THE SUPPORT OF AN EXTREMAL DILATATION

Marvin Ortel

Abstract

We introduce a density condition which applies to subsets, E, of a bounded region Ω in the complex plane. If E satisfies this condition, then it is possible to construct a quasiconformal mapping F, of Ω, subject to the following conditions: F is extremal for its boundary values; F is conformal throughout $\Omega-E ; F$ is not conformal on E. The construction makes essential use of the Hamilton-ReichStrebel characterization of extremal quasiconformal maps.

O. Introduction. In all that follows, Ω denotes a bounded domain in the complex plane. Let κ denote an element of $\mathscr{L}^{\infty}(\Omega)$. We say that κ is an extremal dilatation (on Ω) if $\|\kappa\|_{\infty} \neq 0$ and κ is the complex dilatation of a quasiconformal mapping of Ω which is extremal for its boundary values.
R. Hamilton, E. Reich and K. Strebel have given an incisive characterization of extremal dilatations. Their result follows ([1], [3], [4], [5]):

Let $B(\Omega)$ denote the space of functions, f, analytic on Ω, for which

$$
\|f\|=\int|f(z)| d A(z)<\infty \quad \text { (area measure) }
$$

Then κ is an extremal dilatation if and only if $\left(0<\|\kappa\|_{\infty}<1\right)$ and

$$
\begin{equation*}
\sup _{\substack{\|, f\|=1 \\ f \in B \in(\Omega)}}\left|\int_{\Omega} f(z) \kappa(z) d A(z)\right|=\|\kappa\|_{\infty} . \tag{*}
\end{equation*}
$$

It is well known that a bounded measurable function κ may be supported on a small subset of Ω and still satisfy condition (*). In this paper we attempt to quantify this feature. We show that subsets of Ω which satisfy a certain density condition will always support extremal dilatations.

Density conditions which are necessarily satisfied by the support of an extremal dilatation are known in the case that Ω is the unit disk or the upper half plane. Some of these are discussed in [2]. They have features in common with the present sufficient condition, but in no case is there a complete characterization.

1. A sufficient condition. If E is a subset of Ω, χ_{E} denotes the indicator function of E :

$$
\chi_{E}(z)= \begin{cases}1, & z \in E \\ 0, & z \notin E\end{cases}
$$

Let E denote a subset of Ω. We say that E is analytically thick in Ω if there is a bounded analytic function, h, defined on Ω for which $\|h\|_{\infty}=1$ and

$$
\begin{equation*}
\int_{H(x)} \chi_{E}(z)|h(z)| d A(z)=(1+o(1)) \int_{H(x)}|h(z)| d A(z), \tag{1.1}
\end{equation*}
$$

as $x \rightarrow 1$; in (1.1), $H(x)=\{z \in \Omega:|h(z)|>x\}$ for $0 \leqq x<1$; also, $d A(z)$ denotes Lebesgue planar measure.

Theorem 1. Suppose E is analytically thick in Ω. Then there is an extremal dilatation, κ, defined on Ω for which

$$
\{z \in \Omega: \kappa(z) \neq 0\} \subset E
$$

Proof. The proof of Theorem 1 depends on Lemma 2 of $\S 4$ and on the theorem of Hamilton-Reich-Strebel.

Let h be given as in the definition. By Lemma 2, condition (1.1) implies

$$
\begin{equation*}
\int_{\Omega} \chi_{E}(z)|h(z)|^{n} d A(z)=(1+o(1)) \int_{\Omega}|h(z)|^{n} d A(z), n \longrightarrow \infty \tag{1.2}
\end{equation*}
$$

Let $N=\{1,2,3, \cdots\}$ and let $\|\cdot\|_{1}$ denote the norm in $\mathscr{L}^{1}(\Omega)$. For each $n \in N$, set $k_{n}(z)=h^{n}(z) /\left\|h^{n}\right\|_{1} . \quad$ So, $\left\|k_{n}\right\|_{1}=1$ and, by (1.2)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega-E}\left|k_{n}(z)\right| d A(z)=0 \tag{1.3}
\end{equation*}
$$

It can be shown that $\left\{k_{n}: n \in N\right\}$ is a normal family; there are two possibilities:
(1) at least one subsequence of $\left\langle k_{n}\right\rangle_{n \in N}$ converges, uniformly on compact subsets of Ω, to a function $K(z)$ which is analytic and not identically zero on Ω.
(2) $\left\langle k_{n}\right\rangle_{n \in N}$ converges to zero uniformly on compact subsets of Ω.

In Case 1, apply Fatou's theorem to the given subsequence: we see, by (1.3)

$$
\int_{\Omega-E}|K(z)| d A(z) \leqq \varlimsup_{n \rightarrow \infty} \int_{\Omega-E}\left|k_{n}(z)\right| d A(z)=0
$$

Therefore measure $(\Omega-E)=0$ since K is analytic and not identically zero.

In Case 2, we construct a sequence, $\left\langle A_{n}\right\rangle$, of mutually disjoint
compact subsets of Ω, and a subsequence, $\left\langle K_{n}\right\rangle$, of $\left\langle k_{n}\right\rangle$, such that

$$
\begin{equation*}
\int_{\Omega-A_{n}}\left|K_{n}(z)\right| d A(z) \leqq \frac{1}{n}, n \in N \tag{1.4}
\end{equation*}
$$

First, A_{1} and K_{1} are chosen arbitrarily. Suppose $K_{1}, K_{2}, \cdots, K_{n}$ and $A_{1}, A_{2}, \cdots, A_{n}$ have been chosen; we take K_{n+1}, from the vanishing sequence $\left\langle k_{n}\right\rangle$, so that

$$
\int_{j=1}^{n} A_{j}\left|K_{n+1}(z)\right| d A(z) \leqq \frac{1}{2(n+1)}
$$

Since $\left\|K_{n+1}\right\|_{1}=1$, we may choose A_{n+1}, disjoint from $A_{1}, A_{2}, \cdots, A_{n}$, so that

$$
\int_{A_{n+1}}\left|K_{n+1}(z)\right| d A(z) \geqq 1-\frac{1}{n+1}
$$

this is the same as (1.4).
Now we set

$$
\kappa(z)=\left\{\begin{array}{cl}
\overline{K_{n}(z)} / /\left|K_{n}(z)\right|, & z \in E \cap A_{n}, n \in N \\
0, & \text { otherwise }
\end{array}\right.
$$

Take $n \in N$; (1.4) implies

$$
\begin{aligned}
& \left|\int_{\Omega} K_{n}(z) \kappa(z) d A(z)\right| \geqq\left|\int_{A_{n}} K_{n}(z) \kappa(z) d A(z)\right|-1 / n \\
& \quad=\int_{E \cap A_{n}}\left|K_{n}(z)\right| d A(z)-1 / n \geqq \int_{E}\left|K_{n}(z)\right| d A(z)-2 / n .
\end{aligned}
$$

Combine this with (1.3); since $\left\langle K_{n}\right\rangle$ is a subsequence of $\left\langle\boldsymbol{k}_{n}\right\rangle$, we have

$$
\lim _{n \rightarrow \infty}\left|\int_{\Omega} K_{n}(z) \kappa(z) d A(z)\right|=\|\kappa\|_{\infty} .
$$

It now follows, from the theorem of Hamilton, Reich and Strebel, that $\kappa / 2$ is an extremal dilatation. As κ is supported within E, we are through.
2. An example. Set $\Omega:|z-1|<1$ and $h(z)=e^{-1} \exp \{-(2 i / \pi) \log z)$. Then $\left|h\left(r e^{i \theta}\right)\right|=e^{-1} \exp \{(2 / \pi) \theta\}$ and, if $e^{-2}<x<1$ and $\theta(x)=\pi / 2(1+\log x)$, we have

$$
H(x)=\left\{r e^{i \theta}: \theta(x)<\theta<\pi / 2 \quad \text { and } \quad 0<r<2 \cos \theta\right\}
$$

For $-\pi / 2<\theta<\pi / 2$, we set $l(\theta)=\left\{r e^{i \theta}: 0<r<2 \cos \theta\right\}$.

Figure 1
Now, let $E \subset \Omega$. We assume that the linear density of E on $l(\theta)$ approaches one as θ approaches $\pi / 2$: that is, we assume

$$
\begin{equation*}
\int_{0}^{2 \cos \theta} \chi_{E}\left(r e^{i \theta}\right) d r=(1+o(1)) 2 \cos \theta, \theta \longrightarrow \pi / 2 . \tag{2.1}
\end{equation*}
$$

It is a consequence of (2.1) that
(2.2) $\quad \int_{0}^{2 \cos \theta} \chi_{E}\left(r e^{i \theta}\right) r d r=(1+o(1)) \int_{0}^{2 \cos \theta} r d r, \quad \theta \longrightarrow \pi / 2$.

This can be seen in a few lines; we integrate $\int_{0}^{2 \cos \theta} \chi_{E}\left(r e^{i \theta}\right) r d r$ by parts, then use (2.1) and the estimate

$$
\int_{0}^{2 \cos \theta} \int_{0}^{t} \chi_{E}\left(r e^{i \theta}\right) d r d t \leqq \int_{0}^{2 \cos \theta} t d t
$$

In turn, from (2.2), we see

$$
\begin{aligned}
\int_{\theta(x)}^{\pi / 2} & e^{-1} \exp \left\{\frac{2 \theta}{\pi}\right\} \int_{0}^{2 \cos \theta} \chi_{E}\left(r e^{i \theta}\right) r d r d \theta \\
& =(1+o(1)) \int_{\theta /(x)}^{\pi / 2} e^{-1} \exp \left\{\frac{2 \theta}{\pi}\right\} \int_{0}^{2 \cos \theta} r d r d \theta, \quad \text { as } x \longrightarrow 1
\end{aligned}
$$

and this is the same as

$$
\int_{H(x)} \chi_{E}(z)|h(z)| d A(z)=(1+o(1)) \int_{H(x)}|h(z)| d A(z), \quad x \longrightarrow 1
$$

By Theorem 1, E is an extremal support. So, if E satisfies condition (2.1), there is an extremal quasiconformal mapping of Ω which is conformal outside of E but not conformal throughout Ω.
3. Lemma 1. Let f and g denote integrable functions defined on $(0,1)$. We assume: $0 \leqq f(r) \leqq g(r)$ for all $r, 0<r<1 ; \int_{x}^{1} g(r) d r>$

0 for all $x, 0 \leqq x<1$; and

$$
\begin{equation*}
\int_{x}^{1} r f(r) d r=(1+o(1)) \int_{x}^{1} r g(r) d r, \quad x \longrightarrow 1 \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{0}^{1} r^{n} f(r) d r=(1+o(1)) \int_{0}^{1} r^{n} g(r) d r, \quad n \longrightarrow \infty \tag{3.2}
\end{equation*}
$$

Proof. Let $\varepsilon>0$ be fixed. By condition (3.1), we may choose $x(\varepsilon)$, in $(0,1)$, so that,

$$
\begin{equation*}
\int_{x}^{1} r(g(r)-f(r)) d r \leqq \varepsilon / 2 \int_{x}^{1} r g(r) d r \tag{3.3}
\end{equation*}
$$

if $x(\varepsilon) \leqq x<1$. This implies that

$$
\int_{y}^{1} \int_{x}^{1} r(g(r)-f(r)) d r d x \leqq \varepsilon / 2 \int_{y}^{1} \int_{x}^{1} r g(r) d r d x
$$

holds as long as $x(\varepsilon) \leqq y<1$. We interchange the order of integration and obtain

$$
\int_{r=y}^{1} r(g(r)-f(r))(r-y) d r \leqq \varepsilon / 2 \int_{r=y}^{1} r g(r)(r-y) d r ;
$$

then, by (3.3), we see that

$$
\int_{r=y}^{1} r^{2}(g(r)-f(r)) d r \leqq \varepsilon / 2 \int_{r=y}^{1} r^{2} g(r) d r
$$

for any $y, x(\varepsilon) \leqq y<1$.
Repeat this argument with the same $x(\varepsilon)$. We see that (3.3) is valid with r replaced by r^{n}. Thus,

$$
\begin{equation*}
\int_{x(\varepsilon)}^{1} r^{n}(g(r)-f(r)) d r \leqq \varepsilon / 2 \int_{x(\varepsilon)}^{1} r^{n} g(r) d r \tag{3.4}
\end{equation*}
$$

holds for all $n \in N$.
Set $M=\int_{0}^{1} g(t)-f(t) d t$. Then, by (3.4), if $n \in N$, we have

$$
\begin{equation*}
\int_{0}^{1} r^{n}(g(r)-f(r)) d r \leqq M x(\varepsilon)^{n}+\varepsilon / 2 \int_{x(c)}^{1} r^{n} g(r) d r \tag{3.5}
\end{equation*}
$$

Now, set $x_{1}(\varepsilon)=(x(\varepsilon)+1) / 2$. Since $\int_{x_{1}(\varepsilon)}^{1} g(t) d t>0$, we may choose $N(\varepsilon, f, g) \in N$ so that, if $n \geqq N(\varepsilon, f, g)$, we have

$$
M x(\varepsilon)^{n} \leqq \varepsilon / 2\left(x_{1}(\varepsilon)\right)^{n} \int_{x_{1}(\varepsilon)}^{1} g(r) d r \leqq \varepsilon / 2 \int_{0}^{1} r^{n} g(r) d r
$$

(just note that $\left.x(\varepsilon)<x_{1}(\varepsilon)\right)$. Combine this with (3.5); if $n \geqq N(\varepsilon, f, g)$, we have

$$
\int_{0}^{1} r^{n}(g(r)-f(r)) d r \leqq \varepsilon \int_{0}^{1} r^{n} g(r) d r .
$$

We proved that

$$
\int_{0}^{1} r^{n}(g(r)-f(r)) d r=o(1) \int_{0}^{1} r^{n} g(r) d r, \quad n \longrightarrow \infty,
$$

and (3.2) now follows.
4. Lemma 2. The technique here is to perform an iterated integration over the level curves of $|h|$. For the sake of completeness, we establish the existence of an appropriate induced measure on these curves. So, the proof is a little longer than is perhaps necessary.

Lemma 2. Let h denote a bounded analytic function on Ω with $\|h\|_{\infty}=1$. For $0 \leqq x<1$, we set $H(x)=\{z \in \Omega:|h(z)|>x\}$. Then, if $E \subset \Omega$ and

$$
\begin{equation*}
\int_{H(x)} X_{E}(z)|h(z)| d A(z)=(1+o(1)) \int_{H(x)}|h(z)| d A(z) \tag{4.1}
\end{equation*}
$$

as $x \rightarrow 1$, it follows that

$$
\begin{equation*}
\int_{\Omega} \chi_{E}(z)|h(z)|^{n} d A(z)=(1+o(1)) \int_{\Omega}|h(z)|^{n} d A(z) \tag{4.2}
\end{equation*}
$$

as $n \rightarrow \infty$.
Proof. Set $\Omega^{\prime}=\left\{z \in \Omega:|h(z)| \neq 0\right.$ and $\left.\left|h^{\prime}(z)\right| \neq 0\right\}$. The lemma is trivial when h is a constant function. If h is not constant (as we assume from now on), the set $\Omega-\Omega^{\prime}$ is negligible with regard to integration.

We construct an open cover of Ω^{\prime}. For each $z \in \Omega^{\prime}, U(z)$ will denote an open subset of Ω^{\prime} which contains z; moreover, we assume h is one-to-one in each $U(z)$.

Now, let $\left\{P_{n}: n \in N\right\}$ be a C^{∞} partition of unity, on Ω^{\prime}, subordinate to the cover $\left\{U(z): z \in \Omega^{\prime}\right\}$. So, for each $n \in N$, there is a set $U(n) \in\left\{U(z): z \in \Omega^{\prime}\right\}$ which contains the support of P_{n}. Set $h[U(n)]=$ $S(n)$ and let $S(n) \xrightarrow{z_{n}} U(n)\left(w \rightarrow z_{n}(w)\right)$ denote the inverse of h defined in $S(n)$. For $0<r<1, n \in N$ we set

$$
\Theta_{n}(r)=\left\{\theta: 0 \leqq \theta<2 \pi, r e^{i \theta} \in S(n)\right\}
$$

and we define

$$
\begin{aligned}
& f_{n}(r)=\int_{\theta_{n}(r)} P_{n}\left(z_{n}\left(r e^{i \theta}\right)\right) \chi_{E}\left(z_{n}\left(r e^{i \theta}\right)\right)\left|z_{n}^{\prime}\left(r e^{i \theta}\right)\right|^{2} r d \theta \\
& g_{n}(r)=\int_{\theta_{n}(r)} P_{n}\left(z_{n}\left(r e^{i \theta}\right)\right)\left|z_{n}^{\prime}\left(r e^{i \theta}\right)\right|^{2} r d \theta
\end{aligned}
$$

and

$$
f(r)=\sum_{n \in N} f_{n}(r), g(r)=\sum_{n \in N} g_{n}(r)
$$

It is clear that $0 \leqq f(r) \leqq g(r), 0<r<1$.
If $n \in N$ is arbitrary and $0 \leqq x<1$ and $0 \leqq \theta<2 \pi$, note that

$$
\chi_{H(x)}\left(z_{n}\left(r e^{i \theta}\right)\right) \equiv \Phi_{x}(r)= \begin{cases}1, & x<r<1 \\ 0, & 0<r \leqq x\end{cases}
$$

Take $N \in N$ and suppose $0 \leqq x<1$: then, with $w=r e^{i \theta}$,

$$
\begin{aligned}
& \int_{H(x)} \chi_{E}(z)|h(z)|^{N} d A(z)=\sum_{n \in N} \int_{\Omega^{\prime}} P_{n}(z) \chi_{H(x)}(z) \chi_{E}(z)|h(z)|^{N} d A(z) \\
& \quad=\sum_{n \in N} \int_{S(n)} P_{n}\left(z_{n}(w)\right) \chi_{H(x)}\left(z_{n}(w)\right) \chi_{E}\left(z_{n}(w)\right)|w|^{N}\left|z_{n}^{\prime}(w)\right|^{2} d A(w) \\
& \quad=\sum_{n \in N} \int_{r=0}^{1} \int_{\theta_{n}(r)} P_{n}\left(z_{n}(\cdot)\right) \chi_{H(x)}\left(z_{n}(\cdot)\right) \chi_{E}\left(z_{n}(\cdot)\right) r^{N}\left|z_{n}^{\prime}(\cdot)\right|^{2} r d \theta d r \\
& \quad=\sum_{n \in N} \int_{r=0}^{1} \Phi_{x}(r) f_{n}(r) r^{N} d r=\int_{0}^{1} \Phi_{x}(r) f(r) r^{N} d r
\end{aligned}
$$

We conclude from the Monotone Convergence Theorem that f is integrable on (0,1). In summary, if $0 \leqq x<1$ and $N \in N$ we have

$$
\begin{equation*}
\int_{H(x)}|h(z)|^{N} \chi_{E}(z) d A(z)=\int_{x}^{1} f(r) r^{N} d r \tag{4.3}
\end{equation*}
$$

and, by the same reasoning,

$$
\begin{equation*}
\int_{H(x)}|h(z)|^{N} d A(z)=\int_{x}^{1} g(r) r^{N} d r \tag{4.4}
\end{equation*}
$$

By (4.4), $\int_{x}^{1} g(r) d r>0$ if $0<x<1$. By hypothesis (4.1) and equations (4.3) and (4.4), in the case $N=1$, we see

$$
\int_{x}^{1} f(r) r d r=(1+o(1)) \int_{x}^{1} g(r) r d r, \quad x \longrightarrow 1
$$

Thus, by Lemma 1,

$$
\int_{0}^{1} f(r) r^{N} d r=(1+o(1)) \int_{0}^{1} g(r) r^{N} d r, \quad N \longrightarrow \infty
$$

So, by (4.3) and (4.4), in the case $x=0$,

$$
\int_{H(0)}|h(z)|^{N} \chi_{E}(z) d A(z)=(1+o(1)) \int_{H(0)}|h(z)|^{N} d A(z),
$$

as $N \rightarrow \infty$. Since $\Omega-H(o)$ is countable, we are through.

References

1. R. S. Hamilton, Extremal quasiconformal mappings with prescribed boundary values, Trans. Amer. Math. Soc., 138 (1969), 399-406.
2. M. Ortel, Integral means and the theorem of Hamilton, Reich and Strebel, Proceedings of the Colloquium on Complex Analysis, Joensun, Finland, 1978, Lecture Notes in Mathematics, 747, Springer, New York, 1979, 301-308.
3. E. Reich, An extremal problem for analytic functions with area norm, Annales Academicae Scientiarum Fennicae Series A. I. Mathematica, 2, (1976), 429-445.
4. E. Reich and K. Strebel, Extremal quasiconformal maps with given boundary values, Contributions to Analysis, a collection of papers dedicated to Lipman Bers, Academic Press, New York, 1974, 375-391.
5. K. Strebel, On quadratic differential and extremal quasiconformal mappings, International Congress, Vancouver, 1974.

Received July 12, 1979. This research was partially supported by grant NRC 2054704, under the administration of Professor Walter Schneider at Carleton University, Ottawa, Canada.

University of Hawail
Honolulu, HI 96822

