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AN APPLICATION OF ORTHOGONAL POLYNOMIALS
TO RANDOM WALKS

THOMAS WHITEHURST

If X, is a simple random walk on the nonnegative in-
tegers with transition probabilities P¥=Pr{X,..=7| X,.=1},
then P has an integral representation in terms of a family
of orthogonal polynomials and the associated probability
distribution function F'(x) for these polynomials. The rela-
tionship between the distribution F', the family of polyno-
mials and the random walk X, is studied. Necessary and
sufficient conditions for the support of F' to be contained in
[0, 1] are given.

1. Preliminaries. Throughout this paper X, will be a random
walk on the integers with transition matrix P = (P;;) = (Pr{X,., =
71X, =1}). We shall say that X, is a “simple random walk” if
P,; = 0 whenever |7 — j| > 1, and in this case we set ¢, = P,,_,, 7, =
P,., and p, = P,.,,. We shall concentrate on simple random walks,
X,, whose state space is the non-negative integers which we shall
henceforth denote by N,. Following Karlin and McGregor (1959) we
find an integral representation for the transition probabilities P.%.

Suppose then that X, is a simple random walk on N,. For each
state ne N,, we associate a polynomial Q,(x), of degree =, defined
recursively by

Q(x) =0,Qx) =1, and

1.1
D 0. = 0.@us®) + 1.0.®) + 2. Qun@), 12 0.

By the following theorem, due to Favard (1985), we see that
the family of polynomials {Q,(x)} defined by (1.1) is orthogonal with
respect to a probability distribution F(z).

THEOREM 1.1. Suppose that the family of polynomials {R,(x)} is
defined recursively by

Ryx)=1 R(x) =2 —¢,, and

(1.2)
R.(@) = (@ — c,)B,(2) — MB, (), n=1,

where ¢, 1s real and n,., > 0 for n =2 0. Then there is a (probability)

distribution function F'(x), such that the polynomials {R,(x)} are
orthogonal with respect to F(x). That is, i R, (x)R, (x)dF(x) =0

whenever n #* m.
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THEOREM 1.2. If {R.(x)} is a family of orthogonal polynomials,
with R.(x) having degree n, and normalized to be monic, then relation
(1.2) holds for any three comsecutive polynomials, where ¢, is real
and N, >0, for n=0.

Note that Theorem 1.2 is the converse to Favard’s theorem
(Theorem 1.1). For a proof and related results see Szego (1939).

If we write Q(x) = [Qux)Q,(x)Qy(x)---]’, then (1.1) is equivalent
to zQ(x) = PQ(x), so that z*Q(x) = P*Q(x). In other words, z*Q,(x) =
S0 P@Q.(x). Note that for a simple random walk X,, only a
finite number of terms on the right side are non-zero. Multiplying
both sides of this equation by @,(x), and exploiting the orthogonality
of the family we have

(1.3) Py =7, |" #Q@Qu@dFw)

where 1/7,, = Sm t(x)dF(x). It can easily be shown, from (1.1),

that 7, =1 and 7, = (PD; * ** Pu-D/(Q:Q: * * * Qu)-

The support of F', Supp F, is defined by Supp F' = {x: F(x + h) +
F(x — h) for all h = 0}. If we set » =m =0 in (1.8) we see that
the support of F' is contained in [—1, 1] since P{), is a probability.
Thus,

(1.4 P& =7, | #Q,@Qu@)dF () .

Note that F(x) is uniquely determined since the support of F is
contained in a finite interval; hence, the moments uniquely determine
the measure.

Karlin and McGregor (1959) took an alternative approach to the
above development. That approach was to consider (1.4) as a spectral
representation of the linear operator P (our transition matrix) acting
on an appropriate Hilbert space. For this reason Karlin and McGregor
refer to F(x) in (1.4) as the spectral measure function, SMF, for the
random walk X,. Using this approach Karlin and McGregor (1959)
obtain a representation similar to (1.4) if our simple random walk X,
ison {0,1,2,--- N},or{---, —2, —1,0,1, 2, ---}. In the former case
(1.1) defines only a finite family of orthogonal polynomials, and the
SMF F, in (1.4), has only a finite number of support points. In the
latter case the representation takes on the form

(1.5) Py ==, | o 3 QU@ @dFu@) ,

where the F,,(x) are distributions on [—1, 1], the polynomials Q{*(x)



AN APPLICATION OF ORTHOGONAL POLYNOMIALS TO RANDOM WALKS 207

are defined by

Qu@) = 0, Q(x) = 1, Q4w) = 1, @(#) = 0, and
2@ = ¢QA(@) + rQY@) + PRN@) , (@=1,2).

For n = 0 &, is the same as above and
T_n = (Q@-1G- *** Qs )PP+ D_s) -

The following results contain some of the essential facts about
orthogonal polynomials; for proofs and related results, see Szego
(1939).

Suppose that F(x) is a probability distribution on [a, b] and that
Q.(x) is the corresponding family of orthogonal polynomials. Then

THEOREM 1.3. The zeros of Q.(x) are real and distinct, and are
located in the interior of the interval [a, b].

THEOREM 1.4. Let x, <z, < --- <z, be the zeros of Q.(x); also
let 2, =a and x,., =b. Then each interval (x, %,.,), 0 <k < n,
contains at least one zero of Q.(x), m > n.

THEOREM 1.5. In the open interval (x,, ©,.,), between two con-
secutive zeros of Q,(x), the function F(x) cannot be constant.

If F(x) is a probability distribution on [—1, 1], then one can
easily show that there is a family of polynomials {@.(x)}, satisfying
(1.1), which are orthogonal with respect to F(x). Furthermore, we
may assume that p, and ¢,,, are positive for n = 0. We may also
assume that Q,(1) = 1. This follows from the fact that the zeros of
Q.(x) are in (—1,1) so Q,(1) >0 for » = 0. Since Q,(1) =1 we have
g, + 7, + p, = 1. Thus, it easily follows that if F(x) has an infinite
number of support points, then

THEOREM 1.6. F'(x) ts the SMF for some simple random walk
X, on N, iff

T, = S 2@ (2)dF(@) =0 for n=0.

If F(x) has only a finite number of support points, then the
simple random walk X, above, is just on {0,1,2, ---, N}.

COROLLARY 1.7. If F(x) is a probability distribution of [0, 1],
then F is the SMF for some simple random walk.
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2. The support of the SMF. A sequence of numbers w =
(u,; m = 0) is a renewal sequence if there exists a sequence f =
(f.; m = 1) such that uw, =1 and u, = 3\, fitb,_, (0 = 1) where f, = 0
and 3,.-.f. = 1. An important characterization of renewal sequences
is: A sequence (u,) is a renewal sequence iff u, = Pr(X, = 1| X, = 1),
n = 0, for some Markov chain X and some state <. For a proof and
related results see Kingman (1972). A renewal sequence (u,) has
period d if and only if d = G.C.D.{n: w, > 0}. If d =1, (u,) is said
to be aperiodic. If % has period d, then %u = (u, %4 Usq, +-+) IS an
aperiodic renewal sequence, see Kingman (1972). Thus, it is clear
that aperiodic renewal sequences play the major role in the theory
of renewal sequences.

ExamMpLE 2.1. Consider the simple random walk Y, on Z with
transition probabilities P,,, =9, P,.,=¢ =1—p, and P; =0
otherwise (where 0 < p, <1). Note that v, = Pr(Y, =0|Y, = 0)
defines a renewal sequence with period 2. If we start this random
walk at an even integer and then take two steps at a time (i.e., we
only consider Y,,), then we have a “simple” random walk X, on the
even integers. (To denote the dependence on the original random
walk we shall use the notation *Y,). In this case u, = Pr(X, =
0/ X,=0)=Pr(Y,, =0]Y,=0) defines an aperiodic renewal sequence,
and in fact u = *v.

An important type of renewal sequence is the Kaluza sequence,
which is defined to be any sequence u = (u,; n = 0) such that 0 <
w, < U, =1 and %l £ u,_,u,,, for n = 1. Kingman (1972) shows that
any Kaluza sequence is always a renewal sequence. By the Schwarz
inequality it is clear that

(2.1) u, = S:x"dG(x)

is a Kaluza sequence for any probability distribution G(z) on [0, 1].
In the above example, if p, = p,q, = ¢, then u, = (27? (pg)" is a
Kaluza sequence. Kingman (1972) raises the question of whether this

renewal sequence is of the form (2.1). Letac (1977) notes that in
the case of p = ¢ = 1/2

u, = (27;7') /22" = S:(cos )y dt = S:x"dG(x)

where dG(x) is the measure carried from Lebesque measure on [0, 1]
by the map £+ cos®zt.

We shall show that the renewal sequence generated in Example
2.1 is always of the form (2.1), even when p,%p. Furthermore, any
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renewal sequence of the form (2.1) corresponds to a random walk of
the form *Y,. Following Karlin and McGregor (1959) we shall say
that a simple random walk is symmetric if », = 0. The reason for
this terminology is that », = 0 iff the SMF F(x) is symmetric about
xz=0.

THEOREM 2.1. Suppose that F is the SMF of the stmple random
walk X, (on N,). Then, Supp FFC[0, 1] iff X, is probabilistically
the same as*Y,, where Y, is a symmetric random walk on {n/2: n € N}
which starts at an integer, i.e., Y, =k, k€ N,.

Proof. Suppose that Supp FFc[0,1]. Exploiting Theorem 1.6,
we define the (symmetric) probability distribution G(x) on [—1, 1] by

121+ F@)] if =0

Gw) = {1/2 [l—Fe)] if 2<0.

G is the SMF of a symmetric random walk, Y,, which we may assume

to be on {n/2: n e N,} taking steps of size +1/2 and —1/2. Exploiting

(1.4) and the symmetry of G we obtain Pr{fY, =0|Y,=0}=
1 1

ZS " dG(x) = S y"dF(y). Now 2Y, is a simple random walk on N;
0 0 1

hence, 2Y, has a SMF H(x). Thus, Pr{?Y, = 0/°Y, =0} = S x"dH(x) =
1 —1

Sx"olF(x). However, the moments uniquely determine the measure
0

in this case, so H(x) = F(x). Furthermore, the orthogonal polynomials

corresponding to H(x) and F(x) are the same. Hence, the repre-

sentations given by (1.4) are the same; that is X, is probabilistically

the same as %Y,.

On the other hand, suppose that X, is probabilistically the same
as ?Y,, where Y, is as given in the statement of the theorem and
with Y, having SMF G(x). Since G(z) is symmetric about z = 0 we
have

Pr{Y,,, = 0°Y, = 0} = S 2 dG (x) = 2S‘w2ndG(x> .
-1 [}
If F(x) is the SMF for X,, then

1
0

Pr{X,,, = 0| X, =0} = S o"dF(z) = 2 S o dG(x) .
Setting ¥ = 2* and H(y) = 2G(V y) — 1, for y = 0, we obtain
Sﬁlw"dF(w) - Soy"dﬂ(y) .

Again, however, the moments uniquely determine the measure, so
that F(x) = H(x), and hence Supp F ][0, 1].
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As a consequence of Theorem 2.1 we have

COROLLARY 2.2. A renewal sequence u = {u,y 18 of the form (2.1)
iff u, = w,,, where w = {w,) 18 the renewal sequence associated with
some symmetric random walk on Ni.

In the case of a simple random walk on Z we obtain from (1.5)
1

P®» =\ a2"dF,(x). Hence, the argument of Theorem 2.1 can be
1

extended to this case. Thus, in Corollary 2.2 we may replace N, by
Z so that the question raised by Kingman (1972) and answered by
Letac (1977) is a special case of this result.

Exploiting Theorem 2.1 we now develop necessary and sufficient
conditions for Supp F' [0, 1], in terms of the coefficients g¢,, r,, and
P, in (1.1). In theory one could compute the zeroes of @Q,(x) and
calculate the support of the SMF, F, from them. This procedure is
rarely practical because of the complexity of the polynomials, although
in some special case dF(x) can actually be calculated (see for example
Maki (1967), Karlin and McGregor (1958) or (1959)). In theory one
could also use Hausdorff’s criteria, in terms of tlhe moments, to test
for Supp F [0, 1]. Using the fact that m, = S 2" dF(x) = P, we
can compute the moments by calculating the pi‘obabilities of the
various paths. For example m, = 7 + 27,09, + p7.¢q.. It is clear,
however, that this procedure is also not practical. We now give a

tractable procedure for determining whether Supp F |0, 1].
We shall use the following notation for finite continued fractions:

Y a,/b,, and recursively, for #n =2

(2.2) | By
G |G| | ;[b (Gan| L @ ]
|bn—l [bn—z l bo " " <| bn—2 | bO )

To avoid notational difficulties, in the next theorem, we shall
assume that our original random walk is on the non-negative even
integers, E, = {2n: n e N,}. We shall use 9, = Pyusnss, 70 = Ponsn, and
qn = P2n2n—2'

THEOREM 2.3. Suppose that F(x) is the SMF for the simple random
walk X,, on K, corresponding to the family of orthogonal poly-
nomials, {Q.(x)}, defined by (1.1). Suppose also that p, + r, + q, =1
With D, @uyy >0 for n =0 (g, =0). Then, Supp FF[0, 1]iff for
n=1

a, | a,

(2.3) 0<h, =%l Gua| .. _ G| | <1
lt 1 (1 [1-n,
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where a,, = p, and and @y,_, = q,.

[Note: We could drop the left inequality since &, < 1 and a,,, >
0 imply that h,,, = a,.,/(1 — h,) > 0.]

Proof. We define p, and G, for n = 0 by
(2°4) (—io = 0; ﬁl = pOy ijn = th—ly I—)-Zn+1 = h2n ’ and ﬁn + (_jn = 1 .

If (2.8) is satisfied, then 0<%, 7,<1 for n=1. Thus, we may define a
symmetric random walk X,, on N, with transition probabilities P,,., =
P, and P,,_, =g, If we start at an even integer, then X, is a
random walk on FE, with transition probabilities P,.uio = DenDonsis
szn—z = QonQon—1, and szn =1 P2n2n—-2 - ﬁ2n2n+2' From the definition
of h, and continued fractions we have 7,054 = (1 — Gon)Ponss =
1 - g_zn)pn/(l — Q5,) = 0, Thus, P,,,,, = p,. Similarly, P,.., = ¢,
and P,,,, = r,. Thus, *X, is probabilistically the same as our original
random walk X,. By Theorem 2.1 Supp F' [0, 1].

On the other hand, if Supp F'[0, 1], then there is a symmetric
random walk Y,, on N, such that *Y,, on E, is probabilistically
the same as X,. Let 5, and §, represent the transition probabilities
of Y,. Note that #, =0, 3, = 0 and p, + §, = 1 since Y, is symmetric
and %Y, is probabilistically the same as X,.

By induction we shall show that 9§, = 7, and ¢, = §,, where 7,
and ¢, are given by (2.4). From above we know that §, =1 = 5,
and §, =1 =7, Assume then that 9, = P, and §, = g, for n < m.
If m is even, then

O = Pr{Xpp = m + 2| X, = m} = Pr{’Y,,, = m + 2°Y, = m}
= ﬁmﬁ'm+1 = pmfo\mﬂ .
Thus, Puir = Pme + Pm = P~ L — @) = Dy from (2.3) and (2.4).
Similarly, if m is odd, then §,.; = Quine ~ Tn = Guss- Sinece §, + P, =
1=4q,+ P, we have in either case D, = Dni: ANA Guis = Tuys-
Thus, p, = P, and §, = G,. It is clear that 0 < §,, 4, <1lforn =1,
so from (2.4) we see that 0 < h, <1 for n = 1.

In many cases the continued fractions in (2.3) will not be difficult

to compute since h,,.; = a,,.,/A + k).

ExamMpLE 2.2. Suppose that p, =1/2 =7, and for n =1 », = 1/2
and p, = q, = 1/4. From (2.3) we see that #, = 1/2 for » = 1. Thus,
by Theorem 2.3, we see that the SMF corresponding to this random
walk is supported by [0, 1].

ExAMPLE 2.3. Suppose that p, = 1/3 and », = 2/3, and for » =
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1, r,=p9,.=gq,=1/3. From (2.3) h, =1/2, h, = 2/3, but h, =1. Thus,
the SMF corresponding to this random walk is not supported by
[0, 1].

3. Some special cases. Consider a family of polynomials {R,(x)},
defined by (1.2), which are orthogonal with respect to F(x). Let X
be the set of zeros; i.e., X = {x: R,(x) = 0 for some » =1}. From
Blumenthal (1898) we have

THEOREM 3.1. Suppose that c, and \, converge to ¢ and ) (finite)
respectively. Then the set X is dense in [0, t] where o = ¢ — 2\"*
and T = ¢ + 2\"*; hence, the Supp F' is dense in [0, t]. Furthermore,
dF consists only of a countable number of atoms outside of [o, T].

For a proof and related results see Chihara (1968).

COROLLARY 8.2. If X, is a simple random walk on N, with
SMF F, then dF is purely atomic if r,— 1.

Proof. The corresponding family of orthogonal polynomials {@,(x)}
is defined by (1.1). If we normalize Q,(x) to be monic, then the
normalized polynomials satisfy (1.2) with ¢, = 7, and N, = 9,_.q..
Since ¢, + 7, + », = 1, we see that », - 0. so 6 =7 = 1.

Still assuming that X, has SMF F we have

THEOREM 3.3. If Supp Fc[0,1] and 7, — 0, then dF is purely
atomic.

Proof. We may assume that ¢, + », + p, = 1 since normalizing
Q.(x) so that @,(1) =1 does not affect r,. For n = N(¢) r, <e. By
Theorem 2.3 we have h,, = p,/(1 — hy, ) <1 so p, + hy,, <1 and
bony = Qn/(l - h2n-—2) > 4,

Thus, for n=N(E), 1—c<p,+ q, < 9, + hoey < 1. Hence,
0 < hypy—q, <& but by, — g, = @u[ho,s/(l — hynp)]l.  Also p,, =
Bono(l — Pop_s) <hop_y < [Bon_s/(1 — ho,_)]. Therefore, 0 <\, = ¢,0,1 <
Q[ hon_o/(X — hy,_)] < € for m = N(¢). Hence )\, — 0 and dF is purely
atomic.

For general families of orthogonal polynomials {R,(x)} defined
by (1.2) with Supp F C|[e, b] we have

COROLLARY 3.4. If ¢,— a or ¢, — b, then dF is purely atomic.

Proof. Starting with (1.2) we set Q,(x) = R,(y)/R.(b) where x =
(y — a)/(b — a). This new family of polynomials {@,(x)} is orthogonal
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on [0, 1] with SMF F translated to [0, 1]. The family {Q.(x)} satisfies
(1.1) with g, = N,t,._./(b — a)t,, 7, = (¢, — a)/(b — @), and p, =t,,,/(b — a)t,
where ¢, = R,(b) which is positive by Theorem 1.3. Since Q,(1) =1
we have q, + 7, + 9, = 1 so we may apply the previous two results
to this family. If ¢, >a ore¢, —bthenr,—0or r,—1. Thus, the
original measure dF' is purely atomie.

Note that if Supp F' = [0, 1] and p,, ¢. and », converge to p, ¢
and 7 respectively, then a necessary condition for F' to be absolutely
continuous is that » = 1/2 and » = ¢ = 1/4. This follows immediately
from Theorem 3.1.
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