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ON THE SEMIMETRIC ON A BOOLEAN ALGEBRA
INDUCED BY A FINITELY ADDITIVE
PROBABILITY MEASURE

THOMAS E. ARMSTRONG AND KAREL PRIKRY

A finitely additive probability measure ¢ on a Boolean
algebra <% induces a semi-metric d, defined by d.(4, B) =
#(A4dB). When <7 is a c-algebra and 2 countably additive
% is complete as is well known. The converse is shown to
be true. More precisely, if <2, is the quotient of <7 via
p#-null sets then &, is d,-complete iff /2 is countably additive
on £, and &, is complete as a Boolean algebra. Further-
more &, is d,-complete iff every v < ¢ has a Hahn decompo-
gition iff (when <% is an algebra of sets) every v < ¢ has a
“-measurable Radon-Nikodym derivative. If <£, is not
d,~complete it is either meager in itself or fails to have
the property of Baire in it’s completion. Examples are
given of both situations with the density character of <,
an arbitrary infinite cardinal number.

If & is a Boolean algebra with supremum X and g is a finitely
additive probability measure on <& (i.e., pt€ BAf(<#)) there is a
semi-metric d, on <& given by d.(A4, B) = n(A4B) (where 4 denotes
symmetric difference) for {4, B} C.<#. Drewnowski [13] calls such
semi-metrics Frechet-Nikodym semi-metrics. The metric space
obtained by identifying A and B if d.(4, B) =0 is the quotient
Boolean algebra <z, = £Z/_+; where _4; is the ideal of p-negligible
sets. We consider ¢ and d, to be defined on <&, in the usual
manner so that p(A44B) = d.(4, B) if {4, B} <£.. The operation
of complementation is an isometry in <# or <, for d,.

When <7, is o-complete and x¢ is countably additive on <%, then
B, is complete both as a Boolean algebra and as a metric space.
This fact has been very useful for analysts in the special case where
& is a c-algebra of subsets of X and g a countably additive
measure on <. In [12] it was asked to what extent this remains
true if g is only finitely additive. If g is a {0, 1}-valued measure
on the Boolean algebra <& then <7, is a two point space {4, X} with
d.¢, X) = 1. Thus, the theorem is true in this case. Of course, p
is then countably additive on <Z.. We may ask when <%, has an
isolated point.

PROPOSITION 1. Z. has an isolated point iff it is finite vff pt is
a finite convex combination of {0, 1}-valued measures.
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Proof. 1If <z, is finite it has a finite number of p-atoms and g
is a finite convex combination of {0, 1}-valued measures. If p isn’t
a finite convex combination of {0, 1}-valued measures there is an
infinite sequence {4,} C ZZ\{¢} with lim, . p¢t(4,) = 0. If A <, then
A+ A44A, for large n and lim, . d.(A4, A4A,) =0. Thus, A isn’t
isolated. This suffices to establish the proposition. ]

Thus, except in trivial cases, <%, is an infinite perfect metric
space. It turns out that the only time .7, is complete under d, is
when <%, is complete as a Boolean algebra and g is countably
additive on <Z..

PROPOSITION 2. In order that <&, be a complete metric space
under d, it is necessary and sufficient that <Z. be a complete Boolean
algebra and that pt be countably additive on .<Z,.

Proof. First suppose that <7, isn’t a complete Boolean algebra.
Since .7, satisfies the countable chain condition it can’t be a o-com-
plete Boolean algebra. Thus, there is an increasing sequence {4,}C
Z, without a supremum in <Z,.. Let )\ =lim,_, ¢#(4,). We have
du(A,, A,) = (AN\A) SN — ((A,) »0 as n— . Thus, {4,} is
d.Cauchy. If Ae < were such that lim,..d.(4,, A) =0 then
lim, . #(A)\A) =0 so p(A,\A) =0 for all » hence A, A for all A.
From lim,_. #(4\A4,) = 0 it would follow that A = sup, A, which is
impossible. Thus, if <7, is d,incomplete it is incomplete as a
Boolean algebra.

Now suppose that <7, is a complete Boolean algebra with ¢ not
countably additive. There exists an increasing sequence {A,}C.Z.
with union A so that lim,. . #(A4,) =» < ¢#(A). Once again, {A,}
must be d,Cauchy and if Ce <, with lim,..d.4, C) =0 then
C = A. Since lim,..d.(A4,, A) = p(A) — x # 0, <&, is d,-incomplete.
Thus, if <%, is d.complete then g is countably additive on .Z,.
This suffices to establish the proposition. O

Plachky, [23] gives a characterization of extreme extensions v
of a finitely additive probability g on <z to <Z. He denotes by
ba(Z, 1, &%,) all such extensions. We denote by ¢ba(z, v, &) the
extreme elements of the compact convex set ba(<Z, ¢, <Z,). In terms
of the semi-metric d, elements v of ¢ba(<Z, 1, <7,) are characterized
by the condition that for all A,€ <z, and ¢ > 0 there is an A, €
with d,(4,, A,) <e. That is, vesba(Z, v, &) iff <, is d,-dense in
B,

COROLLARY 2.1. Let <&, C <, be Boolean algebras and let ¢ be
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a probability measure with <&, d.,complete. For veba (zZ, 1, )
to be in £ba(Z, 1, ) it is mecessary and sufficient that for all
A, € B, there be an A, e ., with d (A, A,) =0. If veba(z, v, A,
then <% is d,-complete.

Proof. It is only necessary to show that if veéba(, 1, &)
and A,e <%, there is an A, e <5 with d,(4,, A,)) = 0. By Plachky’s
condition we may construct a sequence {A"} C <%, which d -converges
to 4,. Any d.-limit A, of this sequence will suffice. O

REMARKS. (1) Bogdan and Oberle in Proposition 1.1.1 of [9]
obtain a result closely related to Proposition 2. M. Bhaskara Rao
and K. P. S. Bhaskara Rao in [25] essentially obtain Propositions
1 and 2.

(2) Corollary 2.1 yields a method for obtaining noncountably
additive ¢ with <, d.-complete.

Recall that a finitely additive measure g of bounded variation
on a Boolean algebra <z (i.e., ¢ e BA(<#)) has a Hahn decomposition
iff there is an Ac.<# so that p(A) = ||¢" || and p(A4°) = ||u~||. Thus,
L E)=pmANE) and p(B) = (BN A°) if EesZ. Here, pt and
¢~ are the positive and negative variations of p. |u¢]| = p* + ¢~
is the total variation of .

PROPOSITION 3. Let p be a probability measure on the algebra
F. B, is d.complete iff every ve BA(Z) with |v|=p has a
Hahn decomposition iff every ve BA(<#) with v L ¢t has a Hahn
decomposition.

Proof. 1If p is countably additive on the complete algebra <z,
then every ve BA(<F) with v € ¢ is countably additive on <7, hence
has a Hahn-decomposition in <Z. and in <& (we are using the ¢ — o
definition of absolute continuity « as in [8]). Only the converse
needs to be established.

We must show that if every ve BA(<#) with |v| =g has a
Hahn-decomposition then .2z, is d.-complete. Suppose that g isn’t
countably additive on <Z,. There exists {A4,} an increasing sequence
in <z, with supremum X such that 0 < lim,_.. #(4,) = Ax < 1. Let
H(A)=lim, ... (A N A,) define p/(A) for A e . so that p' ¢ BA* (7))
hence ¢’ e BA*(<#). Let p' =pu — (' e BA*(<#). Let v=p — e
BA(<#). Since g and g¢” may be verified to be singular, vt = ¢,
v~ =pu" and |v|=p. Let Ae . be such that v(4) =»T(4) and
—y(A°) = v~ (A). We have v"(4) = ¢'(4) =lim, . (AN A4, = ||]=
M. Thus, A,c A for all ». Thus, A= X and g¢” =0 which is
impossible. Thus, ¢ must be countably additive on <Z.
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If <z, isn’t o-complete there is an increasing sequence {A4,} with-
out a supremum. Define p'(4) = limn_.m)u(A NA) so that p'e
BA*(<Z,) hence (e BAT(<Z) let ¢ =p — ¢ and let v = ¢/ — p".
If /=0 then X = sup, 4, and if ¢/ =0 then ¢ = sup, A, which
are impossible. If A €.z, is such that v*(E) = v(E N A) and v~ (E):
—v(E N AY). Once again, A would have to be sup, A, which is
impossible. Since such an A is guaranteed to exist <Z. must be
o-complete hence complete. 1

% may be an algebra of subsets of X. This is the case if X
is the Stone space X, of & and <# is regarded as the clopen
algebra of X_. If pre BA(<Z) one may integrate simple step func-
tions f= 372, MKy, with {4,, ---, A,} in the usual manner. One may
integrate any f which is the uniform limit of simple step functions
as the limit of the integrals of the step functions. The totality of
such f will be called bounded <Z-measurable functions. More gener-
ally fi: X >[— o, ] is called #-measurable iff f AnV (—m) is a
bounded .#-measurable function for all integers =, m = 0. One
defines Sfd;z, for any <#-measurable f, to be lim, . -0 0 Sf/\n\/
(—m)dy provided this limit exists. For any <Z-measurable f on X
with SI flds < o one may define the measure f¢ on £ by the
requirement that (fr)(A4) = S fX.dpe for AeZ. Then, fue BA(Z)

and is absolutely continuous with respect to p. If pte BA*(<Z) one

has (fi)* = (FV O, (f1)” = —(FAO)¢ and [fr|=|flp. If g is
“#-measurable and Sgd( fr) exists it is ngdy. If v e BA*(<Z) one

says that v has a Radon-Nikodym derivative, f= dv/dy, iff f is
ZZ-measurable with v = fr. When g is a countably additive pro-
bability on the o-complete <7, (i.e., when <Z, is d,-complete) every
v € ¢ has a Radon-Nikodym derivative on <7, with respect to ¢ and
on &% if p is countably additive on 7.

PROPOSITION 4. Let <& be a Boolean set algebra and let pe
BA{(Z). <&, is d,complete iff every v £ ¢ has a Radon-Nikodym
derivative on Z (hence on Z.).

Proof. There is a Banach lattice isomorphism between the M-
space of bounded £#-measurable functions on X and the continuous
functions on the Stone space X_. If the bounded <#Z-measurable f
on X has corresponding to it 7 and the finitely additive p ¢ BA(<Z)
has corresponding to it pe _#(X_) under the Stone correspondence

then S fdp = S fdp. For ve BA(Z), v = fit with f bounded and
P -measurable iff ¥ = Fii with feC(X,). If |v| =p then |flf =
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|J| = fi so |f] =1 on supp (). There is a clopen set [A] < X, cor-
responding to A € <Z so that f = Xy — Xr. on supp (Z) consequently
VU= (X — Xpue)f and v = X, — Xe)pt. Thus, v has a Hahn-decom-
position. Since vy was arbitrary with |v| = ¢ &, is d,complete by
Proposition 3.

Now suppose that <z, is d,-complete. If Av7p¢ < v < Ay for some
A€ (0, =) then, on X, there is a Radon-Nikodym derivative ¢g for
v with respect to g which is bounded and .<Z,-measurable hence
continuous (<7, is considered to be the clopen algebra of Xz, If
y and @ are the Radon measures on X corresponding to » and g
we have ¥ = gfi. Extend g continuously from X_ , considered as a
closed subspace of X_, to a continuous function f on X_. Then,
U = fit where {, fi} are considered as Radon measures on X_. f is
“Z-measurable on X, hence is the uniform limit of simple step
functions {f,}. If X = X_ then v = fyr. Otherwise {f,} corresponds
to a uniformly convergent sequence {f,} of simple step functions on
X (where fi(x) = f(&) where £e X is the ultrafilter of supersets
of x in <#). Once again v = 'yt where f’ = lim, . f,.

If v € ¢ then vy is the limit in the variation norm of v, = v A
() V (—ny) as n—. We have v, =y, A ny)V(—ny) for all
k> 0. Since —np <y < npe we have v = f,¢r and f, = fo  ARA —0
for & > 0 where {f,} are <Z-measurable on X. Define f(x) = f.(x)
if fo@) = fu(®) for all £ > 0. If f(x) isn’t defined either f,(x) =n
for all » or f,(x) = —n. In the first case set f(x) = « and in the
second set f(x) = —o. Since fARV —n = f, is ZF-measurable it
follows that f is <#-measurable. If A ¢ <# then v(A)=lim,_, v, (4)=

lim,,_mg fudp = S fdp. Thus, f=dv/dpe. This establishes the prop-
A A4
osition. O

REMARK. Since <%, remains unchanged if <Z is enlarged, and
¢t redefined, by only an enlargement of %, we may consider 7, the
set of A with AcC X such that for all ¢ > 0 there is an A*e #
with Ac A° and p(A®) <e. Let #4),. denote all sets A’ in X
differing from an A€.<Z by an Ne7,. For such A’ set u(A")=pA)
so that 7, is the ideal of u-negligible sets in <#47,. Propositions
3 and 4 remain unchanged when <7 is replaced by <7 47..

In general <z, isn’t complete under d, but its completion is
easily identified.

PROPOSITION 5. Let pe BA{(<Z), X,(X,,) be the Stone space
of £7(<Z,) and let fI be the Radon probability measure on X (X))
corresponding to g. The d,-completion of < is the quotient of the
Baire algebra, <7, of X (X, ) modulo fZ-negligible sets (i.e., BF)
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under d,.

Proof. It is easiest to work with <%, considered as the clopen
algebra of X, . Then &7,c " and the metric d, on <7, is the
same as is induced by the semi-metric d;. As a result <z, is iso-
metric to a subset of the d;-complete <. Since £&° is the mono-
tone sequential closure of <7, it follows that &%, is d,-dense in <&°
hence in ;. Thus, <Z; must be the completion of <Z. n

REMARK. Proposition 2 is an immediate corollary of Proposition 5.

One may extend g defined on the algebra, <& of subsets of X,
not just to Z 47, but to an even larger algebra .93*5 of subsets of
X in a unique manner. <7, is the p-completion of <7 and consists
of those sets K c X so that p*(E) = inf {#(A): Ec Ae Z}=p,.(E) =
sup {(A): ED Ae <Z). One sets, for Ee HE) = p (E)y= p*(H).
7. is then the ideal of g negligible sets in Z* and g?dﬁﬂcéﬁf‘.
One may ask whether 7" is ever d.-complete. To answer this it
is convenient to characterize <z in terms of the Stone space X._.

Let j () ={AeF,xc A}e X,. The mapping j, from X to
X, is such that if A is in <Z then [A] = j_(A) so that 4 = jZ([A)]).
The inverse image of the clopen algebra of X_ is the algebra 7.
It is convenient to identify X with the dense subset j,(X) of X
even though this is only proper if j_ is injective iff <& separates
X.

PROPOSITION 6. EC X is in 5" iff there is a closed G;, F' and
an open F, G, in X, with GCF, g(F\G) =0, and jZ(G)CEC
JNF). In particular f#(67.,(E)) = 0.

Proof. Let E c#r. Let {A,} be an increasing sequence in <%
and {A"} be a decreasing sequence in & with 4, C EcC A" so that
MANA") —0 as n— . Let G = U, [4,.] and F = N, [4"]. We
have GC F with f#(F\G) =0 and we have jJ(G) =U;., A, CcEC
Ny- A = j2HF).

Conversely, if G is an open F, and F a closed G, in X_ with
J2MG)C EcC jZ/(F) and with g(F\G) = 0 then G = U;-,[4,] and F=
Nec.. [4"] with {4A", A,:ne N}c =% with A,c EC A" for ne N and
with p#(A"\A4,) —0 as n — . Thus, Ee 2" 0

PROPOSITION 7. 2" is d.-complete iff (i) P is a o-algebra of
subsets of X and (ii) ¢ is countably additive on Z*. In this case
B is p-complete as a o-algebra.
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Proof. From Proposition 2, d,-completeness of 2+ follows from
(i) and (ii). Also, d.-completeness of B implies (ii) and that <Z*
is o-complete as a Boolean algebra. If {E,} is an increasing sequence
in <2* we must show that E = U=, E,,eg,;’f‘. Let E~ be the
supremum of {£,} in &+, Let {A,} be chosen increasing in &Z with
A,C E,and #(E,\A,) < 1/n for all n. Let {A"} be chosen decreasing
in & with E*C A" and p(A"\E.) < 1/n for all . We have A, C
EcC A" and #(A"\A,) —0 as n — . Thus, Ec 2" 0

PROPOSITION 8. 7" is d ~complete iff I is a category measure
on X, .

Proof. A residual Radon measure is a category measure on its
support, [2].

Let <2+ be d,complete. We must show that if @ is an open
set in X, then f(30) =0, [3]. There is an open F, 0 c6 with
f£(0/0") = 0 Let @ be an open F, in X_ with & N X, = @ (where
X5, is considered to be supp (#) < X_;). We have p(aﬁ’) = 0. Thus,
considering closure in X , /(36" = 0. Since X, = supp (&), 6'=6
Since @ differs from 6’ by a fi-negligible set and @' differs from 6)
by a negligible set #(30) = 0 which shows that / is residual on X, e

Let 7 be residual on X, . From Oxtoby [20, Theorem 4] any
Borel set A in X_ has the property that H(A) = (A% = fi(A).
Thus, if A is a Baire set in X there is an open F, GCA and a
closed G, F'o> A with fi(F\G) = 0. Represent G as U7~ {[4.]1N X}
where {4,} C &7 is increasing, and F as ;.. {{4"] N X} with {4"}C
 decreasing with A, C A" for all », and with p#(4A"\A4,) = 0. Let
Ec X be N, A*. Since A,C EcC A" for all n we have Ee.Z*. It
is easily checked that E is the d,-limit of the Cauchy sequence
{A,} c <Z and that E corresponds to the element A in the d,-com-
pletion of <7, as given in Proposition 5. |

By Proposition 4, B is d.-complete iff every v with |v|=g has
a Z#*-measurable Radon-Nikodym derivative. One may ask what is
the case if one allows FEudoxus integrable, [14], Radon-Nikodym
derivatives. A bounded function f is Eudoxus integrable iff there
an increasing sequence {f,} of bounded <#-measurable functions and
a decreasing sequence {f"} of bounded <£#-measurable functions such
that f, < f< f~ for all » and lim,_. S f*— f.d, = 0. Since bounded
ZP*-measurable functions are Eudoxus integrable no more Endoxus
integrable functions are obtained if one only requires P *-measura-

bility of {f,} and {f"}. S fd, is defined by lim,_., S fad, or lim,_., S frd,.
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COROLLARY 8.1. Z* is d.-complete tfff every v with |v| = ¢ has
a Eudoxus integrable Radon-Nikodym derivative.

Proof. One direction is clear. For the other suppose that all
v with |v| = ¢ have Eudoxus integrable derivatives. We shall con-
sider X as identified with a subset of X_ via the map j,. Let v»
have |v|=p¢ and let f be a Eudoxus integrable Radon-Nikodym
derivative. Let {f.} and {f"} be the monotone sequences of bounded
“-measurable functions with f, < f=<f" for all n so that
lim, . § f*— fud.=0. Let {f} and {f"} be the corresponding se-
quences in Z(X,). Let f=inf, 7* and f =sup, f.. f is upper
semicontinuous and f is lower semi-continuous. The restrictions of f
and f to X are themselves Eudoxus integrable Radon-Nikodym
derivatives of v. Both If | and | f | are equal to 1 /7 a.e. Let K be
the compact G(,{fg 1}. One has f= Xy — Xgeff a.e. Since v was
arbitrary ¥ could have been of the form (X, — X,.)f for an open set
0 in X_. Thus, for each open @ there is a compact G,K in X_ with
f(04K) = 0. The closure of 6 N X, must be contained in KN X,
since supp (%) = X;,. Thus, in D. £ N X5,) = 0. Since
gn Xg# may be an arbitrary open set inA Xg#ﬂ is a category
measure on Xﬂ#. Proposition 8 shows that <#* is d,.-complete. []

REMARKS. Can Eudoxus integrability be replaced by p-integra-
bility? Recall that f is pg-integrable iff there is a sequence of simple
“#-measurable functions which converges to f in pg-measure or in
p-probability.

The maximal ideal space Z; of L™(X, , f) is the Gleason space
or projective cover of Xg# iff ff is a category measure on Xg#, [3].
This is true iff the projection dual to the injection C(Xg#) CL“(XQH,
f) is irreducible. This yields a method for constructing Z2* which
are d,-complete, yet such that <Z 47, isn’t d,complete no matter
how <7 is represented as an algebra of sets. One need only take
an irreducible totally disconnected image Y of the maximal ideal
space Z of L>(2,2%, P) where (2,2, P) is a probability measure
space. Letting <& be the clopen algebra of Y one has Y = X_.
One may take X(=j,(X)) any dense subset of X_ regarding <%
now to be equal to it’s trace on X. One way to obtain Y from Z
is to identify two nonisolated points in Z (or even to identify a
closed nowhere dense subset of Z).

COROLLARY 8.2. There exists a set X, a Boolean algebra <# of
subsets of X and a strictly positive finitely additive probability p
on & so that <. isn’t d.,-complete yet (Z*), is d.-complete.
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The completion Z; of <Z, under d; is a complete metrizable
abelian topological group when the group operation is symmetric
difference. Since <7, is a dense subgroup of .@’9,: the regular open
algebra of <7, is isomorphic to that of <%, [18], [20]. If F is a
closed subset of <Z, its interior is the intersection of F° with <Z.
where closure and interior are taken in .<Z;. Thus, F is nowhere
dense in <7, iff F' is nowhere dense in <#;. Thus, <%, is meager
in itself iff it is meager in <#;. When <7, is incomplete yet non-
meager it must be badly behaved as a subset of <Z;. In Kelley
[16, Problem 6P] it is shown that any nonmeager dense subgroup
of a Baire topological group fails to have the property of Baire.

PROPOSITION 9. If <Z. is not complete then it either
(a) s meager in itself under d. or
(b) fails to have the property of Baire in its d.-completion.

When 7, is d,-incomplete it may be meager. One instance is
when %, is countably infinite in particular when <# is countable
and <7, is infinite. In this case each point of <%, is nowhere dense
hence <# is meager. In quite a few instances <z, will be meager.

PropoOSITION 10. Let e BAJ (). If Ac 2B, (or ) let .~ (A)=
{A'e Z: A'C A} and let 7 (A) ={A’e Z.: AC A’} be the principal
ideal and filter in B, generated by A.

(a) Both # (A) and _#(A) are d.-closed.

(b) F(A) is nowhere dense iff A° isn’t a finite union of p-
atoms and is open if A° is a finite union of p-atoms.

() F (A) is mnowhere dense iff A isn’'t a finite union of
p-atoms and is open if A is a finite union of p-atoms.

Proof. Only statements about _“#(4) need be proven for the
statements about . (A4) follow from those for _#(A) upon applying
the isometry E — E°.

(a) To show that _7(A) is d,-closed consider a sequence {4,} C
#(A) converging to Ce.<z,.. We have pu(C\A, = p(C\A) + p(Cn
(A\A,)) = n(C\A). From lim, . #(C\A,) =0 it follows that p(C\A)=0
so Ce _#(A). This establishes (a).

(b) If A° is a finite union of atoms then <&, = U {_“(A)4F:
Fc A%}, where #(A)AF = {EAF: Ec _#(A)}, is a finite disjoint union.
The map E — EAF is an isometry of <Z. for d,.. Thus, #(A)4F is
a closed set for each F'c A°. Since <7, is a finite union of disjoint
closed sets each is a clopen set. Thus, _#(A) is clopen.

Conversely, if A° is not a finite union of atoms there are F'C <7,
FcA° with p#(F) >0 but arbitrarily small. If A’¢_“(4) then
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d.(A’, A’ U F) is arbitrarily small yet A’U F¢ . _#(4). Thus, no
A’'e “(A) is an interior point of _#(A). Thus, _“(A) is nowhere
dense. |

To show that <%, was meager it would suffice to show that
there was a countable family {A4,} C Z\{g}, with # (4,) nowhere
dense for all n, with =z, = U;.. & (4,). That is, {4,} should be a
family such that if A< <%, there is an A, with 4, C A and so that
no A, is a finite union of atoms. A collection {4,} < Z\{¢} such
that any Ae <Z\{¢} contains an A, is called a pseudo base of the
algebra <7, [21]. Included in any pseudo base for <z, is the, at
most countable, collection of atoms. If every A e <%, contains an
atom then the collection of atoms is a pseudo base and is minimal
as a pseudo base. This is the case iff X is the closure of its
countable set of isolated points iff X, is between N U {co} and gN
as a compact Hausdorff space. ‘

PROPOSITION 11. Suppose that <Z. is such that there exists an
A e BN} not containing a p-atom and such that the restriction of
B, to A has a countable pseudo base. <Z. is meager.

Proof. Let p, be the restriction of # to A normalized to be a
probability measure. 7., is the restriction of . to A. ., is
meager as the preceding remarks have shown. Let g, be the
normalized restriction of g to A°. If p,. doesn’t exist then <&, =
P, is meager. It is easily verified that <z, may be represented
as the product ., X ., .. Furthermore the metric d. is given
by d((E, F), (B, F))= p(Ad. (B, E,) + pA)d,, (F, F,) which
yields a topology on Z., X £Z,.,, which is the product topology.
Since <7Z,, is meager s0 is FZ,, X Bp,, = B ]

REMARK. Every nonnegligible element of <Z* contains a non-
negligible element of <Z hence this proposition extends to the case
of &#*. We may even extend this proposition to cover the case of
the Boolean algebra completion of <& or .

PROPOSITION 12. If <% is an infinite Boolean algebra there is
a probability measure pt on B such that <z, is meager, (t may be
taken to be non-atomic if <& admits a non-atomic measure and may
always be chosen to be atomic otherwise.

Proof. If <&# admits a non-atomic measure g there is, [4], [24]
a countable subalgebra <z, of <& isomorphic to the clopen algebra
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of the Cantor set 4. The algebra <Z has a countable base hence a
countable pseudo base. Let @: X, — X_ = 4 be the canonical sur-
jection. Let ¥ be any non-atomic Radon probability measure on
X_, with support equal to X, . Let X be a minimal closed subset
of X_ such that ¢(Y) = X,. The map @ is irreducible on Y, [27],
[4], hence Y has a countable pseudo base, [27]. Let & be a Radon
probability measure on Y (hence on X_) whose image under @ is 7.
As in [4], / is non-atomic on X_. Let g be the measure on 7
corresponding to f under the Stone correspondence. We have Y =
X, Since Y has a countable pseudo base and g is non-atomic it
follows from Proposition 11 that <z, is meager.

If <# admits no nonzero non-atomic measure there is no non-
zero non-atomic Radon measure on X_ hence X is scattered, [27],
as is any closed subset. Since X is infinite there is a probability
g =237.2"", where {x,} is an infinite sequence in X_. The
support Y of [ is a separable scattered space. If ¢ is the measure
on < corresponding to # under the Stone correspondence then
Y=2X,,. The algebra <z, is the clopen algebra of Y. Every
clopen set in Y contains one of the countable many isolated points.
Thus, <%, has a countable pseudobase. ]

REMARK. Again if <% is an algebra of sets this proposition is
valid for 7.

We may improve Proposition 11 to some extent in the following
proposition.

PROPOSITION 13. Let <Z be an algebra and p be a finitely
additive probability on <& so that <., has a nmonprincipal ultra-
filter with a countable base. <Z. is d.-meager.

Proof. Let {A,:nme N} be a countable base for an ultrafilter
& in £, so that A,DA,,, for all n and so that #(4,\A4,.,) >0
for all n. & is equal to U;-,.# (4,). By Proposition 10 each
& (A,) is nowhere dense hence .&# is meager for d,.. Consequently,
the maximal ideal . dual to % is also meager. Since &= U
. B, is meager. O

PropoOSITION 14. For any infinite cardinal number m there is
a Boolean algebra <% and a finitely additive probability p on <&
so that <z, is meager and has density character m.

Proof. (The density character of a topological space is the
minimum cardinal number of a dense subset.)
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Let &' be the clopen algebra of the maximal ideal space X_,.
of L>({0, 1}, ft) where # is the coin flip measure. Let # be the
probability Radon measure on X_. corresponding to 7 under the
Banach lattice isomorphism between _#(X_.) and L~*({0, 1}, )
dual to that between & (X_.) and L~({0, 1}~ f1). Let g be the
countably additive probability on <&’ corresponding to f under the
Stone correspondence. Consider the cardinal m to be the first
ordinal of cardinal m. Let A, for a an ordinal less than m, denote
the clopen subset of {0, 1}™ consisting of those elements whose ath
coordinate is 0. Let A, be the element of <& corresponding to A,
for ordinals @ < m. The subalgebra of <&’ generated by {A.: a<m}
is of cardinality m and is d,-dense in <Z’'. Thus, the d, density
character of <Z' is at most m. It is easily verified that d.(4,, 4;) =
1/2 for all @ #+ B. Thus, the density character of <Z’ is at least
m. This establishes the (well known) fact that <#’ has density
character m. The same reasoning shows that _#(A:), the principal
ideal in <Z’ generated by A: has density character m as a closed
subset of <#’. Choose a decreasing sequence {E,:ne N}C <Z’ with
E, = A, and w(ENE;,) > 0. Let # be the filter Uy, & (E,) and
let 7 be the ideal dual to .# . Let <Z be the algebra & U ._~7.
From Proposition 13, <% = <7, is d,-meager. Since F(4A)cC. 7
there is a closed subset of the metric space <# of density character
m. Thus, &Z has density character at least m and, since <&# c.Z’,
the density character of <% is equal to m. 1

REMARK. Under this construction z is never countably additive.
Can ¢ be constructed to be countably additive?

If one wishes to find an algebra <& and a finitely additive pro-
bability measure ¢ on <Z so that <z, is not meager for d, yet not
complete one should choose <Z, very large in its d.completion Z;.
Considering <. as a subalgebra of ﬁ} one has the Stone space
X, a continuous image of the Stone space Xg%-Xgﬂ is obtained by
identifying points in X 2 To make <7, large one should identify
as few points as possible. For our construction we will start out
with a given infinite hyperstonian space Z satisfying the countable
chain condition so that Z is the maximal ideal space of L>(2, 2, P)
for some probability measure space (2, 3, P) not consisting of finitely
many P atoms. We will consider # to be the Radon probability
measure on Z associated with P and will denote by <Z; the clopen
algebra of Z so that Z = X % We will identify finitely many non-
isolated points of Z to obtain a totally disconnected Z’ whose clopen
algebra will be denoted by <#. We will again denote by f# the
Radon probability measure on Z’ which is the image of f under
the canonical projection of Z onto Z’. By g we will mean the
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finitely additive probability on <#Z (or <Z;) corresponding to .
Since g is strictly positive on <Zy and on # = <7, and Z' = D
Consequently, we are in the desired setting for this proposition.

ProposiTION 15. Let (2,3, P) be a (countably additive) pro-
bability measure space mot consisting of finitely many P-atoms.
There is a subalgebra 5 of 3 so that 3, is incomplete, nonmeager
for d, with d.-completion X,.

Proof. Assume the notation in the paragraph preceding this
proposition. If we show that <7, is d.-incomplete we may obtain
S from Z.c F} =23, by using a lifting » for LR, %, P) and
taking $' to be the image of <Z, under M.

Let {x,, ---, «,} be the points identified in Z to get x € Z’. Each
of {x, -+, x,} is an ultrafilter on <&y which contains elements of
5 of arbitrarily small / measure (since each x; is nonisolated).
Let .# be the filter 2, N --- N 2, which again contains elements of
arbitrarily small 7 measure. Let .7 be the ideal of <Z; dual to
F s0o F ={A:AcF}. _7 is a subgroup of <%; and is dense for
d, since & contains sets of arbitrarily small measure. Thus, .#
is either meager or fails to have the property of Baire. .7 is a
subgroup of <2 of finite index. This is because #=_ZN---N_%
where _7 is the maximal ideal of <Z} dual to the ultrafilter z;. No
subgroup of <Z; of finite index can be meager. Thus, .7 is non
meager. The algebra <7, is easily seen to be . U.% hence is a
nonmeager, dense, incomplete subgroup of <Z%. Thus, 7. fails to
have the property of Baire. ]

REMARKS. (1) It may be shown that as constructed, P is not
countably additive on & nor is ¥ complete as a Boolean algebra. (2)
Is it true that if the projection of Xz, onto X5, is irreducible that
&, is nonmeager? We conclude with a variation of Proposition 14
valid for complete Boolean algebras but with density characters
restricted to cardinals between ¥, and 2%.

PROPOSITION 16. Let <7 be an infinite complete Boolean algebra
and m a cardinal number between ¥, and 2¥. There is a finitely
additive probability measure pt on <& such that <, is d.,meager
and has density character m.

Proof The first step of the proof is the construction of a pro-
bability measure g, on 2¥ so that 2¥ has d, density character m.
Let .57 be a free subalgebra of 2¥ with m generators (since m=2%
.7 exists). On .97 let p, be the usual coin toss measure so that each
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of the m generators of .o/ receives measure 1/2 and so that the
generators are p-independent. The density character of .94 for
d, is equal to m. Under any extension of g, to 2%, 2V will have
d,-density character at least m. If g, is extended to 2" so that
7 is d,-dense in 2" then the density character of 2¥ will be equal
to m. To accomplish this we extend g, by a transfinite inductive
definition. Suppose, for ordinals 8 < «, p, has been extended from
7 to an algebra .o/ so that .5 cC.oC2¥ if v < 8 and g, when
restricted to .o from .97 is the extension to .94 of g, from .o
and so that .o74 is d.-dense in .97 for all g < a. If a is a limit
ordinal let .97, = U;..-%% and let g, be the unique extension to
&7, whose restrictions to .o are the already given extension of p,
for 8 < a. It is immediate that .94 is d,-dense in .97 in this case.
If « is not limit ordinal, g is its predecessor, and if .57 = 2" select
an Ae2"\.o7% and let .97, be the algebra generated by .97 and A.
It is well known that, if (x).(4) and (u,).(4) are the outer and
inner measures of A with respect to y, on .o, there is an extension
of p, to .57, with g,(A) = A whenever (¢,).(4) <\ = (¢)«(A). Select
an extension f, so that p(A) = (#).(4). It is easily deduced that
A is in the d,-closure of .97 so there is a sequence {A4,} C.%% with
d.(A,, A) —0. From this it follows that d,(4,N B, AN B)—0 and
d. (A, N B, A°’N B)—0 for all Be.%%. Thus, .7 is d,-dense in .7,
Thus, .o is d,-dense in .o7. For all ordinals @ we have .o4d,-
dense in .%7,. For some ordinal «, .%7, = 2¥. At this stage the
desired extension has been accomplished.

The second step of the proof is to construct a probability
measure g on 2% such that 2¥ is d,-meager with density character
m. Let p, be the countably additive measure on N with g({n}) =
27" for ne N. Let g = 1/2(p, + p,) where g, is constructed in the
preceding paragraph. Since p is strictly positive on N, Proposition
11 shows that 2" is d,-meager. From the construction of p, it
follows that there is a set {A,: @ < m} (where m is considered the
first ordinal of cardinality m) with p,(A.44;) =1/2 for a + g.
Thus, d.(A., A;) = pt(A.44;,) = (1/2)p,(A44,;) = 1/4. Thus, the density
character of 2% is at least m. Let {E,:a < m} be a d,-dense set
in 2¥. Let N; be the d,-dense set of finite subsets of 2¥. All sets
which differ from an E, by an element of N; form a d.dense set
of cardinality m. Thus, the density character of 27 under d, is at
most m, hence is equal to m. This establishes the proposition for
the case & = 27V.

The third step of the proof consists of extending from the case
% = 2" to the case where <Z is an arbitrary complete Boolean
algebra. This is done imitating arguments given in [4]. An infinite
complete algebra contains an infinite disjoint sequence {A,:n € N}
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hence contains a subalgebra isomorphic to the clopen algebra of the
Alexandroff compactification, N U {<}, of N. There is a continuous
surjection from the Stone space, X_, of <& onto NU {c}. Thus,
by results on projective covers on Gleason spaces, [3], there is a
continuous surjection of X _, onto BN the Gleason space of N U {co}.
Consequently, by results in [4], there is a closed subspace Y of X,
on which the surjection from X_ to SN is a homeomorphism. The
closed set Y is the Stone space of the algebra <#/_# where 7 is
some ideal of <Z. Thus, there is a Boolean isomorphism j: &%/ . —
2Y. Let p denote both the measure constructed in the previous
paragraph on 2¥ and its pull back under j to <Z/.#. Let p also
denote the measure on <# obtained by defining .7 to consist of x-
negligible sets. <%/ 7 = <7, is d,-meager and has density character
m. This complete the proof of the proposition. O

REMARKS. (1) This result is best possible in that on 2¥ any
measure # yields density character at most the cardinality, 2%, for 2".

(2) Can higher cardinals be obtained for d,-density character
of sufficiently large complete Boolean algebras .<Z with <. d,.-
meager? '
(3) There is no hope, by Proposition 2, that ¢ can be con-
structed in a countably additive fashion. This is because 7. as
the quotient of a complete algebra by an ideal is an F-algebra, [4],
which satisfies the countable chain condition hence is complete.

(4) The measure g constructed in Proposition 16 is non-atomiec.
Candeloro and Sacchetti, [10] in the proof of Theorem 2.4 show
that if &Z is 2* and p is non-atomic there is a o-algebra .o~ of
subsets of X such that .o~ under d, is homeomorphic to {0, 1}".
Thus, <z, while d,-meager is fairly large.

(5) Seever in [26] shows that the Vitali-Hahn-Saks theorem
is valid for finitely additive measures on <7, if <%, is o-complete.
Labuda, [17], shows that the Vitali-Hahn-Saks theorem is true
when <7, isn’t d,-meager. Propositions 15 and 16 demonstrates the
independence of their results.
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