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A NOTE ON REAL ORTHOGONAL MEASURES

PATRICK AHERN AND N. V. RAO

Let X be an open Riemann surface and K a compact
subset of X such that X—K has only finitely many connected
components. Let R(K) denote the space of meromorphic
functions with poles off K. In this note, we investigate
the space of real measures supported on dK and orthogonal
to R(K) and connect it with the first homology group of
the interior of K.

1. Introduction and preliminary notations. Let X be a fixed
open connected Riemann surface; K a compact subset of X such
that X — K has only finitely many connected components. Let
& (0K ) denote the space of all real valued continuous functions on
0K; Z#(K) denote the space of all meromorphic functions on X with
poles outside K; Re &#(K) denote the closure of the space of real
parts of functions in ZZ(K) under the sup norm on 0K. Let . #Z(K)
denote the space of all measures on 0K that are orthogonal to H#(K)
and m(K) denote those measures of _#Z(K) that are real.

The sole purpose of this note is to establish the following
theorems.

THEOREM 1.1. There exists a mnatural isomorphism between

m(K) and the first cohomology group of K (which we shall demnote
by 2 hereafter) with real coefficients.

THEOREM 1.2. Ome can select a set of functions depending only
on a homology basis of 2 in a natural way so that they form a

basis for & (0K) modulo Re #(K).

When X is the complex plane, Theorem 1.1 has already been
established by Ahern and Sarason in [2] and Glicksberg in [5].
Walsh [9] already proved in this case that log|z —a;], 171 n
generate Z°(0K) modulo Re <Z(K) where a, are selected one each
from the connected components of X — K. He also saw that they
need not form a basis as in the case of the crescent moon.

The precise determination of which logarithmic terms are neces-
sary was first given in [2] and later by Glicksberg in [5] by another
method. In the case of the plane, we prove these theorems in a
separate note without recourse to the techniques of uniform algebras.

2. Topological preliminaries. We need some results that are
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purely topological and we give proofs where we can not give a
good reference.

THEOREM 2.1. Let U be an open subset of an open Riemann
surface Y such that Y — U has only finitely many connected com-
ponents each of which is noncompact. Then the canonical homomor-
phism i: H(U) — H,(Y) is injective where H, is the first homology
group functor.

Proof. Let K be a triangulation of Y and K™ denote the nth
barycentric subdivision of K and let L denote the subcomplex
made up of all those 2-simplices of K that are contained in U.

Let 7, H(L")— H(Y) be the natural homomorphism. It is
enough to prove that 4, is injective for all n since H,(U) is the
direct limit of H,(L"™). Writing the homology exact sequence

H(Y, L™) — H,(L"™) — H,\(Y)

we see that it is enough to prove that H,(Y, L") = 0. Since the
considerations are the same for all n, we shall drop the superscript
n. Let z = 3%, ns, be any two cycle made up of simplices not in
L such that ze L. Let |z| denote the set of all points that belong
to at least one of the s; i.e., the so-called support of z. We claim
that the topological boundary of |[z| is contained in |L| = support
of L. Let P be a boundary point of |z| and P¢|L|. But Pe|os;]
for some 7. Let a be the 1-simplex of s, to which P belongs. By
hypothesis, a ¢ L. and since o0z C L, this a¢ must get cancelled by
another l-simplex of s; for some j %= 4. Thus if P is not a vertex
of s,, Pe interior of |[z]. And if P is a vertex of s;,, then star of
P must be part of |z|. In either case if P¢|L|, Pec interior of |z|.

Also the interior of |z| must contain points of ¥ — U for other-
wise |z| would be contained in U and hence zc L. Hence the
interior of |z| must intersect some connected component C of Y —U.
Since CN|L| = ¢ and boundary of |z|c|L|, Cc|Z|. But then C
is noncompact whereas |z| is compact. A contradiction! O

Hence 2 =0 1i¢ H(Y,L)=0.
LEMMA 2.2. H,(2) is finitely gemerated.

Proof. We can suitably shrink the ambient Riemann surface
X to X, so that K< X, X, — K has finitely many connected com-
ponents each of which is noncompact and further H,(X,) is a free
Abelian group of finite rank.

By the preceding theorem, H,(2) is a subgroup of H,(X,) and
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hence is a free Abelian group of finite rank.
For complete details regarding barycentric subdivisions, homo-
logy groups ete. one can confer [3], Ch. I.

LEMMA 2.3. Let Y be a connected open Riemann surface and
assume H(Y) is finitely generated. Then there exists a subregion
2, relatively compact and bounded by simple closed curves v, 7., * -,
v, such that every component of Y — 2, is an annulus.

Proof. Canonical form of Y (see [3], p. 94) is (let us say) with
» handles and ¢ contours i.e., by cutting out 2p + ¢ dises out of
the Riemann sphere and then attaching p handles by pairing off
2p of the holes, we get a homeomorph of Y.

Thus by taking off ¢ ringed domains one around each hole, we
get a subregion @, such that every connected component of ¥ — 2,
is an annulus.

DEFINITION 2.4. Let U be an open subset of a Riemann surface
X. A path at z in U is a Jordan arc entirely lying in U except
possibly at one endpoint which is + when z€oU.

Two paths at 2 in U are said to be equivalent if and only if
given any neighborhood N of x, there exists an arc joining the two
paths and lying entirely in NN U. A point 2 is said to be a
multiple point of U if there exist two inequivalent paths at « in U.

LEMMA 2.5. Let K be a compact subset of am open conmected
Riemann surface X such that X — K has only finitely many con-
nected components. Let Q = K. The set of multiple points of 2 1is
countable and given any multiple point x of 2, there exists at most
countably many inequivalent paths at x in 2.

Proof. Let x,€02. Since X — K has only finitely many con-
nected components, there exists a closed parametric disc 4 with
center at x, such that no connected component of X — K is com-
pletely contained in 4.

Let ¢: 4— C denote the coordinate mapping and C, the image
of 4N K by ¢. C is compact and the complement of C is connected
since any connected component of X — K that intersects 4 would
have points on the rim of 4. Thus any multiple point of 2 contained
in the interior of 4 is mapped into a multiple point of ¢ and further
any two inequivalent paths at x in 2 are mapped to inequivalent
paths at ¢(x) in C.

Just for this discussion alone, let us make the convention that
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capital letters denote paths and small letters their extremeties.
Thus xPy shall denote a path P with extremeties «, ¥ and oriented
from x to v.

Now let zPy,, 2Py, be two paths at = in Cand z a multiple
point of C. Assume further that these two paths lie in the same
connected component U of C. We join these two paths by a path
4,Qy, completely contained in U. Then xzPy,Qy.Px is a Jordan
curve completely contained in U but for the point x. Certainly the
interior of this curve must be completely contained in C for other-
wise it would intersect the complement of C thus trapping a con-
nected component of the complement of C. But complement of C
is connected and unbounded leading to a contradiction. Thus
2 Py,Qy.Px is the boundary of a Jordan domain contained in U.
But Jordan domains are locally arc-wise connected even at the
boundary (see Goluzin [6], p. 46). Hence 2Py, and xP,y, are equi-
valent paths at « in C.

This proves that two paths are inequivalent if and only if they
are contained in different connected components of C. Thus the
number of inequivalent paths at a point = does not exceed the
number of connected components of C and hence they are at most
countable.

Now let U, U, be two connected components of C and let x, U
belong to oU, N oU,, xPy,, xP,y, be paths at z in U, and U, respec-
tively and uQ,z,, uQ,2, be paths at u in U, and U, respectively. Let
y.R.z., y.R,%, be two paths lying entirely in U, and U, respectively.
Now interior of the Jordan curve xP,y,R.2,Q,uQ.%,Ry,Px must trap
a component of the complement of C for otherwise it would be
completely contained in C and hence in C joining U, and U, which is
impossible. This means that given any multiple point z of C, we
can associate a pair of coonected components of C where the inequi-
valent paths to «# in C come from and this association is one-to-one.
Since the number of connected components of C is at most countable,
we obtain that the set of multiple points of C is also at most

countable.
Since K can be covered by the interiors of a finite number of

parametric dises, the lemma is proved.

LEMMA 2.6. Let 4 denote the annulus 6 < |2| <1 and ¢: 4—U
be a conformal isomorphism and U be a relatively compact subset
of a connected open Riemann surface X. Assume dU = CU D where
C and D are both compact and disjoint.

Let ¢(lz] = §) denote the set of all points { in X for which
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there exists a sequence z,€4, |z,] >0 as n— c and ¢(z,) —{ as
n — co. By analogy, we can define ¢(|z]| = 1).

Then ¢(]z|=1), ¢(]z|=0) are both connected and either ¢(|z|=1)=
C, ¢(lz] = ) = D or ¢(|z| = 8) = C, ¢(|z| =1) = D.

Proof. Evidently ¢(jz]| = 6) is a closed set in X. Assume that
#(|z| = ) is disconnected i.e., ¢(Jz] = 0) = A, U A, where A,, A, are
mutually disjoint nonempty closed sets in X. Then there exist open
sets Vi, V, such that V;D A4,, 1=1,2 and V,N V,=¢. We claim
that ¢(0 < |z| < 7r)c V,U V, for all » sufficiently close to 4. If not,
there exists a sequence 7, | d and z, with |z,|=7, and ¢(z,) ¢ V,U V..

This is impossible since on the one hand all limit points of
#(2,) would belong to ¢(|z| = 0) and on the other hand should lie
outside V, U V, which is an open set containing ¢(|z| = é).

Since ¢(6 < |z| < 7) is connected, the fact that ¢(0 < |z]| < 7)C
V.UV, implies that ¢(0 < |z| <#)c V, or V, which means that
¢(|z| =0)C Vl or Vz- Since V1m V.= Vzn V=9, ¢(lzl =0)N V.=
¢ or ¢(lz] =0)N V,=¢. That is impossible. Hence ¢(|z]| = d) is
connected. Similarly ¢(|z] = 1) is connected.

Further any boundary point of U must belong either to ¢(|z|=6)
or ¢(|z] =1). Let &e€oU and {{,} be a sequence of points in U
such that {,—{, as »— . Then if 4(z,) =, 2,€4, any limit
point z, of {z,} must belong to 44. For if not, z,, — 2, as bk — o
and z,¢4 and ¢(z,,) = C,, —C = ¢(z,) as k— . But ¢(z) is an
interior point of U and ¢, is a boundary point of U. A contradic-
tion. A similar reasoning would prove that ¢(04) coU. Consequently
#(04) = oU.

This proves that oU has at most two connected components.
By hypothesis 0U has at least two connected components. Hence
C and D must be connected and ¢(|z] = 1), ¢(|z| =) must be
disjoint.

Hence ¢(jz| =1)=C and (Jz| =d)=D or ¢(z|=1) =D and
$(lz| = 9) = C.

LEMMA 2.7. Hypothesis and notation same as in the previous
lemma. There exists a Borel set E [0, 2n] of length 2m such that
lim,_,; ¢(re®), lim,_; ¢(re’) exist for all 6 € E.

Proof. Narasimhan [8] proved that any open Riemann surface
can be imbedded in C? as a closed sub-manifold. Hence there exist
three holomorphic functions +, 7 =1,2,3 such that () = (4(0),
(), 45(0)) from X — C® is a one-one holomorphic map.

Since U is compact, +/U is bounded and hence 406 is bounded
for 7 =1,2,3. By Fatou’s theorem (see [10] pp. 99-100) on radial



254 PATRICK AHERN AND N. V. RAO

limits, there exists a Borel set E [0, 2z] of length 27 such that
lim, , 4r06(1e'), lim,_; 4r,0d(r€”) exist for all de E, 7 =1, 2, 3.

Let 6¢E, »,71 and ¢(r.e"”) —C, as #— co. Then lim, . e
8(r,e”) = (L) = lim, ,; A op(re?) for 4 =1,2 8. Since  is 1 —1,
this shows that {, does not depend on the sequence {r,}. Hence
lim, , ¢(re?’) exists. Similarly lim,_; ¢(re”’) exists for all 4 E.

LeMMA 2.8. Hypothesis same as in Lemma 2.6. Further assume
that X — U has only finitely many connected components. Then by
discarding a countable subset of E (E as in Lemma 2.7), we can
assume that 6 — lim, , ¢(re’?) and 6 — lim, ,; ¢(re?’) are both one-one
on E.

Proof. Let 6 K, P, denote the path g(1¢”), 1 —e <r <1, ¢ a
fixed small positive number; {, = lim,_, ¢(re?).

Now if 0, # 0, and {, = {,,, then {, is a multiple point and
P,, P,, are inequivalent (see [6], pp. 38-89). Thus {, is a multiple
point of U. By Lemma 2.5, the set of multiple points is countable
and at any given multiple point, there can be at most countably
many inequivalent paths.

Thus given a 6,e K, the set of all 0ckK,0+0,( =, is
countable; further the set of all 4, for which there exists a 0 == 6,
such that {, = {,, is also countable. Hence by discarding all such
g, out of K, we obtain a new Borel set E of length 2z such that
0 —lim,_, ¢(1¢?) is a 1 — 1 map. A similar reasoning applied as
7 — 06 would prove the rest of the lemma.

3. Boundary measures and analytic differentials.

DeFINITION 3.1. Let U be an open subset of a connected open
Riemann surface X. An increasing sequence {U,} of open sets is
said to be a regular exhaustion of U if U, is a relatively compact
subset of U,., for all n; Uy., U, = U; dU, consists of finitely many
piecewise analytic Jordan curves and U — U, has no relatively
compact connected components in U.

REMARK. Existence of regular exhaustions ean be proved by
triangulations (see [3], pp. 62-63).

DEFINITION 3.2. Let U be an open subset of X. 2 (U) denotes
the set of all holomorphic 1-forms @ for which there exists a regular

exhaustion {U,} of U such that g |w| < ¢ where ¢ is independent
Uy
of n.
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DEFINITION 3.3. Let U be a relatively compact open subset of
an open connected Riemann surface X. Let we S~ (U). A finite
Borel measure ¢ on aU is called a boundary measure of w if there

exists a regular exhaustion U, of U such that S hw—»g hd, as
Uy, ou

n — oo for any continuous function » on U where U, is positively
oriented with respect to U,.

THEOREM 3.4. (Bishop-Kadama, see [7]). Let K be a compact
subset of X such that X — K has only finitely many connected com-
ponents. Let K=20. Given any € 7 (2), there exists one and
only ome boundary measure ft, of .

The mapping @ — , is a linear isomorphism between S77(RQ)
and _#Z(K) (see §1 for the definition of _Z(K)).

DEFINITION 3.5. Let U be an open subset of X. A point xeoU
is said to be an accessible boundary point of U if and only if there
exists a path at x in U. AccoU shall denote the set of all accessible
boundary point of U.

THEOREM 3.6. Let K be a compact subset of X and X — K hawve
only finitely many connected components. Let K=9. Let {U;,1el}
be the family of all commected components of 2. By Lemma 2.2,
H/(Q) is finitely generated and comsequently H,(U,) is finitely gener-
ated for all i€ I. By Lemma 2.3, there exists a relatively compact sub-
region V; of U, bounded by finitely many analytic Jordan curves such
that each component of U,—V, is an annulus. Let {4,;, 1<j=<N(1)}
denote the set of all commected components of U;— V,. Let we S7(Q).

Then w]4,;e€ 57 (4,;). Let p,; denote the boundary measure of
®/4;; located on 04,;N0R2. Then tt;, t.; are mutually singular for
(t, 5) # (@, 5. Further X Jucisvw |t;] 8 finite and p, =
PIPITY IR

Before proceeding to the proof of the Theorem 3.6, we need
two lemmas.

LEMMA 38.7. Let 4 denote the annulus {z;06 < |z2] <1} and we

7 (4). Let w = f(z)dz where f is holomorphic in 4. Then there
exists a Borel measurable function f defined on 04 such that

111110523 frey — f(@)|d6 =0 and 13308?1 Frey — £(56)d6 = 0.

Proof. Let gt denote the boundary measure g, of .
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=1 — =l — 2

so that f, is holomorphic in |2| < 1 and f, is holomorphic in [z| > o
and f=f,+ f; in 4.

Let v, v, be finite complex Borel measures defined by

v (©) = dp(C) — ?%fmdc on |¢] =1

dv,©) = dpl) + =L f,(©Q)dC on [C] =3.
27

Then for ¢ < |z2| < 1,
XM = Sm 1S ap@ 1 S F(9]8

{—z C~z 2rt =1 & — 2

N dpC)ds
= £i(2) 27t Slc = agm =1 (' -0 —=2)
= fi(2)

since

dg _ ,
qu:l T —0C—2 0 when [{’'| <1 and [2|<1.

By analytic continuation, we get that

S‘?’l@ £(z) for |z] < 1.

Further for |z] > 1,

[2EL = 5 + Ao

since

ac o
Sm=1 & = 0C — 2 = —2m/(C 2) .

Therefore

SM)—=f1(z) for [2| <1
{—2

=0 for [2] > 1.

By F. and M. Riesz theorem ([4], for a very general form), we
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obtain that
(“1A0e?) — fiare) | do— 0 as 7,77 — 1.
v0

Now by a similar reasoning, we find that

[ 28— fa) tor |2] >
{—2z

=0 for |2] <4 .

Applying an inversion and F and M. Riesz theorem, we obtain
that

2r
S |f(re”) — fi(2"e)|d0 — 0 as r, »" —— 5 .
0
This together with completeness of L'([0, 27]) proves our lemma.

DeFINITION 3.8. Let ¢: X — Y be a holomorphic map where X
and Y are Riemann surfaces. Then for any holomorphic 1-form ®
on Y, ¢*® denotes the holomorphic 1-form defined as follows: for
any peX and a coordinate function { in a neighborhood N of
#(P), ¢*®w = f(Log)dlcp where @ = f()d{ in a neighborhood of
Log(p).

DerFINITION 3.9. Let X, Y be two measurable spaces and ¢: X—
Y be a measurable map. For any measure g on X, 4. denotes
the measure defined by (3.£)(S) = p(¢7*(S)) for any measurable
subset S of Y.

LEMMA 3.10. Let 4,; be as introduced in Theorem 3.6 and
¢: 4—4d; be a conformal isomorphism where 4= {z;0 < |z| <1}
and o depends on 1, j.

Let B denote the set of all points z on 04 for which lim,_,_, $(12)
or lim, ., é4(1rz) exists and let us extend ¢ to B by these limits.
Let we 57(4,;). Then ¢*we 57 (4) and if v is the boundary measure
of ¢*®, there exists a Borel subset B, of B on which v is supported
and ¢.(v) 1s the boundary measure of .

Proof. 1f {U,} is a regular exhaustion of 4,;,, then {s~(U,)} is
a regular exhaustion of 4 and further

Saeﬁ—lw%) l¢*w| = Sayﬂ l@] .

Consequently by definition, ¢*w e &7~ (4). By Lemma 3.7, if ¢*w =
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f(z)dz; we can extend f as a Borel measurable function to 4 such
that

lim S"( f(re®) — f(e?)(d6 =0 and
(1) o ;,r
lim SO | f(re'?) — F(e0)|d6 = 0 .

In view of Lemma 2.8 there exists a Borel set E [0, 27] of
measure 27 such that lim,_, ¢(re”), lim,_; ¢(re?’) exist for all 6 ¢ E.
Let B, denote the set {z; z = ¢ or d¢” for some 6 E}. Obviously
B, is a Borel set and ¢ can be extended by radial limits to 4 U B,
as a Borel measurable function.

The above considerations imply that if A is any continuous
function on 4;;.

lim S hoé(2) f(2)dz = limg hw and
(2) ol Jlzl=r r-1)8(zl=r)

$(lzl=r)

exist and are respectively equal to

S g hop(e®) f(e%)de® and S g h(6e*) f(6e**)doe™
ByNlzl=1 B =8

0Nz
for any continuous function % on d4.

Let us define the boundary measure v on 04 as follows: dv =
f(e®)de” on |z| =1 and dv = — f(de*)dde’’ on |z| = J. Because of
(1), v is the boundary measure of ¢*w and because of (2),

g hody = limg ho = g Shd,ﬁ*»
4 n—o0 JaV, 9,45
where V, = ¢({z; 0 + 1/n < |2| <1 — 1/n}). Since {V,} is a regular
exhaustion of 4,;, by the Theorem 3.4 follows that ¢,v is indeed
the boundary measure of @ on 4,;.

REMARK 3.11. Boundary measure of w is supported on accod,;
and any countable set is a null set for this measure.

Proof of Theorem 3.6. By Remark 3.11, it follows that p,; is
supported on a Borel set contained in acedd;; CaccoU; and any
countable set has measure zero.

Now fixing 4, acecdd,; N acedd,;; is countable for j # j' thanks
to Lemma 2.5. Hence g,;, t;;; are mutually singular.

Let us assume ¢ = ¢’. The support of p,; and support of g, ;
are respectively contained in accoU; and accoU;. By Lemma 2.5,
accolU; N accol,, is at most countable and by Remark 3.11 follows
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that p,;, p; are mutually singular.

Let p; denote the boundary measure of w restricted to U,, We
shall now prove that g, = 379 p,;. The boundary of 4,; falls into
two parts, a Jordan curve v,; contained in U; and 02 N d4,; which
of course are disjoint closed sets. Thus as in lemma 3.10, ¢: {z; 6<
|z] <1} — 4,; is a conformal isomorphism, by lemma 2.6 the limit
sets ¢(|z] = 6) and ¢(|z| = 1) are disjoint and must coincide with
v:; and 02 N d4;; is some order. We can assume without loss of
generality that ¢(|z| = 1) =02 N d4;;. Let v, denote the Jordan
curve ¢(]z| = 1 — 1/n) oriented positively with respect to ¢(0 < |z|<
1 — 1/n). For any fixed n and 7, {Vjuh<jsyw bound a domain U,,
contained in U, and further for any continuous function 2 on 2,

limg ho = ghdp,-,- because of Lemma 3.10.
Tijn

n—oo

Hence
N (i)
lim| ho = 3 (nap,,
nooo ) aU,, i=1
i.e., p, = D79 ;. This also proves that y,, ¢, are mutually singular

if 4 #1. Now we shall prove that >, || ] < oo.
Since w € 2#°(2), it follows that there exists a regular exhaus-
tion {2,} of 2 such that

S , |w| < C where C does not depend on 7.
02,

Further for any h continuous on 2, ho — S hdp, as n — oo.

30,
Let F be a finite subset of I and let Uy = U,cr U;. Now from

the above considerations, we obtain that S lw| < C for all =
32, NU )

and by weak compactness of measures follows that by passing to a

subsequence if necessary that S ho — ghdpF as nm — o Where

W2 NT
tty is the boundary measure of @ restricted to Uy. Hence | p:| <

C. But since as n — oo, S ho = 3cr §-"=‘i’§ ho — Zsepghdﬂi
3(Ugze pUsn) Tiin
and {U;.r U} is a regular e}?haustion of Ug, Wei see that 3%,.r

is also a boundary measure of @/U;. By Theorem 3.4, >\, .5 ft;=ttz.
Consequently ||3cr |l = C for an arbitrary finite subset F' of
I and now by the fact that g, are mutually singular, we obtain
that 3., ||l = C.
Now if ¢ = 3., t;, We can prove that any function f mero-

morphic on X with poles off 0K, g fay = S fap,. It is enough to

prove for a function with one pole. If the pole is not in £, it is

immediate that S:) fo =0 and S f@ = 0 for all 7 and n. Hence
a n

Wiy
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Sfd#’ = Sfdya, = 0. Now if the pole is in some U,, then S ) fo =

002y

fo provided the pole is in 2,N U,,. Hence by going to the

WUyp

limits, g fap, = S fdp; and of course S fap; =0 for j + 4.

Thus S fa — p,) =0 for all functions meromorphic with poles
off K. By a theorem of Kodama (see [7]), we obtain ¢’ = g,.
Thus ¢t = Slic; i = Dies 203 Maje

COROLLARY 8.12. Let U, = K,. Given p, € ._# (K, such that
Sl < oo, then S pt.e A4 (K). Further, pt; are mutually singular.
Conversely givem any pe #(K), ¢ can be uniquely expressed as
> 1t where p, e #(K,) and 3 || ]| < oo

Proof. By Theorem 8.6 , is supported on a Borel set contained
in accdU, and any countable set is a null set modulo y,, By Lemma
2.5, accaU, N accaU; is a countable set and consequently, g, and p;
are mutually singular.

Since g fdy, = 0 for any f continuous on K, and analytic in U,

fdp, = 0 for any f continuous on K and analytic in 2. Therefore
He A (K)Vi and >, . e #(K).

For the converse, the fact that ¢ = >, ¢, ;e #Z(K,) is a con-
sequence of Theorem 3.6. Uniqueness follows from mutual singu-
larity.

COROLLARY 3.13. Assume that m(K,) = H(U)Viel. Then
m(K) = H{(Q).

Proof. H'(Q) is finitely generated by Lemma 2.2. Hence
H'Y(U,) = 0 but for finitely many <. The set of 7 for which H'(U,)+
0, we shall denote by F.

Then H'(2) = @;.- H(U;). On the other hand, given any pe
m(K) by Corollary 3.12, gt = >, ti, € M(K,), M, t; are mutually
singular; which implies that g, is real for all 4, i.e., g, em(K,) for
every ¢ and by our assumption above

U, =0 for i¢ F.

Thus the natural mapping m(K) — @;., m(K,) is an isomorphism.
Thus by our hypothesis,

HYQ) = mK).
4, Harmonic 1-forms, real boundary measures.

LEMMA 4.1. Let @ be a holomorphic 1l-form defined on an
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annulus D = {z;0 < |z| <1}. Assume that 3 a real measure ft on
|[z] =1 such that for any continuous function h on D, S hw —

lzl=r
Shd# as »—1—0. Then “w/l*co < oo and for any & '-function h
defined om D, wvanishing 1in o mneighborhood of [z] =0 and

[[ antean < o, [{ aname =o.
D D
(For the definition of * ®, Im @ see Ahlfors-Sario [3] p. 271.)

Proof. Since ® is a holomorphic 1-form, there exists a holo-
morphic funetion g(z) on D such that w = g(z)dz.

Let D denote the annulus § < |z| < 1/, the double of D. Define
@& a holomorphic 1-form on D in the following way. Define & =
g(z)dz for |z| <1 and for |z| > 1,

@ = —g(é—)%- We note that & is not defined on |2| =1.

By hypothesis, we obtain that there exists a constant C such that
lw| < C for » such that (1 + 46)/2 = 1r < 1.

lzl=7r

ie., gmzr l9(z)||dz| = C .

Thus if g is defined as g(z) on [2] < 1 and —g(1/z)1/2* on |2|>1,
g belongs L**c(D). We shall now prove that 9§/0z = 0 in the sense
of distributions.

Let h be any C=-function with compact support in D. Then

D

g§~—%§(z)d§Adz - “Bdhmz)dz - “Bdk/lcb

. ~( 1)\ dz
~1 g —~ S — g ()22
el-l:ﬁl lzl=1—¢ ha) lzl=1+¢ hg( z ) 22
(by Stoke’s formula applied to the annulii § < |z|<1 —¢, 1+e<
|z] < 1/0)

= (g im | na (L)%

— Shdﬁ — lim szw h(—%—)ﬁ(z)d?

=0

= Shdy — Sh_dﬁ = 0 since p is real .

Therefore we obtain that g can be defined suitably on [z] =1
so that g is holomorphic in all of D. Hence SS A0 <

(1446/2) <lz! <(2/1+36)
~ and consequently,
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SS“’A*G’ < oo,

1+9)2<]|z|<L1 _
Also for any real h, &' on D and vanishing in a neighbor-
hood of |z] =4,

“Ddhm - gmzlha) - ghd,u
and so
Im “Ddh/lw - SSDdh/I Im o = SSD dhAIm ® = Im ghd;c ~0.

Now given any h, ' on D and vanishing in a neighborhood of
|z| = 8, define h.(z) = h(z/(1+¢)). Then h, is &* on D for every ¢>0

and vanishes in a neighborhood of |z| = 6 and furthermore Sgdhs/l*
dh, < o and “d(h — h)Ax(dh — dh) — 0 as & — 0.

Hence, since we already know that ﬂpdhs/l Imw =0 for all ¢
and SS Im wA+Im @ < «, we can take the limit under the integral
sign and obtain that

SSDdhAImw=O. O

LEMMA 4.2. Let ®w be a holomorphic 1l-form on D ={z;6 <
|z] < 1} such that SS wAx@ < . Further assume that for any h,
&' on D and vanishl;lng wn o meighborhood of |z|=0 and SS adhAx
dh < o, || dramo = 0. ’

Then 3 Da real measure tt on |z| = 1 such that for any continu-
ous fumction h on D, S ) hw — Shdp as r—1—0.

lz)=

Proof. Let w = g(z)dz for 6 < |z| <1 and @& be defined as @
on 6 < |z] <1 and

__~( 1\dz 1
= g(——g >—-—z2 on 1< |z|< 5
By hypothesis, SS . /a)/l*co < co. We shall now establish that
0<lz|<1/6

9@ = 0 in the sense of distributions.
Let 2 be any & '-function with compact support in ¢ < [z] <
1/6. Then
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SS6<121<1/5 ah/lw = ggdh/la) = r];];f?o SSB<|zl<rdhAw + SSl/r<]zI<l/6dhA(T)

= (By Stoke’s) lim <§Iz]=r heo = glzl=1/r ha)>

r—1-—0

= 1'1—];11-1—];) (Slzl=r ha) - Slzl=1/r h(Z)(— g <—_;—)>Ldz_2z—>

)0 = (5 Jooaz)
1

(
=tm| ro—{ i()o
(... (0@ = m(F)JRew + i _ (e + 1 Z-) m))

Since h(z) + h(1/Z) vanishes in a neighborhood of [2| =0 and
SS dhAxdh < ~, we have, by hypothesis,
D

= lim

r—1—0

= lim

r—1—0

gg dhdIm @ = 0 = SSdh(%—)A Imw ie.,
(By Stoke’s)

limSS dhAImwzlimg hIme =0 .
a<lzl < lzl=2»

r—1—0 r—1—0

Hence

§§5<Izl<1/65h/1(6 = ,Iilrilo gaz;=,<k(z) —h <——;—>> Rew

= lim SSMM d <h(z) —h (—i—))/l Re® (By Stoke’s) .

r—1—0

Since h(z) — h(1/Z) € H (D) (here it denotes the Sobolev space) and
vanishes on 0 D, we find that
h(z) — h(l/?)eﬂz(D) (see Agmon [1], p. 131, Lemma 9.10). But
dhARe w = 0 for any h that is &* and has compact support in
DDand hence for any h in I-:T;(D).
Therefore d& = 0. Hence @& is a holomorphic 1-form on 6<|z|<
1/5 which implies that S _|9(®)|ldz| is bounded as » —1—0. That

lzl=r

means that @ defines a real boundary measure on |z| = 1. ]

THEOREM 4.3. Borrowing the notation of Corollary 3.12, m(K,)=
HYU,) for every 1.

Proof. Let I'(U,) denote the set of all holomorphic 1-forms @
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such that wAx® < o« and for any % '-function % on U, such
U
that “dhA*diZ < oo, Sgeh/l Imw = 0.

The fact that H¥U, = I'(U,) is well-known and ean be found
in Ahlfors-Sario [2], p. 284-288. Thus we need only prove that
m(K,;) = I'(U,).

Let 4,;(1 < j < N(1)) be the annulii as introduced in Theorem
3.6. Now if @ is a holomorphic 1-form on U, whose boundary
measure is real, then w|4,; € 5#(4,;) and further its boundary measure
Y on U, N d4;; is real. We can apply now Lemma 4.1 to w|4;;

and obtain S A”a)/l*a) < oo and ggd._dh/l Imw =0 provided 2 is a
& *-function vanishing in a neighborhood of 04;; — oU;. Thus using
partition of unity, we obtain that gg i wAxw <o and Ss dhAImw =
0 for any h, &* on U, and “dh/l*dh“< oo, !

Now assume that w e I'(U;). Now w|d4,; satisfies the following
conditions: “d 'a)/l*a) < o and any @ ‘-function h vanishing in a
neighborhood of 94,; — aU, and S dhdsdh < oo, SSdhA Im @ = 0.
This is easily obtained by defining if“;-— 0 on U, — 4,;. Now we can
apply Lemma 4.2 to obtain that the boundary measure p;; of w
on 04;; N oU, is real. Since boundary measure g, of @ is 379 p,;
by Theorem 3.6, , is real. |

U.

THEOREM 4.4. m(K) = HY(Q).
Proof. It is immediate from Corollary 3.13 and Theorem 4.3.

5. A natural basis for € (0K)/Re Z#(K) (Theorem 1.2). We
may assume without loss of generality that X is a noncompact
surface with analytic boundary and K a compact subset of X such
that X — K has only finitely many connected components none of
which is relatively compact. By Theorem 2.1, the canonical homo-
morphism Hl(f{) — H,(X) is injective.

Let v,(1 £ % =< k) be a homology basis for K and Y AZ 1S Ek+D)
be a homology basis for X. Let © denote the space of all harmoniec
funetions # on X such that “dh/l*dh < oo,

We contend that given any >,a,v, # 0, a, real, there exists
h e ©® such that

S x*dh #= 0. Assume the contrary .
Za,r;

Then there exists a harmonic differential ¢ with compact support
(see Ahlfors-Sario [3], p. 288) such that
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La, v dh = SSO'A*dh
and so

SSGA*dh —0VheO,

i.e. =0 also has compact support. But ¢ — ix¢ is a holomorphic
1-form and it can not have compact support unless ¢ = ixg =0
which implies 3} a,v; is homologous to zero.
This proves that the mapping +: O — R*' given by (k) =
<ST sdh, - -, ST *dh) is a surjection. Now let us pick h,€©® such
1 k+1

that g «dh; =1 and | =dh, = 0 for j = i.

We eclaim now that hi, hy-, b, form a basis of & (6K) modulo
Re Z(K). Assume 3, ah;€eRe Z2(K). Then there exists a function
f holomorphic in a neighborhood of K such that |> a;h, — Re f| <e
on oK.

Since v, lie in K for 1< i<k, and S IS @, +dk; — Im df | < Ce
75
where C depends only on ;.
Since g df =0 and S ~#dh; = d;; (Kronecker 9), we obtain that

la,| < Ce for 1512 k. Since this is true for all ¢ > 0, a, = OV«.
Thus {k},=,<; are linearly independent modulo Re ZZ(K) and because
dim @ (0K)/Re ZZ(K) = k, we have that {h,},=;<, is a basis for Z(GK)/
Re Z(K).

Note: Theorems 1.1 and 1.2 for plane domains are published by
us in the Journal of Approximation Theory, Vol. 30, No. 1, 1980
under the title “The Rational Defect of a Plane Domain.”
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