Tra,(f) =
prod, Tr 7, (f,), and Tr 7% (®) = prod, Tr z} (,). The factors in these
products for v¢ S are trivially pairwise equal, and those for ve S
are equal by Propositions 3.1 and 3.2.

It is shown in [4] that every irreducible unitary representation
7 of G(A) on a Hilbert space is isomorphic to a completed restricted
tensor product 7. @asnie, T,, Where . (resp., w,) is an irreducible
unitary representation of G.. (resp., G,) whose isomorphism class is
determined by n. For almost all finite », 7, is nonramified. For
an irreducible unitary g-representation w of G(A) and a function
f=1I.f. € K(@G, ¢), the formula Trz(f)= II, Trz,(f,) is valid, where

mulf) = |, FelgIm(0dg. and 7(f) = | flo)m(g)dg, for al
finite w. For almost all v, 7w, (f,) is the prOJectlon onto the one-
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dimensional subspace of K,-fixed vectors in the space of z,, so that
Tr w,(f,) = 1; thus in the product expression for Tr z(f) almost all
factors equal one. Similar remarks apply to the group G'(A).

THEOREM 6.3. For each finite veS let @) be an irreducible
unitary representation of G,. Let 7l be an irreducible unitary &-
representation of G.. For each veS, let @,c C(G,), and let f,c C(G,)
be the image of @, under the map of Theorem 2.12. Then

>.prod Tr z,(f,) = > prod Tr z'(®,)
T ve S =t veES

where the sum 1is taken over those representations @ (resp., @) in a
decomposition of FiG, &) (resp., LG, &) into o Hilbert direct
sum of irreducible representations for which w, (resp., ) s
isomorphic to ) for v = o and for all finite veéS.

REMARK. By the strong form of the “multiplicity one” theorem
for GL (3), for which see [14] and [21], the sum on the left contains
at most one nonzero term. At this stage the sum on the right is
known only to converge absolutely, though it will be shown later
that it, too, contains at most one nonzero term.

Proof. It may be assumed that 7=} is nonramified for almost all
finite v, for otherwise the sums in the theorem are empty. Let V
be the finite whose elements are the symbol < and the finite places
v of F for which either veS or v¢S and #} is not nonramified.
For each finite v e V, let @} € C(G)). For v = o, let ¢} be a function
on G. which is infinitely differentiable, has support compact in
ZH\G.,, and satisfies the condition @%(zg) = £7'(z)@%(g) for all ze Z}
and geG,. For veS, let f2eC(@,) be the image of @) under the
map of Theorem 2.12. For ve V — S, let f) = ¢} as a function on
G, =G,

Let K(G, ¢ 9" be the subspace of K(G', &) spanned by the
functions of the form @ = [],cr @) [1oer P, Where for all vgV,
@, € H, = C(G'//K,), and for almost all v¢ V, @, is the characteristic
function of K. Let K(G, & 9#°) be the image of K(G, &, ") in K(G, &).

If 7’ is an irreducible unitary &-representation of G'(4) for which
there exists a finite place v¢ V such that #, is not nonramified,
then 7'(p) is the zero map for all p € K(G', &, #°). A similar remark
applies to G(A). Thus

") 2. Tra(f) = 3, Tra'(p)

for all @ € K(G', &, *) where the sum is taken over the = (resp., @’)
in a decomposition of G, &) (resp., FiG, &) into a direct sum
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of irreducible representations for which =z, (resp., z#,) is nonramified
for all finite v¢ V.

Theorem 4.2 can now be applied. The set 4 of that theorem
will be the set of finite places v of F' such that v¢ V. The indexing
set A of that theorem will be the set of isomorphism classes of
representations 7?1 = @,.,7,, where for each wed, =z, is an
irreducible unitary nonramified representation of G, = G.,. The
constant C,+ will equal

> prog, Trz(f2) — 2, proé} Tr z'(@%)
where the sums are taken over those = and #’ as before for which
®,.a7w, and @,.,7, are isomorphic to =4 The fact that the
representations 7, occurring in the theorem at hand are continuous
representations on a Hilbert space but that the representations
occurring in Theorem 4.2 are admissible causes no problem. The
spaces here are the completions of the spaces of Theorem 4.2, and

an element of C(G,) has the same trace on either. So one deduces
that

**) 2, prod Tr z(f3) = 3} prod Tr z'(9,)

where the sums are now over the = and n’ such that z, and z) are
isomorphic to =} for all finite v ¢ V.

The proof is concluded by applying Theorem 5.2 to the groups
G, for ve V — S and the equation (**) in a manner entirely analogous
to the just completed application of Theorem 4.2 to the group G,
and the equation (*).

Part of Theorem 2 can now be proved and will be stated as

COROLLARY 6.4. Let 7' = @, w, be an irreducible subrepresent-
ation of N;. Then there exists a unique irreducible subrepresentation
T =@Q,7%, of N such that m, = x, for almost all v¢S. Moreover,
T, =7, for all ve¢S, and w, is special or supercuspidal for all
veSs.

Proof. The uniqueness comes from the “strong multiplicity one”
theorem for GL (3).

If # did not exist with =, = # for all v ¢ S, then the left hand
side of the equality of Theorem 6.3 would be zero. That would
contradict the conclusion reached by applying Theorem 5.2 to the
group [[,.sG..

It has been proved in [21] that for every irreducible sub-
representation 7 = @, 7, of \,, 7, is nondegenerate for all v. Thus,
if there existed v € S for which 7, were not special or supercuspidal,
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then by Proposition 3.2 and Corollary 3.4, the left hand side of the
equality of Theorem 6.3 would still be zero. That would lead to
the same contradiction as before.

Most of Theorem 2 is an immediate consequence of the combina-
tion of Corollary 6.4 and Lemma 6.5 below. The only assertion of
Theorem 2 left unproved is that if # ~ n’, where = and #’' are ir-
reducible subrepresentations of ), and A} respectively, then =, ~ 7,
for all veS. That assertion is equivalent to the fact that the
constants a. which appear in the statement of Lemma 6.5 are all
equal to one. That in turn is a consequence of Theorem 1, whose
proof has yet to be discussed.

LEMMA 6.5. Let # = @, %, be an irreducible subrepresentation
of N, such that w, is special or supercuspidal for all veS. Then
there exists a unique trreducible subrepresentation ©° = @, T, of N
such that w, ~x, for all v¢S. Moreover, for each veS there is
a constant, a. = +1 such that 0. = a.0., on s, Tey and
prod,csa., = 1.

Proof. Let n be the central character of . For each v¢€S,
let 7% be an admissible irreducible 7,-representation of G, such that
{O.,, 0.2, = a., # 0. The existence of 7, is assured by Propositions
3.1 and 3.5. Because O, and 6. are both unit vectors in .&*(7,),
la,,| = 1. For each veS, let ¢, eC(G;) be such that Trzi(e;) =1
and Tr 7, (@) = 0 for all admissible irreducible 7,-representations z,
of G, for which x, # #%.

Theorem 6.3 yields the equation

pro% @, =31
where the sum is taken over those representations #’ in a decom-
position of &F%G’, &) into a direct sum of irreducible representations
for which 7, ~ x, for all v¢ S and =, =~ =} for all veS. It is im-
mediate that there is exactly one term on the right hand side, that
prod,.sa., = 1, that |a. | =1 for all v€ S, and that 6. = a, 6, on
Uses, Te for all veS.

All that remains to be proved is the assertion that a. is real.
Clearly 0z, = a.,03 and O; = .0, where ~ means contragredient
and—means complex conjugate. But x, and z} are unitary, so that
T, = %, and T, =~ 7.

In the deduction of Theorem 1 from the above global results,
the following existence lemma will be made use of.

LEMMA 6.6. Let 7 be a unitary Hecke character of A* such that
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N restricts to & on ZL. Let V be a finite set of finite places of F.
For each veV, let &, be an admissible irreducible 7),-representation
of G, which is supercuspidal if v¢S. Then there exists an irreduci-
ble subrepresentation ' of N with central character 7 and such that
T, = 7y for all ve V.

Proof. For a unitary Hecke character X of A*, let A, be the
representation of G'(4) by right translations on the space F¥G', X)
of complex-valued measurable functions 6 on G(F)\G'(A) satisfying
1) 6(zg) = X(2)0(g) for all zeZ(A) and ¢geG'(A) and (ii) ||0].=

16(9) I'dg < oo.
Z(A)G'(FI\G'(4)

Because ZLZ(F')\Z(A) is compact, N = @; \;, where the sum is
over all unitary Hecke characters X such that X restricts to £ on
Z%. The representation 7’ demanded in the theorem will be found
as a subrepresentation of ;.

For each »e V, let ¢, be a matrix entry of #%; that is, @, is a
function on G, defined by the equation ¢,(g9) = {gw,, W,y where w,
is a vector in the space of #) and @, is a vector in the space of the
represention contragredient to z%. Assume that ¢,(1) # 0 for each
ve V. Define the function p =@,.» @, on G, = [[,.» G,. The support
of @ is compact in Z,\G7.

Let @' be a continuous complex-valued function on the restricted
product Gy. = I[,.v G, satisfying the three properties

(i) 9'(z9) = 9(z)@'(g9) for all z€ Z,. = Z(A) N Gy. and all g € Gy..

(ii) The support of @’ is compact in Z,.\Gy-..

(iii) ') = 1.

Define the function & on G'(4) by the formula @&(g) =
Svezmem P R P'(vg). The sum converges; in fact, because
Z(F)\G'(F) is discrete in Z(A)\G'(A), only finitely many <~ enter
nontrivially into the sum for any g in any fixed set which is compact
mod Z(A). Hence @ e &F¥G, n).

Notice next that for a fixed neighborhood X of 1 in G} which
is compact mod Z,, ¢’ can be taken, by shrinking its support if
necessary, so that only the term v =1 gives a nonzero contribution
to the sum defining @(g) for any ge X. Let ® be the function on
G, defined by @(g9) = ¢(97"). By the preceding remark applied to
X = supp &, choose @’ so that only the term v = 1 enters nontrivially
into the sum for $(9)0(9) = Xrczirne'wn P(9)P Q P'(vg) for any geGi.

The function & acts on the space of \; via the formula

M@ = |

Moreover, AM(P)® # 0, In fact, A(P)P(1) +# 0, as is seen from the
calculation

L P@N)d7

Zy\Gy
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M@ = | F)0gdg = | #o)padg # 0.

7\ Zy\

This concludes the proof. For on the space of an irreducible
y-representation 7’ = @, n, of G'(A) for which there exists veV
such that =, # =), the operator

@10 #omwas,

Zp\

where 7, = @,.r 7., is the zero transformation.

Theorem 1 can now be proved.

Let E be a nonarchimedean local field of characteristic zero, and
let H be a central division algebra of rank 3* over E. Let ¢’ be
an admissible representation of H*. A special or supercuspidal
representation ¢ of GL (3, EF) such that ¢ ~ ¢’ is sought. Of course,
o will have the same central character as ¢’. After noting that ~
is compatible with twists by quasicharacters of E* and that ¢’ is
the twist by such a quasicharacter of a unitary representation, it
may and will be assumed that ¢’ unitary. That ¢ is unique up to
isomorphism follows from Proposition 3.5.

If ¢’ is one-dimensional and hence of the form Xop for some
character X of E*, then ¢ can be taken isomorphic to Sp (X).

Suppose the dimension of ¢’ is greater than one. Let F be a
number field with a place v, such that F, =~ E, let D be a central
division algebra over F' such that D(F,) = H, let G = GL(8), and
let G¢' = D*. Identify G'(F,) with H*.

Let S be the set of places of F' at which D does not split. Let
7 be a unitary Hecke character such that 7, extends the central
character of ¢’ and 7, is a cube for all veS — {v,}. Let £ be the
restriction of » to Zi. Apply Lemma 6.6 to the case in which
V=28, n}, = 0¢’, and w is a one-dimensional 7,-representation for all
veS — {v}. The conclusion is that there exists an irreducible sub-
representation 7’ = @, w, of Z*G’, ¢) such that =, =~ ¢’ and x|, =z
for all veS — {v,}. Since the dimension of =z’ is greater than one,
7’ is actually a subrepresentation of 3G, &).

Let © be the subrepresentation of &G, &) such that = ~ «’.
With the notation of Lemma 6.5, 0. = a0, for all v&S. Prop-
osition 8.5 together with the fact that z is one-dimensional implies
that 7, is special for all ve S — {v,}; thus a. =1 for all such ». The
relation prod,.; a., = 1 establishes that ax, =1 that is, 0 = &, ~ 0’.

Proposition 3.5 and the completeness assertion of Proposition 3.1
together imply that for every admissible irreducible special or
supercuspidal representation ¢ of GL (3, F) there exists an irreducible
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admissible representation ¢’ of H* such that o ~ o¢’. Herewith
Theorem 1 is proved.
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