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SHIFTS ON INDEFINITE INNER PRODUCT SPACES II

BRIAN W. MCENNIS

This paper continues the study of isometries on indefinite
inner product spaces by means of their wandering subspaces.
In the author's earlier paper of the same title (Pacific J.
Math., 81 (1979), 113-130), it was shown that the subspace
on which an isometry acts as a shift need not be regular
and that vectors in this subspace need not be recoverable
from their Fourier coefficients by summation. We present
here necessary and sufficient conditions for this situation
not to occur, and also show that these conditions are suffici-
ent (but not necessary) for the isometry to have a Wold
decomposition.

l Introduction* Throughout this paper we will be using the
notation and assuming the results of the paper [4]. Our attention
will be restricted to isometries on Krein spaces ^f (see [1, Chapter
V]), where the indefinite inner product [ , •] is related to a Hubert
space inner product ( , •) on 3tΓ by means of a fundamental sym-
metry J:

[x, y] = {Jx, y), J = J * = J-i .

Except in § 2, where we prove a lemma on projections in Hubert
space, we will be using the indefinite inner product [ , •] to define
properties of operators and subspaces. In particular, an isometry
V preserves the indefinite inner product, and the concepts of adjoint
and orthogonality use this inner product. Thus if Sf is a subspace
of 3ίί, then

jSf1 = {he3ίΓ\ [h, fc] = 0 for all k

If & 0 ^f1 = ^ 7 then Sf is called regular. A projection P
satisfies P = P2 — P*, i.e., self-ad joint with respect to the indefinite
inner product, and the regular subspaces are those that are the
ranges of projections. In § 2, where an indefinite inner product
will not be used, we will use Q to denote an orthogonal projection
in Hubert space and P to denote any other projection.

Suppose V is an isometry on a Krein space J%\ and let Sf =
(VK)1. Then & is wandering for V, i.e., Vp£f±Vg£f for all
nonnegative integers p Φ q. Since V is an isometry, VV* is the
projection onto VL%C Thus the projection P onto £f is given by
P = I — F F * , and so £f is regular.

We make the definition M+(^f) = V?=o VnJίf. Every vector
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has associated with it its sequence {ln}n^0 of Fourier
coefficients, where ln = PV*nh. Unlike the situation in Hubert
space, it is not necessarily true that

(l.i) h = Σ v%

(see [4, Example 7.3]), and indeed the Fourier coefficients need not
determine the vector h uniquely [4, Theorem 7.2]. The theorem
below gives necessary and sufficient conditions for M+(J5f) to be
regular and (1.1) to be true.

THEOREM. Let V be an isometry on a Krein space 3ίΓ, and
let L — (VJ%Ύ Then the following are equivalent'.

( i) sup {|| VnV*n ||: n = 0, 1, 2, •} < °°;
(ii) lim^oo F n F * n exists;
(in) M+(Jίf) is regular and every vector h e M+(Jt?) can be

written as

h _ γ γn-ι
rb — 2-1 V ln >

where {ln}n^0 is the sequence of Fourier coefficients of h.
These conditions are sufficient, but not necessary, for V to have

a Wold decomposition. In particular, if limn_oo Vn F* n = 0 then V
is a unilateral shift.

If conditions (i), (ii), and (iii) are satisfied, then we have, for
each h, keM+(J?f),

[h,k] = ±[ln,Vn],

where {ln}n^0 and {l'n}n^0 <ιτe the sequences of Fourier coefficients of h
and k, respectively. •

The limit in (ii) (and throughout this paper) is in the strong
operator topology on J?Γ.

The Wold decomposition referred to above is a decomposition
of the space 5ίΓ into orthogonal subspaces J%Γ = 3ZI φ 3^[ which
reduce V such that V\*f%l is a unilateral shift and V\^^is unitary
[4, §8]. The indefinite inner product is used in defining the terms
isometry, orthogonal, shift, and unitary, and so this is a different
type of Wold decomposition from that discussed in [2] and [3] for
isometries on Banach spaces.

Condition (i) of the theorem is implied by the uniform bounded-
ness of the operators Vn, n = 0, 1, 2, , but the converse [is not
true. This is shown in §4, where an isometry V is constructed
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which satisfies the conditions of the theorem but which has
Vn\\ — co. In § 4 we also show that the requirement that
be regular can not be dropped from condition (iii) of the

theorem.

2* Projections in Hilbert space* The proof of the theorem
rests upon the following lemma, which will be proved in the context
of a Hilbert space Sίf, without reference to an indefinite inner pro-
duct. Similar results for projections in a Banach space appear in
[2, Theorems 1 and 3]. (See also [3, Lemma 3].)

LEMMA. Let {Pn}n^0 be an increasing sequence of projections
(not necessarily self-adjoint) on a Hilbert space έ%f, and let

Πϊ=o ^ - Then

if and only if the strong limit limn_oo Pn exists. In this case we
have ^ n , y f = {0}, ^ + Λ~ — £(f, and P = limn_o= Pn is the pro-
jection with range ^/ί and null space

Proof If limn-oo Pn exists, then an application of the uniform
boundedness principle shows that

sup{| |Pn | | :n = 0,l>2> •••}< oo .

Conversely, assume that the sequence {Pn}n±0 is uniformly bounded,
and let Qn denote the orthogonal (self-adjoint) projection onto ^ n .
Since {̂ ίC}n̂ o is an increasing sequence, it is clear that limn_ooQ«
exists and that PnPm = Pn for m > n. Also, the fact that Pn and
Qn are projections with the same range ^ n implies that QnPn = Pn

and / - Pn = (I - Pn)(I - QJ. Thus we have, for m > n,

Pm-Pn = (I- Pn)Pm = (I - Pn)(I - Qn)Pm = (I - Pn)(Qm - Qn)Pm .

Since lim^oo Qn exists and the sequence {Pn}n^0 is uniformly bounded,
it follows that lim^oo Pn exists.

If P = limn-oo Pn, then P is obviously a projection with range
contained in ^£ and containing each ^ < . Thus, the range of P
is ^ C Also, since (I — Pn)h is in ΛZ for all h, and limn_oo (I—Pn)h =
(I — P)h, it readily follows that the null space of P is ^V. Thus
^ T Π yy = {0} and ^ T +

3* Proof of the theorem* Let V be an isometry on a Krein
space ST, and let £? = ( 7 J Γ ) 1 . Then & is regular with the
projection P onto £? being given by P = I — F F * . The projection
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onto VnSf is then VnPV*n = Vn(I - FF*)F* W [4, Theorem 5.2].
If we define

n—1
T/fc C^P QΠΛI A/* — Λr= V VΛSf, and

then the projection onto ^*C with null space ΛZ, is

P, - Σ V\I - VV*)V*k = I - F*F*W .

By the lemma, this sequence of projections converges strongly if
and only if it is uniformly bounded, and therefore limn-oo VnV*n

exists if and only if sup || F n F * w | | < °°. Furthermore, since
VΓ=o ~<*C = M+i^Sf), the lemma shows that in this case M+(^f) is
regular, and thus V has a Wold decomposition [4, Theorem 8.2]. If
lim^co VnV*n = 0, then l i m ^ P * - J, and so Jtf+(J2f) =' STf i.e., F
is a unilateral shift.

Let & be a vector in Jlf+(.S^) and let {ln}n^0 be its sequence of
Fourier coefficients:

ln = PV*nh - ( I - VV*)V*nh \n = 0, 1, 2, •••) .

Then we have

% Σ
0

(3.1) Σ y% = Σ

If limT C_F' iF*' 1 exists, then Um,^. P, = Um,̂ » ( / - VnV*n) exists
and equals the projection onto M+(£f). Thus

(3.2) h = lim Pnh = Σ F*ί, .

Now assume that M+(Jίf) is regular and that (3.2) holds for
). By (3.1), this implies that l i m ^ VnV*nh exists for all
). If k±M+(£f), then Λ ± ^ ^ for each n and so Pnk = 0.

Consequently, VnV*nh = k for each w. We have assumed that
Λf+ί S )̂ is regular, and thus every vector in 3ίΓ is of the form
h + k, with heM+(£f) and fc±Λf+(β2f). Thus the strong limit
lim^oo VnV*n exists.

We have now shown that the conditions (i), (iii), and (iii) of
the theorem are equivalent. Suppose that these conditions are
satisfied, and let h,keM+(£f). Then

h = Σ VHn and k = Σ ^" i ; ,
0

where {ln}n^o and {ϊ»}n̂ 0

 a r ^ the sequences of Fourier coefficients of
h and &, respectively. Sf is a wandering subspace for V, and thus
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VHP j_ V% for p Φ q. Consequently, since V is an isometry and the
inner product is continuous, we have

[h, k] = ± [lnf Vn] .
n=0

The only assertion from the theorem that remains to be proved
is the claim that the equivalent conditions (i), (ii), and (iii) are not
necessary for V to have a Wold decomposition. This is demonstrated
by [4, Example 7.3] in which V is a shift (and thus has a trivial
Wold decomposition), but (1.1) is not satisfied. •

4* Two examples* The first example in this section shows
that the uniform boundedness of VnV*n is not equivalent to the
uniform boundedness of Vn, i.e., it is possible for V to satisfy the
conditions of the theorem and yet still have

supfllV H: Λ = 0 f l ,2, •••}= oo .

EXAMPLE 1. Let J%1 be the two dimensional complex space of
vectors x = {x0, xj with Hubert space inner product

(x, y) = xoyo + xιyι

and indefinite inner product

[%, y] = #oΐ/o ~

Define U on ^ by Ux = l/4{5#0 + 3^, 3x0 + 5^}. Then U preserves
the indefinite inner product [ , •] but has || C7TO|| —> oo as n-* oo.

Let Sf be the space consisting of square summable sequences
of vectors h = {hn}n^0 with hn e J%1, n = 0, 1, 2, . The inner pro-
ducts on 3Γ are defined by

(Λ, k) = Σ (K K) and [λ, k] - Σ IK K] .

We define V on 3ίΓ by setting Vh = k, where k0 = 0 and kn =
£/K_! for ^ = 1, 2, . It is clear that V is an isometry (in fact
a shift), and that || Vn\\ -> oo as n -> oo. But the operator F n F* r a

is the Hubert space (norm one) projection onto the subspace of <5ίΓ
consisting of all sequences h for which h0 = hx — = hn^ — 0.
Thus, VnV*n is uniformly bounded for w = 0, 1,2, ••-, and V
satisfies the conditions of the theorem. •

The second example shows that it is possible for (1.1) to be
satisfied for each h e M+{£f), and yet for M+(£f) not to be regular.
Consequently, in condition (iii) of the theorem we can not omit the
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requirement that M+(J*f) be regular.

EXAMPLE 2. Let 3^1 be the two dimensional space described
in Example 1, and let <SZ~ be the space of square summable sequences
h — {hn}n=-oo with hn a complex number for n ^ — 1, and hne3%^
for n ^ 0. The inner products on 3ίΓ are defined by

(h, fc) = Σ Kk + Σ (An, K)
% — — oo τt=O

and

[fc, fc] - - Σ KK + Σ [λ», Λn] .
91=—oo w=0

Consider the sequence of numbers {an}n^0 given by an =
1/2 arccos 4~n. Then 0 = α0 < an < α n + 1 < ττ/4 and α n -> π/4 as w->oo#

For w ^ 0, let xn and yn be the sequences in 3fΓ which are zero
except at position nf where xn has the value 2π{cos anf sin an) e 3ί^
and yn has the value 2n{sin an, cos an) e ^ ^ . Then for n ^ 0 we
have

[̂ n, ^n] = -[l/n, vΛ = 1 and [ί»n> 2/n] = 0 .

For % ̂  — 1, we denote by yn the sequence in 3ίΓ which is
zero except at position n, where it has the value 1. Then every
sequence h = {/&„}?=-«> 6 3ίΓ can be written

(4.1) Λ = Σ Λ-»n + Σ (»n^n + KVn) ,
%=—oo M=0

where Σ U - . |Λ,|2 < <» and Σ»=» II « A + ^2/JI2 < ~
Note that

II anxn + bnyn ||2 = 4"(| an |2 + 16, |« + 2 Re α A sin 2a,)

and

||α.».+i + KVn+Al* = 4-+ 1( |αn | ! + |6J 2 + 2 Re αn6n sin 2α.+ ι) .

Since sin 2an+ι > sin 2<xn, we can deduce that

| |α.ίt.+ 1 + 6»y»+ι||
ι ύ 4(1 + sin2απ + 1)(l + βin2α,)- 1 | |α l lα, + bΛynψ

Consequently, we can define a bounded operator V on J^~ by

—1 oo

^ = Σ KVn+i + Σ (anxn+ί + 6wi/n+i) .
W = — oo ίt=0

It is easily seen that [ Vh, Vk] = [h, k] for each h, k e JΓ~ and
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that £f — (V3Γ)L is spanned by the single vector x0. Consequently,
M+(J*f) is the subspace of all vectors of the form

(4.2) fc = Σ anxn with Σ II anxn |Γ < - .

Since (4.2) can also be written as

h = Σ V"(anx0) ,

it follows that the sequence of Fourier coefficients of h is {anx0}n^0

and that (1.1) is therefore satisfied for all heM+(J*f).
M+(^f)x is the subspace of all vectors of the form

oo

k = Σ KVn with
W = — oo

Σ Iδn!2< - and Σ| |6 κ 2/J | 2 <oo .
ίi =—oo n=0

Consider the vector h given by (4.1) with hn = 0 for ^ ^ — 1, and
αn = —bn = 2~n. Note that the square summability condition is
satisfied:

Σ II Mn + 6n»n IΓ = Σ 2(1 - sin 2αJ
Λ=0 w=0

= Σ 2(1 - (1 - 16-T2) < °°
»=0

However, ||αnajn|| = ||6nyn|| = 1, so that Σϊ=o ||αnajn||
8 and Σί=o |M«| | 2

both diverge. Thus h can not be written as a sum of vectors in
and M+(^f)λ

9 and so M+(£f) is not regular. •
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