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THE THEORY OF AD-ASSOCIATIVE LIE ALGEBRAS

RICHARD C. PENNEY

A Lie algebra £f is said to be ad-associative if the image
of the adjoint representation of ^ on £f is an associative
algebra under composition. We show that every ad-as-
sociative Lie algebra is a quotient of a left commutative
(xyw = yxw) associative algebra by a Lie ideal. We conclude
that every ad-associative Lie algebra is solvable and every
irreducible representation of a nilpotent, ad-associative Lie
group is square integrable modulo its kernel. We also
characterize the HAT algebras of Howe [2] in terms of
associative algebra.

Let Jίf be a finite dimensional Lie algebra over R and let ad
denote the adjoint representation of J*f on £f. Let adi? 7 be the
image of ad. £f is said to be ad-associative if ad £f is closed under
composition. In this case ad £f is an associative algebra. Let us
denote this algebra by Ĵ C It is the purpose of this paper to give
a structure theory for the ad-associative Lie algebras.

Our interest in the subject of ad-associative algebras stems from
several different sources. The HAT algebras introduced by Howe
in [2] in connection with the study of ocillatory integrals can be
shown to be ad-associative. In fact, we prove what we feel to be
a very pretty characterization of the HAT algebras. Ad-associative
algebras also occur naturally in algebraic topology as a way of
combining the information contained in the homology and co-homology
groups of compact manifolds together. Here they give rise to some
new topological invariants which are functions of the joint homology
and cohomology groups (see Example II below). In another direction,
there is a natural way of associating with any multi-linear form <2&
on a vector space 5^ an ad-associative Lie algebra £?&. Whether or
not this association has any real significance remains to be seen. At
the very least, the study of ad-associative algebras provides an
interesting source of examples.

To begin our discussion, recall that any associative algebra Szf
gives rise to a Lie algebra by setting [x, y] = xy — yx. If £f is
ad-associative, the Lie algebra corresponding to J ^ = ad Sf, is just
£fl%* where JΓ is the center of £f. Hence όzf fits into the exact
sequence of Lie algebras 0 —> & —> £f —> s/ —> 0. As a vector space

x %fm In fact, there is an alternating, bi-linear mapping
^ such that

[0, έ), (y, t)] = ([x, y\ φ{x, y))
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for x, y e j& and s, t e 3Γ.

LEMMA, φ is nondegerate and satisfies φ([x, y], w) — -~Φ(x, wy).

Proof. The nondegeneracy is obvious. The identity follows from
the statement [[z, y\ w] — ad w ad y(x). Hence, if x — (χlf s), y — (ylt t)
and w=(wl9 r) then adwad^αO^adOw^!, 0)(x) = ([w1ylf a?J, φ{wxyu xj).
On the other hand [[x, y], w] = ([[xlf yx], wt\ φ([xl9 yx\ wΐ). Π

DEFINITION. A twine algebra is a triple (jzζ £f, ψ) consisting of
a finite dimensional associative algebra J ^ a finite dimensional vector
space %* and an alternating, nondegenerate, bi-linear mapping
φ: J ^ x J ^ -> 5£ which satisfies

φ([x, y\ w) = -φ(x, wy)

for all x, y, w e j / . The above identity is called the twine identity.
In the above discussion, we defined a mapping of the category of

ad-associative Lie algebras into the category of twine algebras. In
the next lemma, we note that this mapping is surjective. If we
wished to define morphisms of twine algebras, we could also prove
functorality.

PROPOSITION. Let ( J ^ £f,Φ) be a twine algebra. Let
x % with the Lie algebra structure given by

[(a?, s), (y, t)] = ([x, y], φ(x, y)) .

Then J5f is an ad-associative Lie algebra and ad Sf & J ^

Proof. The ad-associativity is obvious once one knows that
is a Lie algebra. To show that Sf is a Lie algebra, one must show
the Jacobi identity which amounts to showing that

φ(x, [y, w]) = φ{[x, y], w) + φ{y, [xf w]) .

This follows trivially from the twine identity. •

REMARK. Note that the above proof that Sf is a Lie algebra
did not use the associativity of jyi Nonassociative twine algebras
will be called quasi-twine algebras. The class of Lie algebras pro-
duced from quasi-twine algebras is interesting as in the nilpotent
case it is precisely the class of Lie algebras with square integrable
representations.

The following lemma is basic to the study of twine algebras.
If ^€ is a subset of a twine algebra j^< ̂ ίίφ will denote its
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orthogonal space relative to <f> — i.e.,

^ί* = { x 6 J / | φ{^£, x) = {0}} .

LEMMA A. Let {J%f, %*, φ) be a twine algebra. Then
(a) φ{xy, w) = φ(y, xw) for all x,y, w e ̂ /.
(b) xyw = ?/#w /or x, y, w e j&.
(c) A subspace ^ of *$/ is a left ideal of j y iff <J^Φ is a left

ideal of S^f. ^ is a right ideal iff ^ φ is a Lie ideal. ^ is a
two sided ideal iff ^ φ is a two sided ideal.

(d) A mapping T: J^f —> S%f which is a Lie algebra homomor-
phism and which preserves φ is an algebra isomorphism.

Proof, (a) follows by applying the twine identity to both sides
of the equality

φ{x, [y, w]) = - φ(x, [w, y]) .

(b) follows from (a) and associativity since

Φ((xy)w, z) = φ(w, (xy)z) = φ{y{xw), z) .

(c) is clear.
(d) is seen as follows. T is invertible since it leaves φ invariant

Φ(T(xy), w) - φ(xy9 T~ιw) - φ(x, [T^w, y])

= φ(x, T~ι[w, Ty\) = φ(TxTy, w) . Π

COROLLARY. Let ^f be an ad-associative Lie algebra. Then
is abelian, so £f is solvable.

Proof. Let J ^ = ad £f and let &> = Stf x % as above.
will be abelian if [jzζ <W] is abelian and φ is trivial on [ j ^ *Ssf] x
[J^9 J^]. But from (b) above [ĵ < J ^ ] 2 = 0 and from (b) and the
twine identity

φ([x, y], [u, v]) = φ(y, [u, v]x) = 0 . Π

Property (b) above is referred to as left commutativity. Now,
let & be any left commutative, associative algebra. It is easily
seen that as a Lie algebra, & is ad-associative. In fact, for
x, y 6 &, [x, [y, w]] = [xy, w]. More generally, if ^ is any Lie
ideal of &, then the Lie algebra £f = &\J? is ad-associative. Our
first main result is the following.

THEOREM I. Suppose Jίf is an ad-associative Lie algebra. Then
there is a left commutative algebra <& and a Lie ideal ^ of &
such that Jzf f*& έ%\^ as a Lie algebra.
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We prove this theorem by first constructing a class of "free"
left commutative algebras for which the set of twine forms is
explicitly describable. We then show that sf = ^fl^ is the image
of one of these free twine algebras.

Suppose we are given a family ^ , , «̂ fς of abelian associative
algebras. Our first step is to construct a left commutative algebra
& which contains the ^ as subalgebras and which is "freely"
generated by the ^ 7 . The most natural construction of such an
algebra would be to form all possible tensor products of all lengths
of the ^Yly take a direct sum, define a multiplication and then
quotient out by an ideal. Unfortunately this obvious approach is
very complicated notationally. It turns out to be much simpler if
one first adjoins units onto each of the spaces ^Y[ for then we can
work with only w-fold tensor products.

Specifically, let Ĵ < be the algebras defined on R x ^γ\ by

(s, a)(t, b) = (st, sb + ta) .

Let σn be t h e set of permutat ions of t h e set {1, ••-,%}. For

π e σn, let ,sK =
Let

If a is a sequence indexed by {1, , n) such that a(ί) e J ^ for all
i we set aπ = a(π(l)) (g) (g) a(π(n)) e J*fπ for all π eσn. We define
an algebra structure on P by setting aπbτ = α(τ(l))6(τ(l)) (x) (x)
a{τ(n))b(τ(n)) for all sequences α and 6 as above. We extend this
multiplication by distributivity to all of P. It is easily seen that
under this multiplication P becomes an associative, noncommutative
algebra (But note that P is always left commutative). We shall refer
to P as the w-pole algebra of J ^ , , JK The elements of set J^ζ
are called π oriented. If a is a sequence such that a(ϊ) 6 J ^ for all
i, then aπ is the π orientation of α. The reason for this terminology
is that the way one multiplies aπ and bτ is to change the orientation
of aπ so that it agrees with that of bτ and then take a standard
product. This seems analogous to magnetic dipoles lining up to form
a new dipole.

We may consider ^y\ as the subalgebra 0 x ^Yl of j^J. For each
i let li = (1, 0) considered as an element of J ^ (0 is the zero of
We embed ^ 7 into P(J&Ί, , *SK) as the subalgebra lx 0 12 (
U (x) (x) l n ® ^ . Let LC(^lf , ^ ς ) be the subalgebra of
• , J^O generated by {Λΐ\ embedded as above. LC is by definition
the left commutative algebra freely generated by ^Vu , ^fς.

Our main theorem concerning freely generated left commutative
algebras is the following.
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Let ^ be a finite dimensional vector space.

PROPOSITION. Let {<yKl} be a finite family of abelian associative
algebras and let φ be a 3£ valued twine form on LC{%A/[y , ^Vi)
which is zero on each <yίrι x ^V[. Then there is a linear making
a of LC into %? such that φ(x, y) = a(\x, y]) for all x, y e LC.

Proof. We begin with notation. Let τt denote the embedding
of ^ in L C ( ^ , •• , ι i ; ) used in defining LC-i.e., τ<(α) = U®
• lί (x) ® ln(x) a.

Let S be an arbitrary nonempty subset of {1, , n) and let
aeJls^4<l(the product set). Let n = (il9 •••, ik) be an enumeration
of the elements of S. We shall define a(S, n) — r ^ α ^ ) ) τt (a(i)) e
LC(^^, , ̂ K). By left commutativity a(S, n) depends only on ik

and not on the specific enumeration n. Hence we may write a(S, n) =
a(S, ik). By definition, LC is the span of the a(S, j) with S, j and
a varying. Note that for a e J[s ^ and b e J[T Λ^ where S, T c
{1, , n}, we have the identity a(S, i)b(T, j) — c(S U T, j) where c
is the sequence on S U T given by c(k) = a(k) for keS ~ T, c{k) —
b{k) for kεT ~ S and cik) = a(k)b{k) for keSnT. For each S c
{1, * , n} and each j e S, let ^V(β9 j) be the span of the elements
α(S, i) as above. Then

Now let φ be a twine form on LC{^Y[, , *sK). We shall define
mappings a(S, i) on ^/K(β9 i) such that φ(x, y) = a([x, y]) where a =
Σs,<«(S, ί). First, however let Sc{ l , •••, w} and let α e Πs^f^.
Suppose that there are two elements i and j in S with i Φ j . Let
£f = Sλ U iS2 be a partitioning of 5 with ieSx and j eS2. Let

Ŝ(i, j>*, S, α) = φ(a(Su i) , α(S2, i)) .

In principle β depends also on the partitioning Su S2 of S.
However, the left commutativity of LC and the left self-adjointness
of twine forms imply that β is in fact independent of the partition-
ing of S. We extend the definition of β to the cases where S is a
singleton set or i = j by setting β(j, j , S, a) — 0.

LEMMA, β is skew-symmetric in i and j and satisfies the co-
cycle identity:

β(i, h S, a) + β(j, k, S, a) - β(i, k, S, a)

for all i, j , keS .

Proof. The skew symmetry is obvious.



464 RICHARD C. PENNEY

The co-cycle identity is trivial if any of the elements {i, j , k]
are equal so we will assume that i9 j and k are distinct. In this
case there is a partitioning S — Sλ U S2 U S3 with i e Sl9 j e S2 and
keS3. From the identity

[α(S2, j), a(Sl9 i)] = a(Sλ U S2f i) - a{Sλ U S2, j)

we conclude

β(i, k, S, a) - β(j, k, S, a) = φ([a(S2, j), a(Slf i)], a(S3, k))

= φ(a(Slf i), a(SB, k)a(S2, j))

- φ(a(Slf i), a(S2 U S3, j))

= β{% j , S,a). D

Now the lemma implies that there are multi-linear mappings
α(S, k): lίs^ί^-^^ such that β{i, j , S, a) = ά(S, ΐ)(α) - α(S, i)(α).
To see this let &0 e S be fixed and let ά(S, ϊ)(a) = /3(i, &0, S, α)- Since
^K(S9 ί) is isomorphic with (g) ̂ 7 , we may define linear mappings
α(S, i) on ^T(S, i) by setting

α(Sf ί)(α(S, i)) - α(S, i)(α)

for all aeJJs Λϊ. We then extend a(S, i) linearly to all of ^K*(S, i).
Let a: LC(Λϊ9 , ^ ς ) -> % be defined by α | ^ r ( S , i) = a(S, ί).

To finish our theorem we need to show that φ(x9 y) = a(\x, y]).
To prove this it suffices to consider x = α(S, i) and y = 6(Γ, j) for
some S, Γc{ l , •••,%} and ieS, j eT. Let c be the element of
ILUT ^ i by c = a on S ~ T,c = b on Γ - S and c(i) = a(j)b(j) =
b(j)a(j) on S Π T. From the left self-adjointness of φ and let com-
mutativity we see easily, for i Φ j ,

φ(a(S, i\ b(T9 j)) - β(if j9 SUT,C)

= a(i, S U Γ, c) - α(j f S U Γ, c)

- a(c(S U Γ, i)) - a(c(S U Γ, i))

If i = j ? ^(α(S, i), 6(Γ, i)) = 0 since in this case a(S9 i) and δ(Γ, i)
both belong either to {LG)^Vl or to ^ 7 , and, for example (̂ccα, τ/6) =
(̂l/aj, [α, 6]) = 0 for all a and δ in Λ^-^Yl-ΛΪ + (LC)Λϊ is abelian

so ^α is zero on ^ 7 + (LC)^P^ also. Π

Our theorem follows from the above proposition as follows. Let
and let ^ : J / x j / - 4 j be the twine form. Let

be a family of abelian subalgebras of , j ^ such that φ is
trivial on Λ^ x ^^7 and f̂̂  generate Stf. Such .^7 exist. For
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example, if eu •• ,β« generate j%? as a left Jzf module, let

It is easily verified that there is an algebra homomorphism T
of LC(ΛΪ, , ^ ) onto s*f. Let φ be the pull back of φ by T to
LC x LC. From the proposition there is a mapping a: LC-> % such
that a([x, y]) = $(&, y).

We define an algebra structure on & = LC x ^ by setting

(x,v) (y, w) = (xy,a(xy)) .

Under this structure, ^ becomes a left commutative algebra. We
extend the mapping T:LC-^ s*f to a mapping T: 3? -> £f = Jtf x
% by setting Γ(&, v) = (Tx, v). f is easily seen to be a surjective
Lie algebra homomorphism. •

The proof of the above theorem also provides us with a general
construction capable of producing all twine algebras. To see this,
let ΛΊ, -—,<yp/l be any family of abelian algebras. Let ^ be a
vector space and let a: LC{^19 , ̂ Ϋl) —> ^ be any linear mapping.
Then the form φa(xf y) = a([x, y]) is a twine form on LC. It follows
from Lemma A that the radical &a of φa is an algebra ideal in
LC.

Let

τw(^κ, , ΛΪ, a) = LC(^r19..., ^rk)/^a,

and let φ be the projection of φa to TPΓ. Then the pair (TW, Φ) is
a twine algebra and every twine algebra is isomorphic with such a
pair. Note that a is uniquely determined by its restriction to ~4^(S, i)
(see the above proof for notation) for Sc{ l , •••,*&} and ieS. Also
<yK(S, i) f* ®ies<Λ/i so a\Λf(S, i) — a(S, i) may be thought of as a
multi-linear functional on I L e s ^ J Hence a twine algebra is deter-
mined by giving for each subset S of {1, ••-,%}, a family {αj of
multi-linear functionals on Π i e s ^ i indexed by S. A particularly
interesting case arises when a(S, i) — 0 if S ^ {1, , n}. In this
case the necessary data is simply a family alf *, an of n, multi-
linear functionals on Π?=i -^ϊ We consider several examples of this
construction below.

EXAMPLE I. Let Sf be an abelian, nilpotent associative algebra
and let ^ * be its linear dual. Let ax: S^ x S^* be the functional.

<*i(&, y) = <«, v)

and let α2 = 0. Let ^ * be considered as an algebra with trivial
multiplication. Then
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0 (12 (X) ̂ ) ©

The space ^ * <g) ̂  is central in L C ( ^ ^ * ) so it belongs to
the radical Ra of φa.

Let 2/ 6 ^ * and x e ^ Define x y e 6^* to be <w, x y) — (xw, y).
It is easily seen that x (g) y — lx (g) xy eRa for all xeS^ye£**.

It follows that

with the product

(χ,y) (χ\ y') = (χχ',χyf).

In this case ^α projects to the form

Let .S^ denote the ad-associative Lie algebra corresponding to the
pair (TW(S^£^*)9 φ). Such Lie algebras are known in the literature.
They have been extensively studied by Howe in [2], They are
precisely the split HAT algebras. Let us observe that in this
case, the Lie algebra Sf itself comes from a left commutative
algebra. In fact, we define a product structure on (&* ® S**) x R
by setting

(G»i, yj, s)((x2, y2), t) = ((α?iί»2, xfli), (xl9 y2)) .

Then (£f φ ^ * ) x i2 becomes a left commutative algebra which
defines

EXAMPLE II. This example is essentially an example of Example
I. Let M be a compact, orientable, n dimensional manifold. Let
Ht(M, R) and H\M9 R) denote respectively the ith homology and
co-homology groups of M over R. Let

H*(M, R) - Σ θ H\M, R)
i

, R) =

H*(M, R) is an algebra under the cup product. There is a pairing
< , > between H\M, R) and Ht(M, R) which makes Ht{M, R) isomorphic
with the dual space of H*(M, R). Hence H*(M, R) is cannonically
isomorphic with the dual of H*(M, R). Let < , > denote the pairing.
There is also a cup product operation

Π : ίP(M, R) x H*(M, R) > H*{M, R)

characterized by
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<α, b n ζ) = (a U 6, £>

for α, δ 6 H*(Mf R) and £ 6 H*(M, R). Let ^ = H*(M, R) x iϊ*(ilf, Λ).
We make & into an algebra by setting

(α, m)(δ, n) = (α U 6, α Π w) .

^ is referred to as the full co-homology algebra of M. It is
obviously similar to the algebra considered in Example I, the main
dissimularity being that ϊl*{M^ R) is nonabelian. This dissimularity
can be eliminated by using

and

in place of H*(M, R) and H*(M, R) in the definition of &. This is
called the half full co-homology algebra. This replacement is especially
pertinent if n = dim M is odd for in this case each HP(X, R) and
each HP(X, R) appears once in & as HP(X, R) ^ Hn_P(X, R) by
Pontriagin duality. One can also use the integral homology to
define discrete, co-compact subgroups of ( ^ *). One can then
associate with M a compact nilmanif old. Hence we have a functorial
mapping of the category of compact orientable manifolds to the class
of compact nilmanif olds. It seems that it might be quite interesting
to study this functor.

EXAMPLE III. The algebra associated with a family of multi-
linear forms.

Let 7 be a finite dimensional vector space over R and let
{«i, •••, «Λ} be a set of nf ^-linear forms mapping Vn->R. We
consider V as an algebra with trivial multiplication. As discussed
above Example I, we may use the forms at to define a functional a
on LC(V, , V) and hence construct TW(V, , V, a). If we are
given fewer than n forms (say one) we may form an algebra by
declaring the rest of the at to be zero. It is clear that re-indexing
the forms α̂  does not change the isomorphism class of the algebra.
To get specific, let az be the determinant function on Rz x JR3 x JB3

and let ax and a2 be zero. We shall compute the corresponding
twine algebra.

Let V1 - V2 = Vz = R\ The order-3 tensor products in LC( Vlf V2f V3)
are just the sets
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with i < j and k £ {i, j}. Each such set is central in LC so they go
to zero. The order two tensor products are spanned by the lj.®
F

3
 (g)F

2
, 1

2
 (x)F

3
 (x) V

l9
 1, (g)F

2
 (x) F

3
, Fi (x) 1

2
 <g> F

3
, F

x
 <g) 1

3
 <g> F

2
, F

2
 (x)

The first of these sets goes to zero in TW as the only tensor
products which it doesn't centralize in LC are those in l2(g)l3(g)Fi
and [12 (x) 13 ® F1? lx ® F3 <g) F2] c F, (x)F3 (x) F2 + F2 (x)F3 (x) F, c ker a.
Similarly for the second set. To study the third set, we note the
identity.

Όet(u, v, w) = u-(v x w) — (u x v) w on R3 x R5 x i23. I t follow

that

α([li ® v 2 ® v3, 12 (x) 13 (x) t J) = - tfi (v2 x v3) .

Hence, the image of li(x) F2(x)F3 in TW is isomorphic with Rz under
the mapping lx (x) v2 (x) v3 —-> v2 x v3. Similar comments hold for the
sets Fx (x) 12 (x) F3, Fi (g) 13 <g) F 2 and F 2 ® 13 (x) F x . However, the latter
two spaces are also identified with each other under the mapping

v2® hS)^i >^IΘ1 3 (X)^2 in TW .

The order one tensor products are all independent.
Hence

TW(R\ R\ R\ det) - (iί3)3 x (JS3)3 .

The product structure is:

(vl9 v2, v8, wlf w2, wz) (v[, vr

2, v'3, w[, w'2, w[)

= (0, 0, 0, v2 x vf

3, v, x v's, v, x v'2 — v2 x v[) for vi9 v'if wi9 w[eRz .

In [2], Howe introduced a concept of split HAT lie algebra.
Howe's definition is:

DEFINITION. A nilpotent Lie algebra ^V is split HAT if
(1) The dimension of the center JΓ(^//") is one.
( 2 ) There are abelian subalgebras £f and ^ of ^ ^ such that:
(a) ss n ̂ r - j u i
(b) ^r = ̂  + ^r
(C) ^ D ^ ^ ]

(d) dim ^ - dim ^
(3) f̂" has square integrable representations in the sense of

Moore-Wolf.
Howe showed that ^ " is split iϊAT iff ^//^ is Lie algebra iso-

morphic with an algebra of the form of Example I above. It follows
from Example I that every split HAT algebra is isomorphic with the
Lie algebra defined by a left commutative, associative algebra with
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one dimensional center. In our next theorem, we prove a converse
to this statement.

THEOREM II. A Lie algebra ^V is split, HAT iff ^Γ is Lie
algebra isomorphic with the Lie algebra defined by a left commutative,
associative, nilpotent algebra £@ with one dimensional center

Proof. The existence of & was proven in Example I above, so
we need only show that any such & is split HAT.

LEMMA. %{0) annihilates & on both the left and the right.

Proof. Suppose not. Then there is an n such that

But then &n%(&

Let j ^ = &\%
There is a form a: *j

) is
: ^ ) =

%f X

central
= 0.

. As a

s)Ψ, t) =

SO ^ n ^ { 0 ) = ^(,!

vector space ^ = j ;
' ( ^ ) such that

(αδ, a(a, 6))

^ ) .

^ x .

Hence
D

for a, b e J ^ s, t e &{0). Let ^(α, b) = α(α, 6) — α(6, α) for α, &
It is easily verified that φ is a twine for the algebra

LEMMA, φ is nondegenerate on St? x

Proof. Suppose φ(a, x) = 0 for all x e s/. Then

[(x, t\ {a, 0)] - ([x, α], ̂ (αj, α)) - ([x, α], 0) .

It follows that [(x91), (a, 0)] e &{0) implies that \{x, t), (α, 0)] = 0.
But if the lemma is false, there is an n such that [&n, (a, 0)] = 0
and [&n~\ (α, 0)] Φ 0. This is impossible since, by left commutativity,
[x, [V, (α, 0)]] - [xy, (α, 0)]. Hence \0, \&f*~\ {a, 0)]] = W\ (α, 0)] = 0.
Thus \&n'xy (α, 0)] c X{0) and so is zero. •

COROLLARY. The Lie group corresponding to & has square
integrable representations in the sense of [4].

Proof. Let Zoe%{&), ZQ Φ 0. Let λ e ^ * be the functional
which maps (α, tZQ) into t. The radical of the form φλ on ^ x ^
defined by

fc(&, 1/) = λ([a?, y])



470 RICHARD C. PENNEY

is ^(0?) as follows from the above lemma. From Moore-Wolf [4],
this is sufficient to prove the existence of square integrable repre-
sentations. •

Now from the nondegeneracy of φ on s/ x J ^ there is a
unique linear mapping τ: j ^ —» J ^ such that a(x, y) = φ(τx, y). The
splitting of & will be defined from the generalized eigenspaces of
τ. First we need some information concerning τ.

LEMMA, T is a left module homomorphίsm of Szf into Jzf which
is trivial on [ J ^ S/\ The adjoint of τ relative to φ is τφ = I — τ
and τφ maps Szf into the left annihilator ^f(J^f) of *$/.

Proof. The equality

φ(x, y) = a(x, y) - a(y, x) = φ(τx, y) - φ(τy, x)

implies the adjoint statement. The triviality of τ on [ j ^ J^f] follows
from the left commutativity of & for in &, (0, 0) = [(a?, 0), (y, 0)]
(w, 0) = (0, a{[x, y], w)). The left module homomorphism property
follows similarly from

x(yw) = (yx)w

in &. The fact that τφ maps into £?(J*f) follows from the fact
that Jg*(j&) is the orthogonal space to [ J*ff j>/\ under φ. Π

Now let J^ζ be the complexified algebra of Jz? and let
Σ?=i Θ 5&ϊ be the decomposition of Szfc into generalized eigenspaces
of τ.

For each complex number a let j&a be zero if a is not an
eigenvalue and let j ^ be the eigenspace corresponding to a if a is
an eigenvalue. Each J^fa is a left ideal since τ is a left module
homomorphism.

Let

Since 0 is not an eigenvalue of τφ = I — r on Jg^ τ55 is invertible on
Hence ^ c ^ ( ^ ) . But then

Also [Stζ J^f] c j^J which is disjoint from £{f so *S/£{f — 0 as well.
It is also true that & and Sίf are orthogonal under φ. In fact, it
is easily verified that Jϊfa and J ^ are orthogonal if a Φl — β.
It follows that to split ^ , it suffices to split £έf x
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and <& x %(&) separalety: But £έf x %{0) is a generalized
Heisenberg algebra and so is splitable. In ^ x 3£{0), let
S? = J ^ x %{0) and ^ / = j ^ x %(&). Then if x 3f (^) =
Sf + ^ and &> Π ^ = %?{^)^€ => [J< J^] x T Ô T) as desired.
^ is abelian since J^ is orthogonal to J^ under ^ and [ j ^ , J^]c

= {0}.

=5f(j^) because τφ is invertible on J^J. J&Ό is also self-
orthogonal so ^£ is abelian. To finish our theorem, we must prove
that Jϊf0 and Jtf[ have the same dimension. However, φ is non-
degenerate on ^ x ^ and J ^ and J ^ are each self-orthogonal.
Hence J ^ is isomorphic with (J^)* under the pairing defined by
Φ- D

REMARK. Although the above theorem proves that for each
split nilpotent Lie algebra ^Vl there is an associative algebra &
which gives rise to ^V\ it is not true that this correspondence is
one-to-one. In fact, consider the Heisenberg Lie algebra which we
take to be R2 x R with the Lie structure:

[(x, 8), (y, ί)] = (0, xxy2 ~ y,x2) .

There are two, nonisomorphic left commutative algebra structures
on R2 x R which gives rise to this same Lie algebra. They are
defined by:

( i ) (x,s)-(y,t) = (09x1yi)
(ii) (x, s)-(y, t) = (0, (x,y2 - yιxt)/2).

They are nonisomorphic since in case (i) the left annihilator is (0 x R) x
R while in case (ii) the left annihilator is (0 X 0) x R. For many
questions, one might study on the Lie group, the proper selection
of the algebra can be important. See, for example, the Fourier
transform theorems of [5].

We understand, incidentally, that L. Auslander has also observed
these two algebra structures mentioned above.

Theorem I has an interesting consequence which yields informa-
tion even in the split HAT case. Let G be a locally compact topo-
logical group and let U be an irreducible, unitary representation of
G. Let K be the kernel of U. Then U defines an injective repre-
sentation ϋ of GjK. We shall say that U is square-integrable modulo
its kernel if U has square-integrable matrix elements—i.e., there
are vectors v and w such that the function g -> (V{g)v, w) is nonzero
and square-integrable on G/K. If G is a Lie group, G is said to be
ad-associative if its Lie algebra is ad-associative.

THEOREM III. Let G be an ad-associative, nilpotent Lie group.
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Then every irreducible unitary representation ofG is square integrable
modulo its kernel.

Proof. Let Sf be the Lie algebra of G. By Theorem I, £έ> is
&\^F where & is a left-commutative algebra and ^ is an ideal.
By a lifting argument, we may assume that & = «=Ŝ  Let U be an
irreducible, unitary representation of G and let λ 6 ̂ * define the
Kirillov orbit of U (see [3]). It follows from Moore-Wolf [4] (or,
more precisely, from [1]) that U is square-integrable modulo its
kernel iff the radical of the form

^x(Xf V) = λ(|>, y]) = φ{x, y)

is a Lie ideal of &. The form &x is easily seen to be a twine
form for & (perhaps degenerate). The radical &λ of &x is {0}̂  so
&λ is infact an algebra ideal from Lemma A. •
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