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JOINS OF DOUBLE COSET SPACES

H. N. BHATTARAI AND J. W. FERNANDEZ

The double cosets of a group by a subgroup and the
irreducible complex characters of a finite group have a
structure which can be studied by means of hypergroups
(alias convos, probability groups, and Pasch geometries). An
external operation on these structures called the "join" is
studied. Decomposition theorems are established in both the
general hypergroup (Pasch geometry) case and the weighted
hypergroup (probability group) case.

1* Geometries and Joins*

DEFINITION 1.1. A Pasch Geometry (see (3)) is a triple (A, ΔM e)
where A is a set, e e A and ΔA Q A x A x A satisfying:

( I ) Vα e A, 3 unique b e A with (α, b, e) e AA. Denote b by α\

(II) e* = e and (α*)* = aVaeA.
(III) (α, 6, c)eΔA=~ (6, c, a) e ΔΛ.
(IV) (Pasch's axiom) (alf α2, as), (al9 α4, α3) e ΔA => 3α6 e A with

(α6, αj, α2), (αβ, α6, α*) e ΔA.
We may often write A for (A, J 4, e) and J for J^ if the context

is clear. Also we use the word "geometry" for Pasch Geometry.
For BQA, we denote B\{e} by B*. If B C A, B is called a su6-

geometry of A, and we write B < A, iff (i) e e ΰ and (ii) (δx, δ2, α) 6
zί̂  with &!, b2e B implies that aeB. If A and C are geometries, a
map / : A —> C is called a geometry morphism iff /(e) — e and (x, /̂, z) e
Λ implies (/(»), f(y), f{z)) e Δc.

1.2. Definition of A//5. If A is a geometry and B<A, it can be
shown that the following relation ~ is an equivalence relation on A:

x — 7/ iff 3&χ, ί) 2eΰ, α e i with (x, bl9 α*), (α, ̂ /*, & 2)eJ.

If the equivalence class of a e A is denoted by [a] and we let A//B
denote {[α]:αei}, then in fact (A//B, Δ,[e\) is a geometry where
(M, [Vl [«]) e J iff 3&' 6 [x], i/' 6 [y], zr e [z] with (&', / , «') 6 ^ .

If A is a group (with J = {x, y, z): xyz = 1}) and -B is a subgroup
of A, then A//B defines a geometry structure on the set of B — B
double cosets of A.

The following result is routine from the definitions.

PROPOSITION 1.3. Suppose that A and B are geometries and
f:A-*Bis a geometry morphism. Let Kf = {a 3 A: f(a) — e} and
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(1) Kf<A,Imf<B.
(2) The inclusion map i: Kf —> A is a kernel of f (in the

Geometry Category).
( 3 ) The projection map p: B —> B//Imf is a cokernel of f.

1.4. Construction of A V B. Suppose A and B are geometries.
We construct a geometry A V B (see (4)) called the "join" of B by
A as follows. Let A V B = A ϋ -B*. A function p : i V 5 - > 5 is
defined via

if x e A .

if # £ A .

Now let Δ be defined by requiring (x, y, z) eJ iff either {x, y, z) Q A
and (a?, #, «) e Λ, or {a?, /̂, 25} §£ A and (j>(«), j>(i/), p(»)) 6 Λ It is a
straightforward verification that A V B is in fact a geometry.

The join of geometries has an interesting categorial property.
In any category ^ with zero object, extensions are of interest where,
if A and JB are objects of ί̂ 7, an extension of B by A is a triple
(/, M, g) such that M is an object of ^ , / and g are morphisms in
^ satisfying:

(1) / is a kernel of g and (2) g is a cokernel of /. For A and B
fixed objects of ^ , the class of exensions of B by A becomes a
category EXΊV(J5, A) where a morphism from (/, M, g) to (/', iV, #')
is a ^-morphism # which makes the following diagram commute:

M

f/ \o
/ \

A \θ B

/'\ 1 /^

A ^-join of B by A is defined as a terminal object in the category

PROPOSITION 1.5. Suppose A and B are geometries. With nota-
tion as above:

(1) (i, A V -B, p) is an extension of B by A (in the geometry
category).

(2) (if A V -B, p) is a ^-join of B by A (where & denotes the
geometry category).
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Proof. Both assertions involve diagram chases using the defini-
tions and are omitted.

The concept of 'join' can be extended. If Γ is a linearly ordered
set and {Aλ: XeΓ} is a Γ-indexed family of geometries, a jΓ-join of
the geometries {Ax}, denoted by \fχeΓAX9 can be defined in the
following way: Let V UΓ AX = ϋ Af ϋ {e}. For σeΓ a map
fa' Όrϊo A* ϋ M -+ Aσ is defined via

(x if xeAt

e otherwise .

For x,y,ze \/λeΓAχf let β = {α)eΓ: {a, #, 2} n At Φ φ). Now we say
(x, y,z)eA iff either Ω = φ oτ Ω Φ φ znά (fλ(x), fλ(y), fx(z)) e AAλ(X =
supi2). A straightforward check verifies that \/χerAλ is a geometry,
and moreover if Γ = {1, 2}, then V UΓ Aι = Λ V A2.

The operation V is easily shown to be associative in the obvious
sense.

2* Decomposition of geometries* Throughout this section,
is a oreometrv.(A, A, e) is a geometry.

DEFINITION 2.1. Let B £ A. We call i? a weαfc sub geometry of
A if:

(1) e e ΰ .
(2) If beB, then 6*eJ3.
( 3 ) If bl9 b2 eBybxΦ δj, and a? e A with (6X, δ2, a?) e 4, then # e 5.

The following result is straightforward.

PROPOSITION 2.2. If B is α weak subgeometry of A, then
(B, AB, e) is a geometry, where AB = (B x B x B) Π 4i

For A a geometry, let Z^ = {B: B is a subgeometry of A and
A\JS* is a weak subgeometry of A}.

If aeA, set A\a — {x: whenever (a, t, x) e Δ, t = α*}.

LEMMA 2,3. ΫFΐίfc notation as above,
(1) LA is linearly ordered by inclusion.
( 2 ) For BeLA,B<^ A: a Vae A\B.

Proof (1) Let B,CeLA with J3 g C. Then 36 e B\C. Just
suppose that C £ B. Then 3c e C\B. Let t e A with (6, c, t)eA (such
exists by an easy verification). It is easy to see that (c, t,b) e A.
If ί e C, then δ 6 C (since B is a subgeometry), a contradiction.
Hence t g C. Similarly if ί e β , then c e δ since (ί, 6, c) 6 Δ, which is
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again a contradiction. Thus t $ B U C But then t Φ c% and hence
b 6 A\JB* (since A\B* is a weak subgeometry of A), which is a con-
tradiction.

(2 ) Let α 6 A\B, where B e LA. Let b e B. Clearly eeA: a, so
we may assume that b Φ e. Suppose t e A with (a, t, b) e Δ. If t e B,
then aeB (since B is a subgeometry and (ί, 5, α) e J), which is a
contradiction. Hence t e A\Z?. If t Φ a\ then δ 6 A\B (since A\J5 is
a weak subgeometry of α), again a contradiction. Thus £ — α*.

For £ G LA, let 5 - U {C: C6 LA and C S 5}. Let Ll^ {Be LΛ:
BΦB).

LEMMA 2.4. Vx e A*lB e L* with xeB and if CeLA such that
C gi B, then xiC.

Proof. For x e A*, set B = ΓΪDBSU) D, where S(x) = {D e LA: x e D}.
It is routine to show that BeL* and has the desired property.

For Be LI, let B~ = B\B*.

THEOREM 2.5. Let A be a geometry.
(1) B~ is a weak subgeometry of AvB e L\.
(2) A = \JBeL*AB~, and B~ n (Γ - {e} for B, CeLΛ if B Φ C.
(3) If B,CeL*A and BΦC, then B~ QA:cVCeC* i f fδsC.
(4) For the geometry B~, where BeL*u LB^ = {{e}, B}.

Proof. (1) is routine.
(2) 4 = U ΰ follows from 2.4. If B} CeL* with B Φ C, we

may assume BQC. Then B £ C, and hence (£\£*) n (C\C*) = 5^ n

(3) This assertion is shown using 2.3(2).
(4) Suppose Be LI and CeL^. with CφB and C Φ {e}. Let

B1 — C \J B. Then B ^ Bλ^ B. A contradiction to the definition of
j? is obtained after it is easily established that B1 e LA.

A non-trivial geometry A is called join-indecomposable iff whenever
A ^ B V C for some geometries B and C, then either B — {e} or
C = {β}.

PROPOSITION 2.6. A non-trivial geometry A is join-indecom-
posable iff LA •= {{e}, A}.

Proof. (<=). If f BvC—>A is a geometry isometry isomor-
phism, it is obvious from the definition of the join that f{B) e LA.

{==>) If BeLA with B Φ {e} and B Φ A, then it is routine to
verify that A = B V (A\B*).

If Γ is a partially ordered set with zero element λ0 6 Γ, let Γ*
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denote Γ\{λ0}. The main decomposition theorem can now be easily
obtained.

THEOREM 2.7. Let A be a nontrίvίal geometry. There exists a
linearly ordered set Γ and a Γ*-family of weak sub geometries of
A, {Aχ}Xe * for which

(1) A* Φψ for all λeΓ*.
(2) Aλ is a join-indecomposable geometry VλeΓ*.
(3) A= yλer.Aλ.

Moreover, if Ω is a linearly ordered set and {Bω} is a Ω-family of
nontrivial join-indecomposable geometries such that A = V Bω, then
there is an isomorphism of partially ordered sets f:Γ*~>Ω and a
Γ*-family of geometry isomorphisms {fλ} such that fλ\ Aλ —> Bf{λ].

3* Probability groups. Many examples of geometries, such as
the double cosets of finite groups, the set of irreducible complex
characters of a finite group, and finite protective geometries, can be
given additional structure, which is reflected in the following concept
(see (3) and (6)):

DEFINITION 3.1. A discrete probability group is a pair (A, pA)
where A is a set and pA: A x A x A —• [0, 1] is a map which we will
denote by (a, b, c) —>pi(a, 6), and which satisfies the following axioms:

( 0 ) For any α, b e A, pt(a, δ) = 0 for all but finitely many ceA
and Σce,iPc(α, δ) = 1.

(1) (Associativity) For any α, b, c, de A,

Σ P*(α, b)pi(x, c) = Σ pύ(a>, V)pl(b, c) .
xe A ye A

(2) (Identity) 3β e A such that pc

!(α, e) = δa(c)Va, c e i , where 3
is the Kronecker delta.

( 3) (Inverse) For each α e i , there exists a unique b e A such
that pA(b, a) Φ 0. We denote b by a\

(4) (α*)* = a for all aeA.
( 5 ) pf(a, b) = pc\(b\ a*) Vα, b,ceA.
Note that the eeA in (2) above is unique. The term "discrete

probability group" will be abbreviated to simply "probability group"
or even "prob. group". Also p will be used to denote pA if the
context is clear. For B £ A, we use B* to denote the set B\{e}.

Useful properties of probability groups which follow easily from
the axioms appear in the following statement.

PROPOSITION 3.2. Let (A, p) be a prob. group. Then
(1) pa{c\ a) - pa(c, a) Vα, ceA.
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(2) pa(a, a) Φ 1 VaeA*.
( 3 ) Pe$(a, b)pe(c\ c) = pe(a, ά*)pj(b, c). In particular, ifb = c\

Pb(a, b)pe(b, 6*) = pe(a, a*)pj(b, V), which implies that whenever pb(a, b) =
1, Pa*(b, 6*) = pe(b, ¥)/pe(a, a)'.

(4) Pc(a,b)Φ0 iff pasφ, c*) Φ 0.
If A is a finite prob. group, let nA = ^xeAl/pe(x, x^). nA is

well defined since p£x, cc#) Φ 0 and A is finite. Two probability
groups (A, pA) and (J5, pB) are called isomorphic iff there exists a
bijective map f:A-*B such that pί(αj, y) = p*(g)(f(x)t f(y)) Vx, y,
zeA.

The notions of geometries and probability groups are related by
the following result which can be obtained from the definitions (see
(2)).

PROPOSITION 3.3. If (A, p) is a prob. group, and Δ — {(a, b, c):
pXa, b) Φ 0}, then (A, A, e) is a geometry, called the geometry induced
by (A, p).

If A is a prob. group, a subset B of A is called a sub-prob.
group of A iff eeB and (B, pB) is a prob. group, where pB is the
restriction of p to triples from B. It is easily seen that B is a sub-
prob. group of A iff JS is a subgeometry of the geometry A. In
particular, B is a sub-prob. group of A iff V6, ceB, whenever pa(b, c) Φ
0, then aeB (assuming B non-empty).

4* Joins of probability groups. Suppose that (A, pA) and (B, pB)
are probability groups, and also suppose that the set A is finite. A
and B acquire geometry structures according to 3.3. Consider the
following map (see (6)). p: (A Ό B*) x (A ϋ B*) x (A ϋ £*) -> [0, 1] is
defined via

PΪ(%, V) if x, y, zeA .

0 if x, y 6 A and 2 e J3* .

δx(z) if x e JB* and 3/ 6 A .

x = / δv(z) if a? e A and yeB*.

pB(x, y) if x, y, zeB* .

0 if #, y G JB*, 2 e 4 and y Φ x* .

~ ~ ~ i f r p 7?* ?/ — r* ? n >4
nΛpi(z, z

A long but straightforward check shows the following:

PROPOSITION 4.1. If A and B are probability groups with A
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finite, then (AΌ B*9 p) is a prob. group whose induced geometry is
(AvB,J,e).

The probability group (A U B*, p) is called the join of (A, pA)
and (B, pB), and is denoted by (A V B, p) or simply by A V B. It
will now be shown that there is uniqueness contained in the definition
of the join.

THEOREM 4.2. Suppose that (A, pA) and (B, pB) are probability
groups with A finite. Suppose further that {A 0 J3*, p') is a pro-
bability group such that

( 1 ) The geometry induced from (A ϋ -B*, p') is A\ί B,

( 2 ) p[{χ,y) = pB

b{χ,y) vb,x,yeB*,
( 3 ) p'a(x, y) = pί(x, y) Vα, x,yeA.

Then pf — p, where p is the map defined above.

Proof. Clearly pf — p except possibly in the last case of the
definition of p. Hence we need only check that p'a(b, &*) = pa(b, 6#)
for a e A, b e B*. But we have

Σ P'.<!>9 6*) - 1 - Σ PW, b*) = l - ΣPΪ(6, &*) - PBΦ, b*) .
&eA yeβ* yeϋ*

Now by 3.2(3),

P'a(b> 6») = jfΆ . pUφ\ a) = 4 ^ 1 (1) .
p'e(a, a*) pi(a, a*)

Hence

Σ Pl<6, &#) = Σ v';{^ 6 2 = P'(b> 6 # ) "*

Combining the two expressions for the same sum, we obtain that

nA

Thus

COROLLARY 4.3. Suppose (Alf p
1), (A2, p

2), , (iln, ί?n) are pro-
bability groups with Au A2, , An_! finite. For i = 1, •• ,wA i fcas
a geometry structure induced by the map pl, and hence we may form
the join of the geometries V?=i ̂ .t There exists a unique probability
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map p on the set \J"=1 A? Ό {e} which satisfies (i) p induces the join
geometry V?=1 Aύ and (ii) px(y, z) = pi(y, z) whenever x, y, zeAf.

Proof. A routine induction argument on n using the theorem
establishes the corollary.

COROLLARY 4.4. Suppose that {(A, p{)}r=i is a family of finite
probability groups. There exists a unique probability map p defined
on UΓ-i^* CJ M which satisfies (1) p induces the join geometry \f™=1A%,
and (2) for x,y,ze A*, px{y, z) = pi(y, z).

Proof. This corollary follows immediately from 4.3, since \f^=1A%

is a limit of V?=î .*

Two notes on the above construction are important.
(1) The condition that all the probability groups be finite (except

possibly the last one) is necessary because of the definition of a
probability group, which stated that pc(a, b) is nonzero for only
finitely many c. However, if b = α* 6 A* and c e A5 where j < i,
then the construction has pc{a, α*) Φ 0. (2) The map p described in
4.3 and 4.4 (which is a generalization of the original construction)
can be explicitly defined as follows, where nk denotes Σa.6

(pl(a, b) if α, 6, c e At and either c Φ e or 6

(ΐl —) p%a, α#) if a e A?, b = a\ c = e .
\ki n /

δb(c) if a 6 Aif b e A*, and i < j .

δβ(c) if a e Af, b e Aj} and j < i .

^ c ( α > j ~ 0 if a, beAΐ,ce Af, b Φ a*, and iΦ j .

— ) ' 4 ^ - if <*# = 6 β Af, c e Af and
nk/ p°e{c, c#)Pί(c,

j <i

δc(e) if a — b = e .

Combining the above results with the decomposition of geometries
established in §2, a decomposition theorem is easily obtained.

THEOREM 4.5. Let A be a probability group which is nontrίvial.
There exists a linearly ordered set Γ and a Γ-indexed family of
nontrivial probability groups {{Aif p*)} such that

(1) Ai is a join-indecomposable geometry Vie Γ.
(2) Γ is either finite or order isomorphic to Z+.
(3) The geometry A is the join of the geometries {AJίe/.
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Also, if Γ is finite then At is finite except possibly An, where Γ is
identified with {1, 2, , n), while if Γ is infinite, Ai is finite vi e Γ.
Finally, the original probability map p on A is given by the
formula (t).

Proof. The main statements are merely a recapitulation of
Theorem 2.7 and the calculations which appear above. The only
statement which needs to be proved is that At has a probability
structure which is "compatible" with the original map p. If we define
the map p* via:

, V) = "

pz{x, y) if x,y,ze Af

if y = e

if x = e

if z — e and y Φ x*

>α(», 2/) if z = e and y — x\

8x(z)

δy(z)

0

1 — Σ *
aeA*.

it is an easy exercise that (At, p*) is the probability group that is
needed.

Several examples of joins (of probability groups and geometries)
can be given.

(1) The complex irreducible characters of a finite group G form
a probability group if one defines the map p via the following pro-
cedure.

If G = {Xl9 - -,Xn} is the set of complex irreducible characters,
one has

= Σ for

Let p,fc(Z,, Zy) - nVX^iyXtiXiXjiΐ). Then (G, p) is a probability group
(See (6) and (3)). If G is a nonabelian group of order p* for some
prime p, it can be shown that G is the join of Zp x ^ and Zp.
Several other groups can be decomposed into joins, but it is not
known to the authors which finite groups (non-simple, since a join
does give a normal subgroup) decompose into joins.

(2) Projective geometries have a structure which may be
studied as a hypergroup (see (5)) or as a Pasch geometry or probability
group (3). A necessary and sufficient condition that a geometry de-
compose into a join of projective geometries is given in (1).

(3) Totally ordered groups (from which valuations are defined)
can be given a geometry structure (although not a probability group
structure except in the trivial case) which breaks up into the join
of geometries consisting of two elements. If one considers more
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general geometries in the same setting, a "generalized valuation"
concept can be studied in the study of Rings and Fields (See (3)).
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