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BARYCENTRIC SIMPLICIAL SUBDIVISION OF
INFINITE DIMENSIONAL SIMPLEXES
AND OCTAHEDRA

THOMAS E. ARMSTRONG

A K-simplex is a convex set affinely homeomorphic to
the positive face of the unit ball of a Kakutani L-space and
an octahedron is a convex set affinely homeomorphic to the
entire unit ball. It is shown how to barycentrically subdivide
K-simplexes and octahedra so that the K-simplexes in the
subdivision are affinely homeomorphic to the simplexes of
probability measures on closed subsets of (0, ) with the
weak topology. As a consequence, for any closed subset C
of (0, ), an apparently new complete metric for the weak
topology on 77 (C) is given.

1. Introduction. In [2] it was shown how to barycentrically
subdivide the unit cube [] of the infinite dimensional space L=(X, X, t)
where (X, 5, pt) is a positive localizable measure space. The elements
of the subdivision were Bauer simplexes (under any locally convex topol-
ogyon L~(X, ¥, pt) between g(L=, L')and the Mackey topology z(L~, L")).
The extreme points, or zero-skeleton, of the subdivision were the
centers of the centrally symmetric or o(L>, L') closed faces of [].
The o(L=, L*) closed faces of [ ] were ordered by inclusion, hence so
were their centers. The Bauer simplexes of the subdivision were
the closed convex hulls of maximal chains of centers (which chaing
are compact in the order topology which agrees with o(L~, L') or
z(L>, L')). The restriction to the positive unit cube []* of this sub-
division is a Bauer simplicial subdivision of [|* whose various reflec-
tions yield the barycentric subdivision of []. The extreme points
of a subdivision simplex in [J* are of the form {X,: A€ C} where C
is a maximal chain in the measure algebra Y, (which is the quotient
of 3 modulo ¢ negligible sets). The o(L*, L') closed convex hull S,
of {X,: AeC} was shown to be affinely homeomorphic to _#*(C) the
Radon probability measures on the compact C by showing that S; is
the set of fe[]* with {f = t}eC for all 0 <t < | f|l~ This was
shown to be in affine correspondence with the convex set &(C) of
distribution functions on C which in turn is affinely isomorphic to
isomorphie to _#*(C).

Here we are concerned with barycentric subdivision in the dual
(or rather predual) setting. We wish to barycentricically subdivide
the unit octahedron  of LYX, 5, ) which is the unit ball. This
will be done by barycentrically subdividing the positive unit ball
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Ot and reflecting.  The subdivision of F will be obtained by
subdividing the positive face 4 of & in a barycentric fashion and
extending to &' by taking the cone of this subdivision with 0 as
vertex using the fact that &t = conv (0, 4). 4 in general has no
extreme points and is non-compact. There are no symmetric faces and
faces compact under most topologies tend to be high in codimension.
The natural class of faces to consider are the norm closed faces of
which are the same as the o(L}, L*) closed faces of 4 or the split
faces of 4, (which are the faces F so that there is a unique disjoint
face I’ with 4 = conv (F' U F"), [0], [3], [4]), or the o-convex faces,
[3], [4]. The norm closed faces are in 1-1 correspondence with the
elements A of Y,. If ge XX, X, 1t) then S, denotes {g = 0}, S; =
{9 >0} and S; = {g < 0}. If F is a norm closed face of 4 then the
A, e X, corresponding to it is U{S,: g € F'} where U denotes supremum
in ¥,. If ge ' (X, 3, 1) then F, = F5, is the smallest norm closed
face of 4 containing g. When F is a norm closed face of the form
F, for some ge 4 then we say that g is a barycenter of F. If F is
a norm closed face of 4 we denote by .92, the ensemble of split
faces of F. We denote .47, by 927 and &7 by 77, for any
ge 4. Each .94, is a hyperstonean Boolean algebra isomorphic with
the hyperstonean Boolean algebra {AeXY¥.. A C A,} with supremum
Az, [3]. An Fe.9%7 has a barycenter iff .9%7, satisfies the count-
able chain condition for Boolean algebras. 4 has a barycenter iff
(X, %, pt) is o-finite iff X = S, for some g € 4.

Any 4 which is the positive face of the unit ball of a Kakutani
L-space is affinely isometric with the positive face 4 of the unit ball
of L'X, ¥, pt) for some positive localizable measure space (X, ¥, £).
All Choquet simplexes are of this form. We shall call such 4 K-
stmplexes. Any norm closed face of a K-simplex is a K-simplex.
Any K-simplex considered as 4 of L*X, X, ¢t) is a norm closed face
of the positive face of the unit ball of the L-space L~*(X, Y, 1)
when L'(X, 3, p) is regarded as a subset of L=*(X, ¥, p). L=(X, %, 1)
is Banach lattice isomorphic to #(Z,), where Z, is the Stone space
of the measure algebra ¥,, and L=*(X, ¥, ¢) is isomorphic to _Z(Z,).
Hence, any K-simplex is isometric with a norm closed face of a Bauer
simplex. One particular K-simplex is the space ._Z"(Y) of Radon
probabilities on a locally compact space Y which is isometric with
the norm closed face of . Z"(Y U{c}) (Radon probabilities on the
one point compactification ¥ U{c} of YY) of probabilities assigning
measure 0 to . Our simplicial subdivisions will turn out to have
as elements K-simplexes affinely isomorphic to . Z"(Y) for certain
locally compact metric spaces Y.

2. The o-finite case. Let (X, X, pt) be a g-finite positive measure
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space. Let ged have S, = X so 4 = F,. Let Chain (J,) denote all
chains in 3,\{@}, C-Chain (¥,) denote all complete chains in Y \{®}
and M-Chain (¥,) all maximal chains in Y\{@}. If AecI\D} let

gXAUA gd#]_l = g4 and let u(g, A) = L gd. For any C e Chain (X))
let C(g) = {¢g*: AeC}. For CeChain (¥,) let S(C, g) denote the norm
closed convex hull of C(g). Let &4 denote {S(C, g): C € M-Chain (¥,)}.

LeEMMA 2.1. Let CeChain (X,).

(a) The mapping A — g* is a homeomorphism from C with the
order topology into 4 with the norm topology or any coarser Hausdorff
topology.

(b) The mapping A — p(g, A) is a homeomorphism from C into
(0, 1].

(e) C s compact iff 4t 1s im C-Chain (¥,) and inf (C) = .

Proof. It suffices to consider only Ce C-Chain (¥,). (b) is im-
mediate since (0, 1] has its order topology. (c) is also immediate. To
establish (a) one notes that A — g4 is an order continuous injection
on any chain C into 4 with the norm topology. If C is compact
this map is a homeomorphism. Since any complete chain C is locally
compact with every compact subset is contained in a compact sub-
chain of the form C, = {AeC: A, A} for some A,e€C the mapping
must be a homeomorphism on any C e C-Chain (2,). ]

LEMMA 2.2. Let C be in Chain (3,) and let C be its closure in
2\ 2). i

(@) S, 9) =8(C, 9. ~

(b) The extreme points of S(C, g), &(S(C, 9)), form a subset of C(g).

(e) If C is compact then S(C, g) is a norm compact subset of 4.

Proof. Immediate. ]

For he L'(X, %, 1) let C(g, h) € C-Chain (3,) denote the complete
chain generated by {h/g =t} as t varies over [0, ||h/g|ls). If Ce
Chain (%,) let S(C, g) denote those ke 4 with C(g, h) = C. Of course
5(C, g) # @ ifft Xe Ciff Cis an intersection of chains in M-Chain (3,).
For any CeC-Chain(Z,), S(C,g) is a base for cone (0, S(C, ¢)) =
{he L'*(X, 3, 11): C(g, h) < C}. For Ce C-Chain (3,) cone (0, S(C, g)) is
closed under taking arbitrary norm bounded infima and suprema and
under almost sure sequential convergence. Thus, S(C, g) is closed
under almost sure sequential convergence in 4 hence is norm closed.
Any element h of conv (g4: AeC) is easily verified to lie in S(C, ¢)
hence S(C, g) — 8(C, g). On the other hand any & € cone (0, S(C, g))
is an increasing limit of positive linear combinations 3,7, \,;g* hence
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any h in S(C, g)~ is a limit, in norm, of a sequence from conv (g4:
AeC). Thus, S, g) c S, g).

LEMMA 2.3. (a) If CeC-Chain (Z,) then S(C, g) = S(C, g).
(b) CeC-Chain (J,) is a compact chain iff ||h/g|l- < o for all
he S, g).

Proof. (a) has been established.

(b) C is compact iff u(g, 4,) > 0 where A, = inf (C).
In this case [lg*/gll- = |[(9X./9)(tx(g, A) 7! = (g, A)™ = (g, Ao) ™"
As a result ||h/g]l- = (g, A)™* for all heconv {g*: AcC}. By conti-
nuity, |[A/g]l- < (g, A,)"* forall h € S(C, g). Conversely, if #(g, 4,) =0
then || g*/gll- — = as A decreases in C. Choose a decreasing sequence
{A;} in C with 0 < p(g, A4,) < 27% for all 1. Set h = >\, 274 € S(C, g).
One may verify that h/g = 2° on A, for all ¢ so ||h/g|le = co. O

Let CeC-Chain (J,) be compact with infimum A, and supremum
X. The map 9,: h — h/g is 1-1 from cone (0, S(C, g)) into L~(X, X, t).
The image of cone (0, S(C, g¢)) consists precisely of those f€ L~*(X, 2, )
so that {f = ¢t}eC for all 0 £t < || f|l~. In [2] it was shown that
the o(L~, L") closed convex hull S; of {X,: A€ C} consists precisely
of those f e [J* with {f = t}eC for 0 <¢ < || f|l. hence for 0 < ¢ <
| fll«. From this it follows that @,(cone(0, S(C, g))) is cone (0, S;).
The map @ is easily seen to be continuous for ¢(L>, L") and o(L*, L~).
There is an affine homeomorphism @, from _#Z*(C) with the topology
o(_#(C), &(C)) to cone (0, S;) with the topology (L=, L), [2] Prop-
osition 3.2. The function 4 — [#(g, A)] is an element of Z(C) which
is never 0 by Lemma 2.1. The map @,: v — (g, A)v is a homeomor-
phism of _Z*(C) for o(_#(C), (C)). The mapping = @;'cD,o D,
maps .#"(C) in a 1-1 continuous fashon onto cone (0, S(C, g)). If
A € C then (d,) is easily verified to be g4. Consequently, (_#;*(C))
is the o(L', L) closed convex hull of C(g) which is S(C, g) since
o(L', L) and the norm topology agree on S(C, g). Since 4 is 1-1
and continuous it is a homeomorphism from _#Z;7(C) to S(C, g).
&(8(C, 9)) = ¥(2*(C)) = C(g)-

ProrosiTION 2.4. If C is a compact chain in C-Chain (¥,) then
S(C,9) 1s a Bauer simplex wunder the morm topology and

&(S(C, 9)) = C(g).

Proof. When X eC this has been established. Otherwise Cis a
closed subset of the compact chain C U {X} hence S(C, g) is a closed
face of the Bauer simplex S(C U {X}, g). O
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The mapping @;* assigns to each f €S, the v;e_#"(C) defined
by p{A:AeC, {f =zt)cA} =t =4d,({f =¢}) where d, is the left
continuous distribution function of », on C. One may deduce that
if AeC then the essential infinum, essinf, (f) = d;(4) of fon A is
d,(A). These remarks extend to the case where f € cone (0, Sc)
where p;e #Z*(C). If A, €C one may consider the order interval
C, ={AcC:A cA}). The restriction of p; to C, has distribution
function which is the restriction of d, to C,. The measure p,|; 4
may considered as an element of _#*(C) in the usual manner. Its
distribution function is the extension dj of d;|s, to C described by
di(A) =ds(A) if A,cA and by d#(4) = ds(4,) otherwise. This
corresponds to the function f A d;(A) in cone (0, S, 4,)) < cone (0, Se)).
Since p; — ps|s,, is a continuous linear surjection from _Z*(C) to
A *(C,) the map f— f ANd;(A) is a continuous linear surjection
from cone (0, S;) onto cone (0, S, L As a result the map A —h A
[9d:/,(A)] is a continuous linear surjection from cone (0, S(C, g)) to
cone (0, S(Cy, 9))-

If C is a noncompact complete chain and & € cone (0, S(C, g)) we
may define d,,(A) = essinf, (h/g) if AecC. The map Q. h—hA
[9d./s(A)] is again a continuous linear map onto cone (0, S(Cy, 9)).
Furthermore, if A, C A4, are in C then Q,,°Q, = Q4. For any & in
cone (0, S(C, ¢)) Q.(h) increases to h as A decreases in C. The func-
tion d,,, is decreasing and left continuous on C. For each A e€C, one
assigns to h the measure Q,(kh) e .#*(C,) corresponding to the restric-
tion of d,,, to C,. The mapping Q%: h — (g, A)Q.(h) is a continuous
linear surjection from cone (0, S(C, g)) to _#Z*(C,) such that if A, c 4,,
are in C then Q% o+, cQ% = Q% where 4, is the affine isomorphism
from _#*(C,) to cone (0, S(C,, g)). The norm of Q%(h) is equal to
the norm of h A [gd,,(A)]. As A decreases in C, Q%(h) (considered
as elements of _/7(C)) converges to an element Q%h) of _#(C)
whose restriction to any C, is Q%(h). Furthermore Q%h)e _#,*(C)
iff heS(C,g). If re_#7(C) one may find, for an A €C, the image
Ji(t) of the restriction of ¢ to C, under +, in cone (0, S(C,, g)) C
cone (0, S(C, g)). For any pe _#7(C), Q% o+%i(y) is the restriction of
pt to C,. As A decreases in C, 4%(¢t) converges to an element ¥(1)
of cone (0, S(C, g)) which satisfies Q*(*(¢¢)) = p. Conversely if he
cone (0, S(C, g)) then *Q*%h)) = h.

PROPOSITION 2.5. Let Ce C-Chain (X,).

(a) S(C, g) is affinely isomorphic to _#,7(C) under Q.

(®) &(S(C, g)) = C(g).

(e) If C' is a complete subchain of C them S(C', g) is a norm
closed face of S(C, g).

(d) Any morm closed face F of S(C, g) is the o-convex hull of its
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compact subfaces and is S(C", g) for some C" a complete subchain
of C.
(e) If CeC-Chain (3,) then S(C, g)n S(C, g) = S(Cn C, g).

Proof. (a) has already been established.
(b) is immediate from the fact that the extreme points of _Z,"(C)
tare the ¢, with A € C which correspond to g* for AeC.

To establish (¢) it is only necessary to note that Q% assigns to
the probabilities on C giving full measure to C’ the subset S(C’, g).
Since these probabilities on C are a face of _#7(C), S(C’, g) is a
face of S(C, g) which is norm closed.

If F' is a compact face of S(C, g) then &(F') is a compact set in
C(g) of the form {g*: AeC’} for a compact chain C’'C C hence F =
S(C’, g). Conversely, if C’ is a compact chain in C then _Z"(C’) is
a face of _#,"(C’) which corresponds to S(C’, g) under Q*. Hence
S(C’, g) is a compact face of S(C, g).

Let n € S(C, g) and let {A,} decrease to ¢ in C. For any = set
b, =k A (9di(A,), M = ||k, and N, = ||k, — b, |, if n>1. Set
h* =kt if N, %0, set h* = (h, — hu_)A,* if > 1 and if A, # 0,
and set h' = 0if A; =0 for j = 1. It is easily verified using Lemma
2.3 that r"e S(C,,, g9) for all » if A"+ 0. We have h = >, \A"
and >, A, = 1. Thus, & is in the o-convex hull of the union of
the compact faces {S(C,, , g): ne N} of S(C, g).

Let F be a norm closed face of S(C, ¢g) and let he F. Let {4,}
and {h"} be as in the preceding paragraph. The face F'n S(C,, 9)
of F' and S(C,,, g) is compact and % is in the o-convex hull of the
union of these faces as n ranges over N. For each n, &(F N S(C,,, 9))
is of the form C"(g) for a compact subset C* of C,,. Furthermore
c*nC,, ,=C"* for all » >1. Thus, F is the o-convex hull of
C" = U,.y C* which is a complete subchain of C. This establishes
(d).

(e) is immediate from Lemma 2.3. 1

We recall from [2] that a simplicial subdivision of 4 is a col-
lection & of simplexes which cover 4, so that if S, # S, are in .&*
then S, N S, is a proper face of S, and of S,. A K-simplicial sub-
division, under a topology on 4, is defined to be one whose elements
are K-simplexes. A simplicial precomplex on 4 is a collection &
of simplexes covering 4 such that {S,, S,} .9 then S, NS, is a face
both of S, and S,. A stmplicial complex, under a topology on 4, is
a simplicial precomplex which if it contains a simplex S also contains
all closed faces of S. If %7 is a K-simplicial subdivision then the
ensemble % of closed faces of elements of & is the associated sim-
plicial complezx.
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ProposSITION 2.6. .&4 = {S(C, g): C € M-Chain (J,)} is a K-simpli-
cial subdivision of 4 whose assoctated simplicial complex is &, =
{S(C, g): C e C-Chain (X,)}.

Proof. By Proposition 2.5, it is evident that &4 is a cover of
4 by K-complexes and that &, consists of all norm closed faces of
.. The only condition not immediately apparent to verify that .o/
is a K-simplicial subdivision of 4 is the condition that if C, = C, are
in M-Chain (¥,) then S(C,, g) N S(C,, ¢) is a proper face of both S(C, g)
and S(C,, g). This is a consequence of Proposition 2.5.(e) and the
maximality of C, and C.. ]

The mapping Q° transfers the metric || ||, on S(C, g) to a metric
D, on _#"%(C) in the natural fashion so that D, (Q*h,), Q(h,) =
'h, — h,||,. Actually, Q* is extendable so that it is defined on
L(C, g) = cone (0, S(C, g)), —cone (0, S(C, g)) and is a Banach lattice
isomorphism from the L-space L(C, g) to the L-space _#(C). The
norm of the L-space L(C, g) is not || ||, but the Minkowski functional
0, of conv (S(C, g) — S(C, g)) and p, = || ||, on L(C, g) since @* ' is a
contraction from . (C) into L'(X, %, tt). Since S(C, g) is || |,-closed
. 7Z7(C) is D,~complete.

If Aic---cA, are in a complete chain C and p = 337 N0y, €
. #Z(C) then d,(4) = >\ if Aisin the order interval (4,_,, 4,] € C
where A, = @ and A,,=X. If L =3", rg* so that Q*h)=0p
then duo(4) = St ngilo, 4 = || g, BYp(dB) if A€ (Aus, Al
For any %k, —\, = [dh;g(A/c-hl) dh/y(Ak)]F‘(g, A,) sod,(A) = T (g,
A o(Ars) — dio(A)] = 5 1(g, B)d,,,(dB) where the latter is a

C
Lebesque-Stieltjes integral. * By continuity, whenever pe_#;7(C) is
Q(h) for hecone (0, S(C, ¢) one has d,(A) = SO (g, B)d,,,(dB) and
d.(A) = |19, B)"p(dB). )
A

PROPOSITION 2.7. Let C be a complete chain. If {p, p,} < . " (C)
then  Dyw,p) = | || o, Bro@B) ~ | uo, By 'p(da)| 1, da)
A A

where the outer imtegral is Lebesgue-Stieltjes with respect to the
monotone function (g, -). D, yields a complete metrization of vague
and weak convergence on _7,7(C).

Proof. Let Di(p,p) denote | || so, Blp@B) ~| s,
B)~ pzl (g, dA) for the time being. Let us verify that D,(p,, pz) is
finite for all {p,, ). Z"(C) or that D,(p) = S '\ 1(g, B)- p(dB)’ %
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ug, dA) < o if p = p, — v, e€_#(C). Suppose that C is compact then
D, is a continuous convex function of p for o(_#4(C), (C)). D,
attains its supremum at extreme points p=d, —d,,, say with 4,CA,.
Here D,(p) may easily be computed to be 14(g, A,) " [e(g, A)— (g, A)]+
(g, A)™ — (g, A7y, A) = 2(1 — (g, A)e(g, A7) = 2. Thus,
D,(p) = 2||p|| for all pe_#(C) if C is compact. If C isn’t compact
D,(p) is the limit, as A decreases to @ in C, of S SC (g, B)"'p(dB)| %

u(g, dA"). Hence, D,(p) < |/p|| even in this case. Since p(g, -) is
continuous and strictly increasing on C, D,(p, p,) =0 implies

S 1(g, By 'p,(dB) = g 1(g, By 'p,(dB) for a dense set of A in C

hence that h, = h, where Q‘(h) =p,; for j=1,2. Thus, p, = p..
This suffices to show that [, is a metric on u//ﬁ(C). If {p,} is a
D,-Cauchy sequence in conv (0, _#"(C)) and AcC one may select a
subsequence {p,} whose restrictions to C, are a(_(C,), ©€(C,) con-

vergent to p,. Then [SC (g, By 'pl(dB) — SC 4, B)‘lp;(dB)’ con-
A A

verges to 0 as n — co. Since {p, (g, B)"'p.(dB) —

S 1(g, B)7'p,(dB) ( converges to 0 for (g, dA) almost all 4. We

Cy -

deduce that \ ¢y, B)™'p, (dB) — \ g, B)~ pA(dB){ converges to 0
JOy

for (g, dA) almost all A. As a consequence p’; is the a(_#"(C)),
Z(CY) limit of the restrictions of {p,} to C,. Thus, there is a p’'e
conv (0, 2, "(C)) whose restriction to each C, is p’.. For this p" we
have SC fdp, — S fdp" for all continuous f on C with compact sup-
port. That is, {p?} converges vaguely to p. Conversely, if {p,}jC
conv (0, _*(C)) is vaguely convergent to p then H w(g, B)'p,(dB) —
g, B~ p(dB)‘ —0 as n— o for all AeC from which it follows

that Dg(pn, p) —0 as n— o if {p,}cconv (0, #7(C)). Thus, the
metric D, is complete on conv (0, _"(C)) and gives the topology of
vague convergence. If p;, = > \d,, for A,c---CA, and for
j=1,2, are in _#"(C) and equal Q*(h;) where L; = >,7, Mg* then
h;g™" is equal to >, 7"]/"(9; A)on A\A,_ so Dy(p, p,) = |y — b, =

Sia | IS, A0 Stoinle, A7 g =S S i

Ak\A —

I
A SN, A) (e, 40— o, Ae) = || e, B piaB)—
. o, B)p.dB)| 19, d4) = D0, p). Thus, 15 QM) is an iso
metry from cone (0, S(C, g)) to _#7(C) with the metric D, at least
on simple functions k. By continuity Q% is an isometry from
conv (0, S(C, g)) onto the vaguely complete conv (0, Z"(C)). Thus,
D, = D,. Since S(C, g) is norm complete, . #*(C) is D, complete.
That is, D, is a complete metrization of vague convergence. It is
well known that the weak topology o(_#"(C), #,(C)) and the vague
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topology agree on _#*(C) so D, is a complete metrization of the
weak topology as well. |

REMARK. If f(B) = p(g, B)™ then
Dyp, 2) = | 1d10,(4) = dy, (A 1tg, dA)

where d,; is the distribution function of fp,e.2Z"(C).

Under the homeomorphism H: A — (g, A) of C into (0, 1] the
simplex _#Z,7(C) is assigned to the simplex _#;"(H(C)) under an affine
homeomorphism for the weak topologies. The affine homeomorphism
is the unique one sending §,e._#Z7(C) to 0., €. 2 "(H(C)). The
metric D, on _#,7(C) induces a metric D} on _#"(H(C)) in the usual
fashion.

COROLLARY 2.7.1. If p, p, are in _#,"(H(C)) then Di(p,, p,) =
I woms) = § Wspds)|at = | 1d,® — dus@1dt where
H(C) t t H(C)

dt 1s Lebesgue-Stieltjes integration with respect to the restriction of
f@® =t to HC).

PROPOSITION 2.8. (a) If ¢ is a mon-atomic measure then all of
the simplexes in ., are affinely isometric.

(b) If p is not mon-atomic there are two simplexes in .&% which
aren’t affinely homeomorphic.

Proof. (a) If p is non-atomic then H(C) = (0, 1] for all Ce
M-Chain (¥,). Di(p, p.) = S [ dyep () — dyyep,(t) [dE yields the same met-

ric on _#7((0, 1]) for all Ce M-Chain (X,).

(b) If C, and C, in M-Chain (¥,) were to have S(C, g) and
S(C,, g) affinely homeomorphic, then _#*(C,) and _#*(C,) would be
affinely homeomorphic under the vague topology so C, and C, would
be homeomorphic. In the proofs of Propositions 6.1 and 6.2 of [2]
it is shown that if g isn’t non-atomic there are maximal chains in
Y, which aren’t homeomorphic. The same procedure is applicable to
complete chains in 3 \{@}. ]

REMARK. In the terminology of [2], .4 is homogeneous iff p is
non-atomiec.

COROLLARY 2.8.1. If g, and ¢, are two elements of 4 so that
F, =F, =4 and CecC-Chain (¥,) then S(C, g,) is affinely homeomor-
phic to S(C, g,).
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Proof. Both are affinely homeomorphic to ., 7(C) with the weak
topology. ]

REMARK. (1) This affine homeomorphism probably isn’t attain-
able as an affine isometry unless C is connected.

(2) This states a strong equivalence between the simplicial
subdivisions .5 and .&4, of 4.

Of some interest is the question of which Hausdorff locally convex
topologies = on L'X, 3, ¢t) induce on each simplex in .¢% its norm
topology.

ProrosiTioN 2.9. The Hausdorff locally convex topologies om
LMX, 3, 1) which induce the mom topology on simplexes in <& are
precisely those coarser than the morm topology.

Proof. Let 7 be a Hausdorff locally convex topology on
LY(X, 2, ) coarser than the norm topology. Let Ce M-Chain (3,).
Regard the linear span of S(C, g) as being linearly isomorphic to
#(C). If AeC then S(C,, g) is norm-compact, hence 7 is compact.
#(C,) with its weak topology is linearly homeomorphic to the linear
span of S(C,, g) with the topology z. That is, z induces on each
#(C) c _#(C) the weak topology. The vague topology on _(C)
is the coarsest such topology. Thus, 7z is finer than the topology
induced by the vague topology on S(C, g). On S(C, g) the norm
topology is that induced by the vague topology. Thus, ¢ must be
the norm topology on S(C, g).

Conversely, suppose that ¢ induces on each S(C, g) the norm
topology. To show that ¢ is coarser than the norm topology on
LY(X, 3, 1) it is only necessary to show that the z-dual of L'(X, ¥, 1)
is a subspace of L=(X, Y, ¢). Let A be in the r-dual of L(X, 3, 1.
Define the additive function A" on Y, by A(A) = MgX,) for AelX,.
If {A,} is an increasing sequence in X, then lim, .. MgX,,) = Mg¥,,) =
N(A.) where A. = Up-; A,. Thus, )\ is countably additive on X,.
Hence, MA) =\ hdu for some he LY(X, Y, pt). Let A" = {h, = 0}

A
and A~ ={h; < 0}. If f is such that fge L'(X, Y, p) with S;c A"
then A\(f9) =S %fh,,d;z. Thus, if he (X, 3, pr) with S, c A" one
"
has A\(g) =S th‘lhzd;e. If it were true that esssup, (h;g7') = o
"
there would exist an heL'(X, 3, ¢t) such that {h = 0}c A" and
o :S g hadpt = M(h).  Since MR) € (— oo, <) hyg~ must be bounded

on A*. Similarly, h,g' must be bounded on A~-. That is, g; =
h,g~te LN(X, 3, 1r). This establishes the proposition. ]

3. The non-o-finite case. The results obtained here are basi-
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cally the same as in §2 with the exception of the fact that if px
isn’t o-finite there is no equivalent probability measure gp with
ged. That is 4= F, for any ged. In this case it turns out to
be impossible to give a barycentric subdivision of 4 whose zero-
skeleton contains a point in each norm closed face of 4 which has a
barycenter. The subdivision simplexes we do obtain turn out to be
affinely homeomorphic to K-simplexes _#;"(C) where C is a closed
subset of (0, «) rather than of (0, 1], again where these K-simplexes
are endowed with their weak (= vague) topologies.

We let Chain; (¥,) denote such that CeChain (F,)¢(4) < « for
all AeC. C-Chain, (2, and M-Chain,(X,) are similarly defined.
If CeChain, (¥,) we let S(C) be the norm closed convex hull of
CQQ) = X [pe(A)] " AeC}. If sup(C) = A, exists and g = X, [p(A)]™
then S(C) = S(C, g).

PROPOSITION 3.1. (a) If CeChain; (3,) and if C is the smallest
element of C-Chain; (3,) containing C then S(C) = S(C).

(b) If CeC-Chain, (5,) then an hed is in S(C) iff {h > t}eC
for all 0 <t < ||h||w.

(¢) If CeC-Chains (¥,) then S(C) is the o-convex hull of {S(C*):
AeC) where C+ ={A'eC: A’ C A}

(d) If CeC-Chains (X,) then &(S(C)) = C.

() The maps A — X [(A)]™ — p(A) are homeomorphisms from
C to CQ1) to (0, =) if Ce C-Chain; (¥,).

Proof. The proofs are analogous to those of the corresponding
facts in Lemmas 2.1, 2.2, 2.3 and Proposition 2.4. O

From Propositions 2.5 and 2.9, if C € C-Chain, (3,) and A € C then
S(C%) is affinely homeomorphic to _#Z,"(C*) equipped with the weak
or vague topology under a unique map, say Q%, which assigns to
04 € _#7(C* the element X, p(A")™ of S(C4). This remains true if

* is regarded as an affine bijection of _~+(C%) onto cone (0, S(C%)).
If A, C A, are in C then _#*(C%) is injected into _#*(C*) in the
natural fashion. The restriction of Q% to _4*(C*) is just Q% . If
pe _#%(C) then {p|.: Ae€C} converges to p in norm as A increases
in C. We have Q%(p|,) converging in S(C) to an element & = Q%p)
with Q%(pl|) =[h — essinf, h] V0. The map Q* is an affine bijection
and agrees with Q% on _#7(C% when C* is regarded as a subset of
A47(0).

PROPOSITION 3.2. (a) If C is im C-Chain, (Z,) then _#,"(C) with
the weak topology 1s affinely homeomorphic with S(C) under Q.
(b) The norm closed faces of S(C) are of the form S(C') where
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C' = C is in C-Chain, (3,) and S(C) N S(C) = S(C, N Cy).

Proof. The proofs are analogous to those of Propositions 2.4
and 2.5. U

PropoOSITION 8.3. &7 = {S(C): Ce M-Chain, (¥,)} is a K-simpli-
cial subdivision of 4 whose associated simplicial complex is &7 =
{S(C): C e Chain, (¥,)}.

Proof. The only thing to establish, given the result of Proposi-
tion 3.2 is that .9/ covers 4. If hed, then Co={{h =20 <t <
|| ||} € Chain, (3,) and heS(C,). Consequently, heS(C) for any
C e M-Chain, (¥,) with C, c C. M

The metric on _#"(C) induced by Q¢ from the norm on
LMX, ¥, 1v) will be denoted by D for a Ce C-Chain, (¥,). Below we
denote by H the continuous function 4 — p(A) on C and by H(dA)
the measure on C arising by Lebesgue-Stieltjes integration with
respect to the continuous function H. With this terminology Prop-
osition 3.4 is an immediate corollary of Proposition 2.7.

ProposITION 3.4. If Ce C-Chain, (¥,) and {p,, .} C .47 (C) then

1
¢4 H(B)

p(dB) — | —p(dB) H(dA)

D(p,, p) = SC JS ¢4 H(B)

= ScldznArlz;l(A) - dmA)"lpz(A)]H(dA) .

If one maps C in C-Chain, (¥,) homeomorphically into (0, «) via
the map H assigning p(A4) to A a homeomorphism is established
between _#7(C) and _z*(H(C)) for vague or weak topologies. The
metric D* on .47 (H(C)) is that induced by D. This corollary is
analogous to Corollary 2.7.1.

CoroLLARY 3.4.1. If {p, .} < ..4"(H(C)) then D*p,, p.) =
S]](C‘, 'X! <1/S)pl(d8) a St <1/S)p2(d8)rdt.

PROPOSITION 3.5. (a) If pt is nom-atomic the simplexes in .7/
are mutually affinely isometric.

(o) If pt is not nom-atomic there are two simplexes in &7 which
aren’t affinely homeomorphic.

Proof. (a)is immediate from Corollary 3.4.1 where H(C)is (0, --).
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(b) is established in the same manner as was (b) of Corollary
2.8.1. ]

PROPOSITION 3.6. The Hausdorff locally convex topologies omn
LNX, 3, 1) imducing the norm topology on all elements of 7/ are
precisely those coarser than the morm topology.

Proof. If 7 is a Hausdorff locally convex topology on L'(X, %, 1)
coarser than the norm topology it may be shown, in the same man-
ner as the proof of Proposition 2.9 that r agree with the norm
topology on each element of .97/,

Conversely, suppose that z is a Hausdorff locally convex topology
on LMX, Y, tt) inducing the norm topology on each element of .577.
To show that ¢ is coarser than the norm topology it suffices to show
that each rz-continuous linear funectional A\ is of the norm M) =

ghgldy for he L/(X, 3, 1) for some g, L~(X, 3, t1). If AeJ, with
0 < p(A) < « regard LXA, 3, 1) as a subspace of L'(X, Y, z£). The
trace, ' N L4, Y, 1) = {SN L' (4, ¥, 1)} is the simplicial subdivision
< of the positive face of the unit ball of L'(A4, ¥, 1) with g =
LA™ The norm and 7 topologies agree on all elements of .&4.
Thus, there is a g in L*(4, X, f£) so that A(h) :S hgidp if he
L'(X, %, 1) with {h =0} c A. It must be the case tfnat gi = g7 on
ANB if {4, B} c ¥, with 0 < ¢(4), (B) < o. Thus, there is a
gie LouX, 3, 1) = L*(X, 3, 1), Mh) = Shg;du if he LX(X, Y, ) with
mh # 0} < eo. (Lp.(X, Y, tt) consists of functions whose restrictions
to sets of finite measure are bounded.) If px({h = 0}) = oo then Mh) =
lim, oM — hAe) = lim oM — hAe) = lim, ., S [h — (b A&)gdpt —

hg.dp since z agrees with the norm topology on elements of &7/,
This establishes the proposition. 1

ProrosITION 3.7. (a) Let (X, 2, 1) be an infinite measure space.
There is mo g€ 4 such that g* = X, p(A)™ if 0 < p(A) < oo.

(b) Let (X, 2, ) be mnon-o-finite there is mo collection {g*:
M(A) > 0, Ao-finite} in 4 such that g* = g®X,p(g®, A)™ if AC B are
o-finite elements of X,.

Proof. (a) is only non-trivial if (X, 3, ¢) is o-finite. In the o-
finite case the condition on ¢ is that it be constant on any set of
finite measure so g is a constant A on X. In this case we have
1 =gl =M(X)e{0, o} which is impossible.

(b) Let {4.} be a maximal disjoint collection of o-finite elements
of ¥,. Define the measure v, on A, as g*=¢. Let v be the positive



264 THOMAS E. ARMSTRONG

measure on Y, equal to v, on each 4,. The map f — 3 flg'~ is
an isometry from L'(¢) to L*(v) which assigns to each g%« the
function X, = X, (v(4,)"". Actually, for all A o-finite for p, g* is
assigned to X,[v(A)]7". Choosing countably many distinet A, , setting
A =Ur . A, and g the image of g* we are led to a contradiction of

(a). L

REMARKS. This proposition shows that it is impossible to have
a barycentric subdivision of 4 when (X, ¥, tt) is non-o-finite using
barycenters of all norm closed faces of 4 which have barycenters if
the barycenters are to be chosen in the coherent fashion we have
used. However this section guarantees barycentric subdivision utiliz-
ing barycenters of some norm closed faces of 4. Even in the ¢-finite
case the barycentric subdivision .7/ is definable and will not utilize
barycenters of all norm closed having barycenters.

4, Barycentric subdivisions of octahedra. By an octahedron
we mean a unit ball of a Kakutani L-space with its norm topology
or any affinely homeomorphic image of such a ball. We will deal
with octrahedra represented as the ball & of LY(X, Y, ft) where
(X, ¥, 1) is a positive localizable measure space. Since (& is centrally
symmetric its center 0 is natural barycenter of <> to use in a bary-
centric subdivision of <>. The convex hull of 0 and the positive
face 4 of <& is the positive unit ball &F of LA(X, ¥, p). With the
norm topology %' is a K-simplex with 0 an extreme point. <7 is
affinely homeomorphic to the positive face of the unit ball of
LNX', 3, i) where X’ is obtained from X by adjoining a new point
=, Y’ is the og-algebra on X’ generated by ¥ and {c} and z is the
measure on X’ with f¢/{e} =1 and whose restriction to ¥ is .

ProposITION 4.1. (a) %+ = {conv (0, S): S€.&""} is a K-simpli-
cral subdivision of > whose associated simplicial complex is .77 |
{conv (0, S): Re &7},

(b) If CeC-Chain, (Y,) then conv (0, S(C)) is affinely homeomor-
Phic with the wealk topology where < 1is adjoined as am 1isolated
point to C.

Proof. 1t is easily verified that .%. is a covering of ™ by
K-simplexes. If {S,, S,}<.9”/ then conv (0, S;)Nconv (0, S,) = conv (0,
S;N S, is a norm closed face both of conv (0, S)) and conv (0, S,).
Furthermore any norm closed face F' of conv (0, S) with Se.97/ is
either a norm closed face of S or is of the form conv (0, F) for some
norm closed face ¥ of S. These remarks suffice to establish (a).

(b) is immediate since 0 is not in the closure of C(1) for any
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C ¢ C-Chain; (3,). U

REMARK. If (X, X, o) is o-finite and ge 4 with F, = 4 then in
Proposition 4.1, . may be replaced by .&4 to obtain a K-simplicial
subdivision of ¥,

An isometry T of L'(X, 3, pt) carries the barycentric subdivision
%+ into a barycentric subdivision T(.S%+) = {T(S): S € .9%+} of the
K-simplex T(O'). By suitable choice of isometries T a barycentric
K-simplicial subdivision of < will be constructed as a union of the
subdivisions T($%+). One isometry of LYX, %, f) is that induced by
a p-measure preserving automorphism of ¥. For such an isometry
T one has T(4) = 4, T(CT) = OF. In fact, T(S)e 4%+ if Se.HA%-
for T must be an order isomorphism of X hence preserve chains,
complete chains or maximal chains. Such isometries T can be ignored
for the purpose of constructing a simplicial subdivision of . Any
isometry of LXX, X, ft) is the composition (on either side) of an iso-
metry arising from a measure preserving JX-automorphism and an
isometry of the form R, where Ec2, and R;(f) is defined to be
Xz — Xgpo)f for any f e LNX, 2, t£). This may be established in several
different ways, one being an appeal to the Banach-Stone Theorem.
We have E defined for the isometry T by the requirement that the
image of 1€ L>(X, 2, ;) under the adjoint isometry 7™ be Xz — Zg..

The image T(4) under an isometry 7T is a maximal proper face
of &, a one co-dimensional face in fact. 7T(4) is equal to {f e :
Nflli=1, Xz — Xge)f = 0} where Ee 3, is associated with 7. The
image of &' under T has a similar characterization. The 1-codimen-
sional skelton of <> consisting of all 1-codimensional faces of < is
precisely the set of maximal proper faces of <> by Lauin [5]. Lau
also shows that any maximal proper face of > is R;(4) for a unique
E in Y,

PropPOSITION 4.2. (a) {R(O1): EelX,} is a K-simplicial subdivi-
sion of .

(b) If {E, B)CZ, then Ry(ON)NRp(OY) = Re(OFNRHO) =
Ry ({f e OF: fhye = 0}) where F is (E, N E,) U (Ef N EY).

Proof. The proof of (b) is straight forward. To establish (a) it
is enough to show that if E, and E, are in X, then R, (OY) N Re(OT)
is a face of R, ({7). This is an isomorphic image of OF N Rp(OF) =
{feO™: fAp. =0} where F' = (E, N E,) U(EsNE;). Since this is a
face of OF, Ry (OF) N Ry (OY) is a face of Ry (OF). ]

PROPOSITION 4.3. 9% = {Rx(S): Se %+, Ee€X,} forms a K-sim-
plicial subdivision of .
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Proof. 1t is only necessary to show that if {K, E,} c ¥, and
S, NS,e. %%+ then R, (S)N Ry (S,) is a face of R;(S). By (b) of
Proposition 4.2, it may be assumed that E, = X so that R, (S, = S..
In this case S, Ry,(S,) = S.N{f € Sy fXy; = 0}. Since {f € Sy: fAy; = 0}
is a norm closed face of S,, Proposition 3.3 guarantees that S, N E,,(S,)
is a face of S,. O

REMARK. In the o-finite case one may obtain a barycentric sim-
plicial subdivision of < as in Proposition 4.8 starting with the sub-
division . of 4 rather than &7 for ge 4 with F, = 4.

5. K-simplicial subdivisions of barycentric type. In this sec-
tion it is shown that the K-simplicial subdivision ./ of a K-simplex
4 is the only type of barycentric subdivision possible satisfying
certain coherence and regularity properties.

PrROPOSITION 5.1. Let &7 be a K-simplicial subdivision of 4 (the
positive face of the unit ball of LNX, 3, 1)) and % its associated
K-simplicial complex. (1) Assume that if Se.&,

(a) S = elconv (&(S))

(M) &(S) is linearly ordered by absolute continuity (g, < g, iff
S,, <8, if F, C F,)

(ii) If g, g. are in the zero skeletom, °.</, of & then gi* = g/
if A =28, NS,

Then, {@} U {S,: g€°9"} is an ideal in Y,.. If ge’S” then the
trace = NF, is =,

Proof. We first note that (ii) implies that for an A€, there
is at most one ge°%” with S, = A. The assumptions (i) and (ii)
assure that £(S) is a norm closed set in 4 which is locally compact
and, in fact, for which every bounded order interval is compact. If
S, is the closed convex hull of a compact order interval in £(S) then
S, is a compact face of S which is a Bauer simplex. The g-convex
hull of the union all such S, is a norm closed face of the K-simplex
S, [3], [4], which contains &(S) hence equal S. If F is any closed
face of S then F' is the o-convex hull of F' NS, for such S, hence
F' is the closed convex hull of F'N&(S) = &F'). That is, & is the
ensemble {clconv (K): K closed in &(S), Se€.&7}. 1If g,€ 4 is such that
gis = g for all g€ & with S,cS, the trace "NF, ={SNF,, Se =}
is {Se&, SCF,} and is a subset of %7, (the simplicial complex in
Proposition 2.6 with F, replacing 4). Such g, include all elements
of °.<~

If ge°% and AeX\@} is in S, then g*eS for some Se.&”
hence g SN F,e%,. This is only possible if g€ &(S N F,) C&(S).



BARYCENTRIC SIMPLICIAL SUBDIVISION 267

Thus, if ge°9” and @ #ACS, then A = S,., for some ¢g'¢°S”. If
we are given C e (C-Chain (X,) with supremum in S, one may construct
an hed such that C = C(h, g). For h to be in S for some Se.&
it is necessary and sufficient that C(h, g) be a closed subset of &(S).
Since .&” covers F, it is easy to deduce that = N F, = <.

To establish that {@} U {S,: g€°%”} is an ideal in ¥, we need to
show that if {g,, g.}C°%” there is a ¢g,;€°9” with §,, =S, US,,. It
may be assumed, without loss of generality, that S, NS, = @.
Hence we may assume that, in F' = F, for g, = (g9, + 9,)/2, F, and
F,, are complementary split faces. If ge®5” N F then g is uniquely
expressed as a convex combination \,g, + (1 — Ay, where §,€F,
and g, e F,, are given by §; = g% "% = g§"s%; for j =1,2. If Se&”
then F NS is cleonv (F N &(S)) where &(S)NF is a closed initial
interval of the linearly ordered &(S). As g increases in &S)N F, S,
increases in S, US,, to S;. An increasing cofinal sequence {g,} may
be found in £(S) N F so that {),} is convergent to )\, say. Then
{g.} converges in norm to g, = ngFa"% + (1 — Ng)gse"%, Since &(S)NF
is closed g.,€2(S)N F. Thus, ¢, is the maximum of &(S) N F. There
is an Se.&” so that g,e SN F. If there is an A& S, US,, such
that S,c A for all ge&(S)N F then S, A for all heSNF. Con-
sidering h = ¢, this is seen to be impossible so such an A doesn’t
exist. Thus, S,,US,, = S,.. Thus, we may set g, = g.. This esta-
blishes the proposition. 1

Any K-simplicial subdivision & of a K-simplex 4 which satisfies
(i) and (ii) of Propotision 5.1 will be said to be of barycentric type.

PROPOSITION 5.2. Let . be a K-simplicial subdivision of 4 of
barycentric type. There is a measure v on (X, ¥) so that 4 1s affinely
isometric with the positive face of the unit ball of LN X, X, v) under
an 1sometry @ and so that O(°.S”) consists of elements of the form
(A for 0 < v(A) < oo.

Proof. Select a maximal collection {g,} < °~” with disjoint {S, }.
Select g, If a +# «a, there is a unique g*¢°S” with S,e =S, U Ss.,
and g% = Ne(ga, + Vu0.) Where A, (1 + v,) =1 with », > 0 and v, > 0.
Set = goy + Shere; (1700, and v = hy so that SX fdy = SX Fhdy
for all f. The map @:f-— f/h is a Dbipositive isometry from
L'(X, %, 1) onto LX, Y, v) with @(g,) = ngao and @(g.) = (1/7)%s,,-
For all a, 0<u(S, )<e. If @=+AcCS, then &g =
LA uf Gy AN '

Suppose that «,, «,, a, are distinet and that A4; is a non-empty
subset of Sgaj for 7 =1,2. The unique L ¢’ with S, = 4, U 4, U 4,
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is a convex combination %.gi° + 7.git + 7,952, We have AN =
L9140 = [gay+7Va;9a;}°" Y = Gy A)GE2+Va;tH sy ADIEIN Gy Ao)+
Veasth(Gajy A]7 for j =1,2. Also, B4 = (9,950 + 7;929) (0, + 3,;)”* for
j=1,2. Thus, the vector (7, 7;) is proportional to the vector
(¢40uy A0y Va3t Aup) for j=1,2. Thus, (7, 7, 7,) is proportional
to (9a Ao)y VayfHGugy Ay Vaytdey Ar)).  We have h*9% =5 as the
unique element of °5” with S; = A4, UA,. h*“* is a multiple of v, (g,
ANGar + Yaot0ay Ar)gaz. Setting v, =1 we may deduce that if & is
any element of °%” it may be represented as a countable convex
combination 3., 7,95 "% when 7, i8 Yuft(ga S;, N S)[Xs (98, So, N SH)]
We have that O(h) = S 78G5 %) = [Se YeiGer Sp, N SWVal (G
So, NS K05, 1206 Yet(ds, So, NS = X, [ 306 (g5, So; 1S, Since
O(h) has norm 1 in LX(X, ¥, v) we have v(S,) = 3 v5£4(gs, S,; N Si) €
(0, ). That is, if h €’ then O(h) = X, [v(S)]* and 0 < v(S;) < <=.

The mapping @ sends & onto a simplicial subdivision @(%°) of
the positive face 4(v) of the unit ball of LYX, Y, v) whose zero
skeleton @(°5%”) is a subset of the zero skeleton of the simplicial
subdivision ~“/(v) of 4(v) given by Proposition 3.3. Conditions ()
and (ii) asssure that @(%) € =/ (v) (the simplical complex associated
with .&7/(v)). If v(A) < o then X, [v(A)]™* belongs to some simplex
S in O(%). Since S is a face of some simplex S in .&#/(v) and
Lp(A)] € 2(S), X v(A)]™ € &(S) hence is in #(°.5”). That is, 8(.S) =
. If SeS” then @(g(S)) is in Chain, (Y)). If A4, C 4, and
Lo[v(A)] e O(E(S)) then X, [v(A,)]" e B(&(S)). If there is an A with
0 < v(A) < oo with X, [v(A)]™" < X fv(A)]™ for all X, [v(A)]™ € @(S))
and X,[v(4)] isn’t in ®(£(S)) we find that there is a simplex S in
& with 0L [v(A)]*eS with S a proper face of S which is impos-
sible since .&” is a simplicial subdivision. Thus, @((S)) must belong
to M-Chain, (¥,). That is, &(S)e.&”/(v) for any S€.%”. For any
Se Sf(v) there is an he L)X, X, v) so that the chain {{r > t}: 0 <
t < ||h]||} has closure &(S). The simplex S is the smallest in </(v)
containing h. Since @(S) covers 4(v), he®®S) for some Se.&.
Thus, S = @(S). It follows that .&#/(v) = &(5”). This completes the
proof of the proposition. ]

COROLLARY 5.2.1. Let {F,} be a disjoint collection of norm closed
faces of 4. Let &7, be a simplictal subdivision of F, of barycentric
type. There is a simplicial subdivision & of 4 such that each &7,
18 in the K-simplicial complex & associated with .5~

Proof. Let 4 be represented as the positive face of the unit
ball of LN(X, %, p). For each a let A,=U{S,;9eF,} so F, is
representable as the positive face of the unit ball of L4, 2, ).
Let v, be a measure on A, so that 4, is .&/(v,) as in Proposition



BARYGENTRIC SIMPLICIAL SUBDIVISION 269

5.2. Let F., be the face of 4 complementary to |, F. and A, =
X\U. 4, (in 2,) so that F, = J{S,: g€ A.}. Let v, be the restric-
tion of x to A.. Let v = 3 v X, + vuX,,. LY(X, Z,v) is isometric
with L'(X, %, ¢t) under a positive isometry @. The image of /()
under @ is a K-simplicial subdivision & of 4 whose associated K-
simplicial complex contains U, .7;. O

We may improve Corollary 2.5.1 in Proposition 5.8 and provide
a basis for giving barycentric subdivisions of arbitrary K-simplicial
complexes in Proposition 5.4.

ProroSITION 5.3. Let {F,} be a collection of morm closed faces
of the K-simplex 4. Let &%, be a K-simplicial subdivision of F', for
each a which is barycentric type. If the trace of &% and &5 agree on
F.NF; for all a, B, then there is a K-simplicial subdivision &7 of 4
with associated simplicial complex & such that 4 C & for all a.

Proof. For any « there is a minimal collection {F,: g€ 4,} so
that o« e 4, and so that if v¢ 4, then F, is disjoint from the norm
closed face 4, generated by {|J F: 83€4,}. The relation a, ~ a, iff
a, € 4,, is an equivalence relation on the index set of {F,}. 4, depends
only on the equivalence class of a. If a;+* a, then 4, N4, = @.
If we show how to give a simplicial subdivision & of a 4, so that
A cw if Bed, we will be done upon appeal to Corollary 5.2.1.
Thus, without loss of generality it may be assumed that 4 = 4, for
some a, We may enumerate {F,} by ordinals a so that F,, = F,
and so that if B is an ordinal then F; N F*" % @ where F*" is the
norm closed face of 4 generated by {F,: @ < 8}. Let F}; be the norm
closed face of F, complementary in F; to FyN F¢/. Let S;=
U{S,;geF,}, S~ =U{Sc:a < B}, S =8"US;and S; = S,\S*~. We
wish to construct a measure v on (X, Y) and a Banach lattice iso-
morphism @: LNX, ¥, ¢) —» L X, 2, v) so that 0(%%) c&’(v). The
measure v and isomorphism @ will be constructed by transfinite
induction by constructing yv,, the restriction of v to S* for each
ordinal a. Each v, will be of the form hX, ¢ for some positive
measurable s and @ will be the map g — g/h. Suppose v, has been
constructed for all 8 < a so that v, = hX syt for some measurable &
and so that @(%45) c &’ (vs) when Z/(v;) is the simplicial complex
on the positive face F? = F*~ U F;, of the unit ball of L(S? %, v;).
Now v,, which is to be defined, must equal, on S*~, the measure
h¥ga-pt. v, must be defined on S,, if this is non-empty. By Proposi-
tion 5.2, there is a measure w, on S, so that w, = h X, ¢ for some
measurable h,, and so that if @, g — g/h, is the isomorphism of
LS, X, 1) to L(S,, 2, w,) then (& *) =7 (w,). In the construction
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of w, one may actually set w, = htt on S*'NS, to begin with. The
function % is defined only on S*~. Extend & to S* so that 2~ = &, on
S.. Let v, = hlgpt. It must be verified that @(%7,) &/ (v,). It
suffices to verify that @(°.¢%) c °&/(v,). If ge’<%, write it uniquely
as the convex combination .5 + (1 — A )g%. We have @(g) =
D(9) = Zs, [0(S)] 7 = Ls [va(Sy)] ' € A (v,).  Thus, (L) CZ7(v,). At
the termmatmn of transfinite induction A is defined on all of X, v is
defined on ¥, and @ is defined on LY(X, ¥, z¢) to L(X, ¥, v) so that
O(.7) & ’(v) for all @. This establishes the proposition. 1

PROPOSITION 5.4. Let & be a K-simplicial complex. There is a
K-simplicial complex &’ such that

(i) If e’ and Se& then S'NS 1s a face of S'.

(ii) If Se<& the trace, SN Z’, is the K-simplicial complex as-
sociated with a K-simplicial subdiviston of S of barycentric type.

Proof. Enumerate = as {S,} where a ranges over an initial set
of ordinals. Suppose that for all ordinals v < «a, S; has been provided
with a K-simplicial subdivision .4 of barycentric type with associated
K-simplicial complex Z7. Suppose further that the traces of %7, and
«%, on S; NS;, are the same. On S, we have a collection of norm
closed faces {S. N Sr: v < a} each of which has the simplicial complex
“ N S, corresponding to a K-simplicial subdivision S; of S, N S; of
barycentric type. Furthermore, if v, # v, then =% N (S.N S; N Sy,) =
©5,N(8.NS;,NS;). By Proposition 5.3, there is a K-simplicial subdi-
vision &%, of S, of barycetric type so that the associated K-simplicial
complex &7, has trace equal to =N (S, N S;) for all y<a. By transfinite
induction each simplex S, in =~ is simplicially subdivided in a bary-
centric fashion by .¢4. Let &'=U. %, < is easily verified to be a
K-simplicial complex which satisfies (i) and (ii) of this proposition. []
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