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COUNTER-EXAMPLES TO SOME CONJECTURES ABOUT
DOUBLY STOCHASTIC MEASURES

V. LOSERT

Some new types of doubly stochastic measures are con-
structed. Using measure preserving transformations, one
can construct examples of nontrivial extreme doubly stochas-
tic measures which are absolutely continuous with respect
to another extreme doubly stochastic measure (disproving a
conjecture by Feldman). By combinatorial arguments, one
gets an extreme doubly stochastic measure that is not con-
centrated on a countable union of function graphs and whose
support is the whole unit square.

O Let I be the unit interval, m the ordinary Lebesgue measure
on I. A probability measure μ on I x / is called doubly stochastic,
if its marginal distributions coincide with m (i.e., μ(AxI) = μ(IxA) —
m(A) for each Borel set AQ I). This is thought of as a continuous
analogue of the notion of a doubly stochastic matrix (see [8] for a
survey of results about doubly stochastic matrices). By a theorem
of G. Birkhoff and von Neumann, the extreme points of the set of
doubly stochastic matrices are the permutation matrices. The con-
tinuous analogue of a permutation matrix would be the graph of a
bijective, measure preserving function, but it is easy to construct
extreme points that are not of this type (a deep study, showing that
for some purposes these special measures may well suffice has been
given in [13]). On the other hand, all concrete examples of extreme
doubly stochastic measures (e.d.s.m.) that can be found in the litera-
ture are concentrated on the graphs (or inverse graphs) of functions,
mostly even linear functions and there was some common belief that
any double stochastic measure must in some sense be made up from
graphs (cf. the beginning of §2 of [2]). A functional analytic charac-
terization of the e.d.s.m. has been given by Douglas [4] and Lin-
denstrauss [7]. Several authors have tried to generalize properties
of permutation matrices to these measures, see e.g., [1], [2], [10].
One of the aims of this paper is to present some new constructions
of e.d.s.m. which will also disprove some natural conjectures. The
second construction yields a measure that is not concentrated on
graphs. While the measures in the first construction are still con-
centrated on two graphs, it turns out that even in this case the
geometric interrelations are much more complicated. In [2] the
following conjecture (attributed to J. Feldman) was mentioned: if μ
is an e.d.s.m. and if v is a doubly stochastic measure which is
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absolutely continuous with respect to μ, then v — μ. In [2] this
conjecture was confirmed by Brown and Shifiett for a class of extreme
doubly stochastic measures which is geometrically related to per-
mutation matrices. In Theorem 1 of our paper we will give a func-
tional analytic characterization of measures μ that satisfy a slightly
stronger property as above (v need not be positive — the result of
[2] holds also for this stronger property). It is along the lines of
the results by Douglas in [5]. Then we study a special class of
doubly stochastic measures, defined in a certain way by a measure
preserving transformation T. A similar type of measures (but with
a different behavior) has been studied in [12]. In Theorem 2 we
give conditions on T that ensure that the corresponding measure be
extremal (resp. satisfies the properties of Theorem 1). Then it is
easy to give examples of transformations for which the properties
of Theorem 1 do not hold and which disprove also Feldman's conjec-
ture mentioned above. The idea to use ergodicity properties of
transformations for the construction of doubly stochastic measures
was first used in [13] p. 87.

The second part of the paper concerns the support of an e.d.s.m.
It has been proved in [7] that any such measure is singular with
respect to the ordinary Lebesgue measure m (x) m on the unit square,
i.e., it is concentrated on a set of m®m — measure zero. Never-
theless, we will give an example showing that the support of the
measure may be the whole unit square, i.e., the measure is not con-
centrated on a closed set whose m ® m-measure is less than one.
This measure has also the property that any graph (or inverse
graph) of some measurable function has measure zero (Theorem 3).
I would like to thank S. Graf for bringing these problems to my
attention and also for several references to the literature.

l If m' is an arbitrary probability measure o n ί = [0,1], we
write Em, for the set of all probability measures on I x I whose
marginal distributions are equal to m'. We write μf < μ, if μf is
absolutely continuous with respect to μ.

THEOREM 1. If μe Em, then the following statements are equi-
valent:

( i ) If v is an arbitrary (complex) measure which is absolutely
continuous with respect to μ and whose marginal distributions are
equal to m, then v = μ.

(ii) The space of functions F = {(x, y) —> f(x) + g(y): f,ge ^(m)}
is weak *-dense in L°°(μ).

(iii) If m! is a probability measure which is absolutely con-
tinuous with respect to m and μr e Em, is absolutely continuous with
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respect to μ, then μ' is an extreme point in Em, (i.e., μ is a sort of
"hereditary extreme point").
The main content of the theorem may be rephrased as follows: if F
is w*-dense in L°°(μ), mf <m, μ' < μ, and μf e Em>, then F is also
w*-dense in L°°(μ').

Proof. (ii)=^(i) is Theorem 4 of [5].
(i) => (ii) follows also from the methods of [5]: if u e L\μ) annihi-

lates the space F, then v = (1 + u)μ has the same marginal distribu-
tions as μ.

(iii) => (ii). Given finitely many elements uί9 , uk e L\μ)9 ε > 0
and h e L°°(μ)y there exists a nonnegative function u e L\μ) and c > 0

such that u(xf y) — u(y, x) for all x, yel, \u(t)dμ(t) = 1 and \ut\ ^ cu

for i = 1, , k. Put μ' = uμ and m' = (W( , y)dm(y)jm; then

m' <m and μ' e Έm,. By (iii) and Theorem 1 of [4], there exists a
function hoeF such that \\h — ho\\Liιμ>) < e/e. This implies clearly

- ho(t))dμ(t) < ε for i = 1,

(ii) ==> (iii). By Theorem 1 of [4] it is sufficient to show that F
is dense in L°°(μ) with respect to the norm topology induced by

z/(/0
The result follows from a general lemma on convex subsets of

LEMMA. If F is a convex subset of L°°(μ) and μf < μ, then the
w*-closure of F in L°°(μ) is contained in the closure taken with
respect to the norm topology induced by L\μf),

Proof. Since μf < μ, we get μ' = uμ for some ueL\μ). The
continuous functionals for the w*-topology are given by elements of
L\μ). The continuous functionals for the norm topology induced
by L\μf) are represented by elements of {hu: h e L°°(μ)} £ L\μ) (if
one uses the same duality as above). Now the lemma follows easily
from the Hahn Banach theorem ([11], Ch. II, 9.2).

Now let T: [0,1/2] -»[0, 1/2] be an arbitrary measure preserving
transformation. We consider measures μ supported by the following
four sets: Fι = {(x, Tx); 0 ^ x ^ 1/2}, F2 = {(x, x - 1/2); 1/2 £ x ^ 1},
F3 = {(x, x + 1/2); 0 ^ x ^ 1/2}, F, = {(x, x): 1/2 ^ x ^ 1} (i.e., the unit
square is partitioned into four congruent sub squares. In the first
of them we consider the graph of T, in the other squares, the
diagonal). Let j : [0, 1/2]—>Fλ be defined by j(x) = (x, Tx). j induces
a bijective correspondence between measures on [0, 1/2] and Fx.
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The corresponding measures will be denoted by the same letter.
If μ is supported by F = F1 U F2 U Fz U Fif then μx shall denote its
restriction to Fx.

THEOREM 2. If μ is a doubly stochastic measure, supported by
F, then the following statements hold:

( i ) μ is uniquely determined by μx — μ | ί\. Conversely, a
measure μx on [0, 1/2] induces a doubly stochastic measure on F, iff
μx is T-invariant and 0 <= μx <L m.

(ii) Write μx = /̂ mfT^ eL°°(m), 0 <: hx ^ 1). μ is an extreme
doubly stochastic measure iff μλ (resp. hx) has the following property:
if A £ [0, 1/2] is α T-invariant, measurable set with μx{A) > 0, then

esssuPβe^-W^) = 1-
(iii) μ satisfies the conditions of Theorem 1, iff μx (resp. hx) has

the following property: if A Q [0, 1/2] is a T-invariant, measurable
set with μx(A) > 0, then m{x e A: h^x) — 1} > 0. In particular, if
{x: hx(x) — 1} has m-measure zero, then μ does not satisfy the condi-
tions of Theorem 1.

Proof. Assume that μ is given. Let A be a measurable subset
of [0, 1/2].

Since μ is doubly stochastic, we get:

m(A) = μ(I x A) = ^((J x A) n JPJ + j"((I x i ) Π ί ΰ

(1) = μ(T^A x A) + ^([1/2, 1] x A)

= ACΓ-1^) + jeι((A + 1/2) x [0, 1/2]) .

Similarly

m(A) = ^((A + 1/2) x I) = ^((A + 1/2) x [0, 1/2]) + ̂ ((A + 1/2) x [1/2, 1])

= m(A) ~ μ^T^A) + M[l/2, 1] X (A + 1/2)) .
(1)

This gives:

(2) M[l/2, 1] X (A + 1/2)) = μ^T-'A) .

Furthermore

m(A) - μ(I x (A + 1/2)) = ^([0, 1/2] x (A + 1/2)) + ^([1/2, 1]

x (A + 1/2)

gives

(3) μ([0, 1/2] x (A + 1/2)) = m(Λ) - ^(Γ^A) .

And finally
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m{A) = μ(A X I) = μ(A X [0, 1/2]) + μ(A X [1/2, 1])

= μ,(A) + m(A) - μ&T-'A) .
(3)

The last equation shows that μx(A) = μι{T~1A)f i.e., μx is T-invariant.
(1), (2), (3) show that the values of μ on F29 Fz, F± are uniquely-
determined by μx. μ1^m holds by (3).

Conversely, if one defines the measure μ on F2, Fs, F4 by the
formulas (1), (2), (3), it is easily seen that μ is a doubly stochastic
measure. This proves (i).

(ii). Assume that A Q [0, 1/2] is T-invariant μλ(A) > 0, 0 < a ^
1/2 and hλ <L 1 — a a.e. on A. Let cA be the characteristic function
of A. If we put μ[ = (1 + α(l - a)~1cA)μι and μ" = (1 - α(l - α ) " 1 ^ ) ^ ,
then it follows easily from (i) that μί and μ[' define doubly stochastic
measures μf and μ" such that μ = (μ' + μn)j2.

For the converse assume that μ = (// + μ")/2 and μ' =£ /i". Then
we get measures μ[ and ^J' such that μx — (μ[ + μ[f)/2. Put //J = / ' ^
and μ[' = / ' ^ l β Then / ' + / " = 2 and / ' ^ /" . Therefore we may
assume that there exists β > 1 such that A = {x: f(x) > β) satisfies
μx(A) > 0. Since μx and μ[ are T-invariant, the same holds for A.
Since μ[ — fhm ^ m by (i), we have fh S 1 and therefore h <; ^β"1

on A.
(in). By an argument similar to (i), it can be shown that an

arbitrary (complex) measure μ' on Fx U F2 U F3 U F 4 with marginal
distributions m is uniquely determined by its restriction μ[ to J?\.
μ[ has to be Γ-invariant furthermore μ' < μ if μ[ < μλ and m — μ[<
m — μλ Now the same construction as in (ii) gives the result.

EXAMPLE. It is now easy to give examples of extreme doubly
stochastic measures which do not satisfy the properties of Theorem
1. Let TO: /-> / be an arbitrary ergodic transformation (with respect
to m), e.g., jFo(flc) = # + α(mod 1), a irrational. We consider the mapping
g: 1-^ [0, 1/2] defined by g(x) = xm/2. Then T = goToog'1 is an ergodic
transformation of [0, 1/2] with invariant measure g(m) = 8ym. Now
define hx(y) = 2y for /̂ 6 [0, 1/2]. By Theorem 2, μλ = ^xm defines a
doubly stochastic measure μ, which is extremal (by (ii) — observe
that A = [0,1/2] is the only invariant set) but does not satisfy the
properties of Theorem 1 (by (Hi)). It is easily seen that there exists
even a probability measure μ' Φ μ which is doubly stochastic and
absolutely continuous with respect to μ (e.g., the diagonal measure
on F2 U Ft).

2 In the next section we present another method to construct
extreme doubly stochastic measures. It uses approximations by
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measures on finite subalgebras. Let Σ be the α -algebra of Borel
sets on I. We will consider increasing sequences (Σn) resp. (Σ'n) of
finite subalgebras of /, where Σn(Σ'n) is generated by a partition
Pn(Qn) of I into finitely many subintervals. We will define a measure
μ successively on the subalgebras Σn <g) Σr

n. To assure that the limit
measure is extremal, we will use an idea similar to [2] Thm. 1 and
[3] Thm. 2. There is a connection between extremality and the
existence of "loops". If μ is not extremal, one will also get such
loops in one of the approximating algebras Σn ® Σ'n. The aim of the
following construction will be, to cut off each such loop at a later
step.

THEOREM 3. There exists an extreme doubly stochastic measure
μ whose support is the whole space. In addition, μ has the following

property: if μ — \μ^x dm(x) = \μ2,xdm(x) are the disintegrations of

μ with respect to the two coordinate projections (μlίX is concentrated
on {x} x JΓ, μ2tX on I x {x}), then the measures μliX and μ2>x are con-
tinuous a.e. (i.e., each point has measure zero). In particular any
graph or inverse graph of some measurable function f:I—>I has
μ-measure zero.

Proof. By induction we will define partitions Pn = {IiΛ)}αeA<*> and
Qn = {J{«U)UA^ of I. For n = 0 we put A(o) - {1}, /<°> - J<°> = I,
μ(I x J) = 1. Now assume that Pn9 Qn have already been defined,
and μ(Γa

n) x Jf]) > 0 for all a, βeAin). We consider two different
cases:

(a) if n is even, we choose k > max{(n + l)μ(Γa

n) x J{

β

n))(m(Fa

n))-1 +
miJP)-1): a,βe A{n)}. We put A{n+1) = A{n) x {1, - -, k}. Each interval
Γa

n) is part i t ioned into fc-subintervals JiΓi+1), **, Iffi^ of equal length.

We p u t Pn+1 = {I&+1): ae Ain), j = 1, , k}. Qn+ι is constructed in

the same way from Qn. Finally μ{ΓaT
] x Jfc+1)) = k~2μ{Un) x J{

β

n)).
Then it is easily seen that

μ(Ja

1) x J{;+1)) <(n + I)" 1

( 4 ) for a, βeA{n+1), n + 1 odd.

(b) if n is odd, let r = r(n) be the cardinality of A[n) x A(n)

(i.e., the number of atoms in Σn®Σ'n). We choose k > 2nr and put
A(n+1) = A{n) x {1, , k}r. Let φn: A{n) x A{n) -> {1, , r} be a fixed
bisection. Finally put cπ = mm{μ(Γa

n) x J^w)): α, βe A{n)}. To get
P n + 1 (resp. Qn+1) we partition each interval Zi%) (resp. J^w)) into kr

subintervals I^\ (resp. Jϋly\) where 1 <: ΐχ ^ k for 1 = 1, , r,
whose length will be decided later on. We put
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+ cjΓ^r-* if s = φn{a, β)

and

{I%tX X J}5?fίir) = cmfc-"r-

for all other choices of the indices (1 <; ih j \ <; k, I = 1, , r, α, β e
A{n)). It is easily seen that the sum of the measures of all sub-
rectangles of Γa

n) x J(

β

n) equals μ(Γa

n) x J{

β

n)). The length of the interval

Γa

n+1)(aeA{n+1)) is now determined by m(Γa

n+1)) = Σ^^(»+i)M-β*+1) x

J ^ + 1 ) ) , similarly for J^ + 1 ) .
If 1 ^ ix < k for Z = 1, , r and a, βe A{n), then we have by (5), (6):

iir X JTO - kx~\k - iγιμ{Γa

n) x J^w)) = -cnk~Zτr-\k - I)" 1

Summation over β gives

( 8 ) m(Γaχ\) - kι~r(k - l)-1m(I^ )) = -cnk~3rr-3/2(k - I )" 1 .

Since by (4) m(Γa

n)) ^ ^ ( J ^ } x J^) and cn ^ / ^ ( ^ } x J(

β

n)), we get:

m(Ji?+ί?<r) ^ ^(li^ x J{

β

n))(nkι-r{k - I)- 1 - Ar8rr-8/2(fc - I)"1)

x J^)(w - l ) ^ 1 - ^ - I)" 1 .

Combined with (7), we find that: m(I&™ir) ^ (n - l)μ(I%+\ x Jf]) ^
(n - ΐ)μ(IΆϊ\ x ^ r ?ir)

 f o r a 1 1 1 ^ iϊ k fc, ί = 1, , r. "Now put
•ί(n) = U {^?r !ir: α e A(ra), it = k for at least one I). Then

(9 ) m(Γa

n+1) x J^+ 1 )) ^ (w - l)-1m(J?+ 1 )) for all β e A{n+1) ,

if Γa

n+ι) is not contained in I ( n ) . If α e A ( n ) is fixed, then /^ }\/ ( n ) is
a union of (k — l ) r intervals for which (8) holds. Therefore

m(I(

a

n)\Iin)) ^ (1 - k-y^miipyi - Ar2r-y-3/2) ^ (1 - 2-m)2rn(/ί))

^ (1 _ 2-^+1)m(/^))

(by our choice of k and since clearly r Ξ> 2n). Summing over α e
A(TC), we get:

(10) m(Γn)) ^ 21-71 .

In the same way, we get an exceptional set J(n) with m{J{n)) < 21~n

f

such that μ(Γa

n+1) x J^+ 1 )) < (w - l)-1m(J^ l+1>) for all rectangles not
contained in I x J u ) .

Having defined all partitions Pn9 Qn9 we want to extend μ to a
measure on J? ® I7. This is done as follows: Let μ{n) be the pro-
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bability measure on / x /, whose restriction to each rectangle Γa

n) x
Jβn)(oc, βe A{n)) is a multiple of the ordinary Lebesgue measure and
such that μ{n)(Γa

n) x Jf]) = μ(Γa

n) x Jf). Let μ' be a cluster point
of the sequence (μ{n)) in the weak topology of the set of all Radon
measures on I x / with respect to continuous functions). Since each
μ{n) is doubly stochastic, the same is true for μ'. In particular, the
boundary of each rectangle Γa

n) x J(

β

n) has ^'-measure zero. If (μ{7li))
is a subsequence of (μ{n)) converging towards μ\ it follows from [9]
Ch. II, Thm. 6.1 that μ{n^(Γa

n) x J™) converges to μ\Γa

n) x J(

β

n)). This
shows that μ\Γa

n) x Jι

β

n)) = μ(Γa

n) x Jι

β

n)), i.e., μ' is an extension of μ.
(From now on we will again write μ for μ'.) We claim that μ has
the properties stated in Theorem 3.

We have already remarked that μ is doubly stochastic. Let μ =

\μUxdm(x) be the disintegration of μ with respect to the first

coodinate projection (μlfX is concentrated on {x} x I). Similarly μ{n) —

[μ[*ldm(x). If xeΓa

n)(aeAM) and I is a Borel subset of /, then

μ[%{M) = μ™(I™xM)lm{Γ*). Put I " = ΓL U»* I{n) Then m(Γ°) = 0
by (10). If x$I~, then by (4) and (9) /i&WO = ^ίΓ.WO <
(m — 2)"1 for all a e A{m\ m ^ nQ(x)f n ^ m. It follows that any
cluster point μ[>x of the sequence (μί*l) is a continuous measure and
by the same argument as used for (μ{n)), the sequence (μί%) converges
in the weak topology towards μ'Ux. By dominated convergence, we

get μ = \μ[)Xdm(x) and therefore μlfX = /̂ ί>a. a.e. The same argument

works for the second coordinate.
The interiors of the rectangles Γa

n) x Jf\a9 βeA{n), n^Q) form
clearly a basis for the topology of Ixl. By our construction μ(Γa

n) x
JM) = μ{n)(Γβ

n) x J ^ ) > 0 and therefore supp μ = I x I.
The last thing that we have to show is the extremality of μ.

Equivalently: if / e L°°(μ) and the conditional expectations EJ and
E2f with respect to the two coordinate projections are zero, then /
equals zero. Assume the contrary, i.e., ||/||oo = 1 and EJ = E2f — 0.
By the martingale convergence theorem, there exists an odd integer
n and α', βr e A{n) such that

(11) S τ(n) An) J '
X

Put

T>(n-\-l) — ffsvό . . . ' } * / Q ' ϊ * . . . ' ) * - 4 - 1 • • • ' / V / V ( Q P A ^n^ ( 7 3 ( ί Ύ / Q ^ •— f ?
JLJ — Wy^^l "γy P v\ vs ^Γ J- t'r/ * ^ j M c •^a" 1 7ii\w ' j ^J/ — ° y

JL ^ ?/s \ /C, X ^ %\ ^ a/ I O r 6 — JL, * , T, v ^F- o\ ^= xx A Jr\.

and put
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f 0 Γ «'βeAlm+"

By (6) we have μ(\j {I<"+I) x J<r+1), (a, β)$Bίn+1)}) < eJcr^T1. Since
| | / I U = 1 and EJ = E2f = 0 we conclude that:

(12) Σ I Σ {aat: a e A( +», (a, β) e £">+1)} | < c . r ^ " 1

(13) Σ I Σ {««,: β e A^\ (a, β) e £<•+»} | < cAr**-1 .

Since 2-1μ(I$) x Jj^) - eje-^r'1 ^ 4 - χ , (11) can be reformulated as
follows:

: IίΓx l ) £ Iκί\ J{

β

n+1) £ Jφ, {a, 0)

for some a\ 0 e A(TO) .

Now choose numbers (aaβ)i(X)β)eB{n+1) such that (12), (13), (14) are fulfilled
and the cardinality of C = {(α, /3): ααiS Φ 0} becomes minimal. By (14),
there exists (a, β)eC such that \aaβ\ ^ 4~1cnfc-2r. Put Do = {(α, /5)}
and then inductively:

A m = {(*i, « e C\A*: 3δ3 G A< +1>: ( ^ δ3) e Du)

D2i - {(δlf δ2) G C\A*-i: 3δ3 G A(-+1): (δs, δ2) e A,-J

(e.g., Z>2ΐ stands for those rectangles that belong to a row de-
termined by some rectangle from D2i_lf but do not belong to D2i_1

itself).
Now assume that Dt Π Ds Φ 0 for some ί < j and choose i

minimal. Assume that i Φ 0. Take (δlf δ2) eDiΠ Dd. If i is odd,
there exists δ3 e A{n+1) such that (δlf δB) e A-i If 3 is also odd, then
(§!, δ5)eDj U JDy_i (since (δ2, δ^eDj), but both possibilities contradict
the minimality of i. Similarly if j is even, then (βlt δB) e Ώά U DJ+1

which is also impossible* An analogous argument works in the case
that i is even. This shows that either (a, β) e Dj for some j ^ 2 or
all D5 are disjoint. To exclude the second possibility, observe that
Uî o Dj contains with each element also the whole column correspond-
ing to that element. Therefore, by (12):

Similarly Ui^iA contains only complete rows, therefore by (13):

But if the sets D3 are disjoint, the two sums differ exactly by aaβ
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and this contradicts \aaJ\ ^ 4~1cnifc~2r.
This shows the existence of a "loop", i.e., there exist pair wise

different elements au , ame A(n+1), such that (a2i_lf a2i), (a2t+1, a2i) e
C for all i (we put α w + 1 = ay)\ m is clearly even. Define a = ααιΛ2

and 6α2._ia:2. = α, δα2.+1«r2. = — α for all i and baβ = 0 in the other
cases. 'The sums in (12) and (13) are zero for φaβ). If the sum
in (14) would also be zero (for all choices of ct\ β' eAίn)), then
(aaβ — baβ) would have the properties (12), (13), (14), contradicting
our minimal choice of (aaβ) (since ααi«2 — 6αχα2 = 0). Therefore φaβ)
has the properties (12), (13), (14) (possibly with a smaller constant
in (14)) and we will assume from now on that aaβ = baβ for all
a, β.

Now recall the definition of A{n+1): we have at = (p(at), pι(oc%),
• , ^(α*)) with ^ α , ) 6 A(n\ 1 ^ ^(α,) <; &(Z = 1, , r), Ij£+1) £ 1 ^ , ,

e/"α* + 1) £ e/"^) . P u t ψ(2ί ~ 1) = <Pn((X>2i-i, &2i) ^ n d ^>(2ί) = <Pn((Xu+U #2ί)

We may assume that α f = ^(α j , /β' = <o(α2) in (14), i.e.,

Put t = φ-(ΐ) = ^ ( α , , α2). It follows from the definition of J5(n+1)

that for any a e A(n+1), 7, δ e A{n) there exists at most one βeA{n+1)

such that (α, β) e J5(n+1) and I£w+1) x J ^ ' c ί } 5 1 1 x JJn ϊ, similarly for
a:, /S interchanged. This shows that φ~{l) Φ <p~(l + 1) for all I.
Now put N = {ϊ: 9>-(Z) = ί} = {ί1? Z2, ϊ3, •} with 1 = k < l2 < lz .
Since ^"(1) = t, we have ^ ^ α ^ + 1 = Pt(a2)- If 9~(0 ^ *, then
Pt(oti+1) = /t?ί(α,) O n the other hand, if φ~(i) = ί and Z is even, then
Pt(®ι+i) + 1 = ft(αj) and if i is odd, then ρt(a{) + 1 = ^(α z + 1 ) . This
means that if we put σ(ί) = |{i ^ 1: ls < I, ls is odd}| - \{j ^ 1: l5 <
I, Ij is even}I (here | | stands for the cardinality of the set), then
Pt(oίι) = pt(aj + σ(l). In particular, for I = m + 1, we have am+1 =
^ and therefore σ(m + 1) = 0. This means that \{j ^ 1: ls < m + 1,
Zy is odd} I = |{jf ^ 1: lά < m + 1, Zy is even}|. But these numbers ld

determine those indices (α, β) for which ααi5 Φ 0 and J^+ 1 ) x Jβ

n+i) £
Iβ*1 x e/^5. If Ij is odd, then aaβ = + α and if it is even then aaβ =
— a. By summing up we would get: ^{aaβ: Γa

n+1) x Jβ

n+1) £ Iff x Jf]) =

0. contrary to (14). This contradiction proves that μ is extremal.
Finally since all the measures in the two disintegrations of μ

are continuous, it follows that any graph or inverse graph has μ-
measure zero.
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