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THE SUPPORT OF AN EXTREMAL DILATATION

MARVIN ORTEL

We introduce a density condition which applies to subsets,
E, of a bounded region Ω in the complex plane. If E satis-
fies this condition, then it is possible to construct a
quasiconformal mapping F, of Ω, subject to the following
conditions: F is extremal for its boundary values; F is
conformal throughout Ω—E; F is not conformal on E. The
construction makes essential use of the Hamilton-Reich-
Strebel characterization of extremal quasiconformal maps.

0* Introduction* In all that follows, Ω denotes a bounded

domain in the complex plane. Let K denote an element of JZf°°(Ω).

We say that K is an extremal dilatation (on Ω) if ||/s:||oβ Φ 0 and tz

is the complex dilatation of a quasiconformal mapping of Ω which
is extremal for its boundary values.

R. Hamilton, E. Reich and K. Strebel have given an incisive
characterization of extremal dilatations. Their result follows ([1],
[3], [4], [5]):

Let B(Ω) denote the space of functions, f, analytic on Ω, for
which

11/11 = \\f(z)\dA{z) < oo (area measure) .

Then K is an extremal dilatation if and only if (0 < ||Λ:||OO < 1)
and

(* ) sup If f(z)κ(z)dA(z)
11/11=1 I JΩ

feB(Ω)

= \\κ

It is well known that a bounded measurable function K may
be supported on a small subset of Ω and still satisfy condition (*).
In this paper we attempt to quantify this feature. We show that
subsets of Ω which satisfy a certain density condition will always
support extremal dilatations.

Density conditions which are necessarily satisfied by the support
of an extremal dilatation are known in the case that Ω is the unit
disk or the upper half plane. Some of these are discussed in [2].
They have features in common with the present sufficient condition,
but in no case is there a complete characterization.

1* A sufficient condition* If E is a subset of Ω, XE denotes
the indicator function of E:
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( 1 , zeE

Let E denote a subset of Ω. We say that E is analytically
thick in Ω if there is a bounded analytic function, h, defined on Ω
for which Ίfe||oo = 1 and

(1.1) \ XE{z)\h{z)\dA{z) = (1 + o(l))ί \h(z)\dA{z) ,
JfΓ(x) JH(x)

as x^l; in (1.1), H(x) = {zeΩ: \h(z)\>x) for 0 ^ x < 1; also,
dA{z) denotes Lebesgue planar measure.

THEOREM 1. Suppose E is analytically thick in Ω. Then there
is an extremal dilatation, tc, defined on Ω for which

{z e Ω: φ) Φ 0} c E .

Proof. The proof of Theorem 1 depends on Lemma 2 of § 4
and on the theorem of Hamilton-Reich-Strebel.

Let h be given as in the definition. By Lemma 2, condition
(1.1) implies

(1.2) ί XE{z)\h(z)\ndA(z) = (1 + o(l))t \h{z)\ndA{z), n >oo .

Let N= {1,2, 3, •••} and let \\-\l denote the norm in £f\Ω).
For each neN, set k,(z) = hn(z)/\\hn\\1. So, \\K\\, = 1 and, by (1.2)

(1.3) lim ί \kn(z)\dA{z) = 0 .
w->oo JΩ-E

It can be shown that {kn: neN} is a normal family; there are
two possibilities:

(1) at least one subsequence of (kn)neN converges, uniformly
on compact subsets of Ω, to a function K{z) which is analytic and
not identically zero on Ω.

(2) (kn)neN converges to zero uniformly on compact subsets
of Ω.

In Case 1, apply Fatou's theorem to the given subsequence: we
see, by (1.3)

( I K{z) I dA(z) ^ ϊϊm ί | kn(z) \ dA(z) = 0 .
J Ω-E n-co J Ω-E

Therefore measure (Ω — E) — 0 since K is analytic and not identi-
cally zero.

In Case 2, we construct a sequence, (An), of mutually disjoint
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compact subsets of Ω, and a subsequence, (Kn}, of (kn), such that

(1.4) \ —, neN.

First, Ar and Kλ are chosen arbitrarily. Suppose Klf K29 , Kn and
Alf A2, •••, An have been chosen; we take Kn+1, from the vanishing
sequence <&n>, so that

L \Kn+1{z)\dA{z) <z--±
i.^Aj 2{n -2(»

Since || K̂ΓTO+1 ]jx = 1, we may choose An+19 disjoint from Au A2f

so t h a t

+ 1

this is the same as (1.4).
Now we set

*(*) =
Kn(z)l\Kn(z)\, zeEnAn, neN

0 , otherwise .

Take neN; (1.4) implies

\\ Kn(z)Φ)dA(z)

= ( ^\ \Kn(z)\dA(z) - 2/n .
JEJEOAn

Combine this with (1.3); since (Kn) is a subsequence of (kn), we
have

lim ί ίΓn(ίδ)
Ji2

= Uc

It now follows, from the theorem of Hamilton, Reich and Strebel,
that fc/2 is an extremal dilatation. As K is supported within E, we
are through.

2 An example* Set i2: |^ — 1 ]< 1 and Λ(jg) = e~ι exp {— (2i/π) log«).
Then |λ (reίθ)\=e~ι exp {(2/τr)ff} and, if e~2<x<l and β(α?) = ̂ /
we have

H(x) = {rei(?: ff(α?) <θ <π/2 and 0 < r < 2 cos 0} .

For -π/2 < θ < π/2, we set Z(0) = {reίθ: 0 < r < 2 cos 0}.
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FIGURE 1

Now, let EcΩ. We assume that the linear density of E on
l(θ) approaches one as θ approaches π/2: that is, we assume

(2.1) Γ C°S θ XE(reίθ) dr = (1 + o(l))2 cos θ, θ > π/2 .
Jo

It is a consequence of (2.1) that

S 2COS0 f2COS#

XE(reiθ)rdr = (1 + o(l)) rdr , 0 • ττ/2 .
o Jo

S 2COS0
XE{reίθ)rdr by

o

parts, then use (2.1) and the estimate

S2COS0 Γt f2cos<?

XE{reiθ)drdt ^ ίdί .
o Jo Jo

In turn, from (2.2), we see

S ff/2

θ(x)

Oβ ) f 2 cos θ

exp \ \\ XE(reίθ)rdrdθ
v π ) Jo

ί jr/2 ( 9/3 \ f2cos:

~ i ^r ) Jo»/(») as x l ;

and this is the same as

ί XE(z)\h(z)\dA(z) =
JHix)

\
H(x)

\h(z)\dA(z) , a?- 1 .

By Theorem 1, E is an extremal support. So, if E satisfies
condition (2.1), there is an extremal quasiconformal mapping of Ω
which is conformal outside of E but not conformal throughout Ω.

3* LEMMA 1. Let f and g denote integrable functions defined

on (0, 1). We assume: 0 ̂  /(r) ^ g(r) for all r, 0 < r < l ; Γ g(r)dr>
Jx
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0 for all x, 0 <Ξ; X < 1; and

(3.1) Γ rf(r)dr = (1 + o(l)) Γ r^(r)dr , α; > 1 .
Jx Jx

Then

(3.2)

Proof Let ε > 0 be fixed. By condition (3.1), we may choose
x(ε), in (0, 1), so that,

(3.3) [ r(g(r) - f{r))dr ^ e/2
Jα

if a;(s) ^ a? < 1. This implies that

Γ f1 r(flr(r) - f{r))drdx <; e/2 Γ Γ rg(r)drdx
Jy Jx Jy Jx

holds as long as sc(e) ̂  /̂ < 1. We interchange the order of inte-
gration and obtain

S i ri

r(ff(r) — f(r))(r — V)dr ^ e/2 \ rg(r)(r —
r=y Jr=y

then, by (3.3), we see that

Γ r2(^(r) - /(r))ώr ^ ε/2 f"
Jr=y Jr=

for any /̂, x(ε) ̂  2/ < 1.
Repeat this argument with the same a?(e). We see that (3.3)

is valid with r replaced by rn. Thus,

(3.4) Γ rn(flr(r) - /(r))dr ^ e/2f rng(r)dr

holds for all ueiV.

Set M = PflrC*) - /(ί)dί. Then, by (3.4), if neN, we have
Jo

(3.5) [rn(g(r) -
Jθ

Now, set aĵ e) = (a (e) + l)/2. Since \ g(t)dt > 0, we may
Ja?i(e)

choose i\Γ(ε, f, g)eN so that, if w ̂  i\Γ(ε, /, fir), we have
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(just note that x(ε)<x1(e)). Combine this with (3.5); if n^N(ε, /, g),
we have

Jo

- f(r))dr ^ ε
Jo

We proved that

- f(τ))dr = o(l) (V</(r)dr , n > oo ,
Jo

and (3.2) now follows.

4* LEMMA 2. The technique here is to perform an iterated
integration over the level curves of \h\. For the sake of complete-
ness, we establish the existence of an appropriate induced measure
on these curves. So, the proof is a little longer than is perhaps
necessary.

LEMMA 2. Let h denote a bounded analytic function on Ω with
\\h\U = 1. For 0 ^ a < 1, we set H(x) = {zeΩ: \h(z)\ > x}. Then,
if EdΩ and

(4.1) ί XE(z) I h(z) I dA(z) = (1 + o(l)) ί | h{z) \ dA(z)
JHix) JH(x)

as x —> 1, it follows that

(4.2) ί Xs(z)\h(z)\*dA(z) = (1 + o(l))ί \h(z)\*dA(z) ,
JΩ JΩ

as n —> co.

Proo/. Set Ωr = {zeΩ:\h{z)\ Φ Q and |ft'(s)| ^ 0}. The lemma
is trivial when h is a constant function. If h is not constant (as
we assume from now on), the set Ω — Ωf is negligible with regard
to integration.

We construct an open cover of Ω\ For each zeΩ\ U{z) will
denote an open subset of Ωf which contains z; moreover, we assume
h is one-to-one in each U(z).

Now, let {Pn: n e N} be a C°° partition of unity, on 47, subor-
dinate to the cover {U(z): zeΩ'}. So, for each neN, there is a set
U(n) e{U(z): zeΩ'} which contains the support of Pn, Set h\JJ{n)\ —

S(ri) and let S(ri) -^ U(n) (w —> zn(w)) denote the inverse of h defined
in S{n). For 0 < r < 1, neN we set

θn(r) = {θ: 0 ^ θ < 2π, reiθ e S(n)}

and we define
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fnix) = \ Pn{zn{reiθ))lE{zn{reiθ)) \ z'n(reiθ) \\dθ

gn(r) = ί Pn(zn(reiθ)) \ z'n(reiθ) \2rdθ
Jβw(r>

and

fix) = Σ fJx), g{τ) = Σ flTn(r) .
»eJV weiV

It is clear that 0 ̂  f(r) ̂  #(r), 0 < r < 1.
If neN is arbitrary and 0 <: x < 1 and 0 <; ̂  < 2π, note that

Ziπ.,(3«(r<O) = Φ.(r) IJ ^ ^
(0, 0 < r ^ α; .

Take NeN and suppose 0 ̂  a? < 1: then, with w = reίθ,

\ XE(z) I h{z) \NdA{z) = Σ ί PΛz)Xmx)(z)XE(z) I h{z) \»dA(z)
JH(x) neNJΩ'

= Σ ί Pn(zn(w))lHa^(w))IE(zn(w)) \w\»\ z'n(w) \>dA{w)
neN jSίn)

= Σ V Φ«(r)fn(r)rNdr = Ϋφx(r)f{r)rNdr .
neN Jr=0 JO

We conclude from the Monotone Convergence Theorem that /
is integrable on (0,1). In summary, if 0 <; x < 1 and NeN we
have

(4.3) f I h(z) \NXE(z)dA(z) = Γ/(r)r^r

and, by the same reasoning,

(4.4) ί I Λ(«) \NdA(z) - Γ g(r)rNdr .
Jf/(») Ja;

By (4.4), Γflr(r)dr > 0 if 0 < x < 1. By hypothesis (4.1) and equa-
Ja?

tions (4.3) and (4.4), in the case iST* = 1, we see

Γ f(r)rdr = (1 + o(l)) Γflr(r)rdr , a? > 1 .
Jx Jx

Thus, by Lemma 1,

[ f{r)rNdτ = (1 + o<X))^g(r)r»dr , iSΓ > oo .
Jo Ίo

So, by (4.3) and (4.4), in the case x = 0,
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( I h{z) \NlE{z)dA(z) = (1 + 0(1))( I h(z) \NdA{z) ,

as N—> oo. Since Ω — H{o) is countable, we are through.
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