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AUTOMORPHISMS AND NONSELFADJOINT
CROSSED PRODUCTS

KiICHI-SUKE SAITO

We are interested in the invariant subspace structure
of the nonselfadjoint crossed product determined by a finite
von Neumann algebra M and a trace preserving automorphism
«. In this paper we investigate the form of two-sided in-
variant subspaces for the case that a is ergodic on the
center of M.

1. Introduction. In this paper, we consider the typical finite
maximal subdiagonal algebras which are called nonselfadjoint crossed
products. These algebras are constructed as certain subalgebras of
crossed products of finite von Neumann algebras by trace preserving
automorphisms. Recently, McAsey, Muhly and the author studied
the invariant subspace structure and the maximality of these algebras
(cf. [4], [5], [6], [7D).

Let M be a von Neumann algebra with a faithful normal tracial
state ¢ and let « be a *-automorphism of M such that zcaa = 7. We
regard M as acting on the noncommutative Lebesgue space L*(M, 7)
(cf. [10]) and consider the Hilbert space

Lt =Af: Z— LM, 0)| Z[| f(n) || < =}

which may be identified with [*(Z) ® L*(M, 7). Let ¥ (resp. R) be
the left (resp. right) crossed product of M and «, and let 2, (resp.
R,) be the left (resp. right) nonselfadjoint crossed product of 2
(resp. R) (cf. §2). In [6], we showed that the following three
conditions are equivalent; (i) M is a factor; (ii) a conditioned form
of the Beurling-Lax-Halmos theorem is valid; and (iii) £, is a maximal
o-weakly closed subalgebra of 2. Furthermore, in [7], we proved
that « fixes the center 3(M) of M elementwise if and only if the
Beurling-Lax-Halmos theorem is valid. However, if a does not fix
the center 3(M) of M elementwise, then the form of invariant
subspace is very complicated. Considering the reduction theory with
respect to the abelian subalgebra {ze 3(M): a(z) = z} of B(M), it
seems to be sufficient to investigate the case that a is ergodic on
3(M). Therefore, our aim in this paper is to study the invariant
subspace structure of L* when « is ergodic on 3(M). We now
suppose that a is ergodic on {(M). Then every two-sided invariant
subspace of L* which is not left-reducing is left-pure, left-full,
right-pure and right-full (Theorems 3.2 and 4.5). Further, if € isa
factor, then every proper two-sided invariant subspace of L* is of
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the form {felL’ > _.e.f(n)= f(n), neZ}, where {e)r-_.. is a
family of mutually orthogonal central projections of M such that

e €, = 1 and ale,) < it e, (Theorems 3.8 and 4.6). However,
if 3(M) is atomic and there is some %k > 0 such that a* is inner,
then we present a two-sided invariant subspace of L? which is not
the above form (Example 4.7). In case M = L*(X), McAsey in [4]
and [5] studied about these results.

In the next section, we define the nonselfadjoint crossed
products. In §3, we consider the case that B(M) is nonatomic.
Finally, in §4, we study two-sided invariant subspace of L* when
B(M) is atomic.

The author would like to thank the referee for his valuable
suggestions.

2. Preliminaries. We suppose that M is a von Neumann algebra
with a faithful normal tracial state v and «a is a *-automorphism
of M which preserves t; i.e., tea = 7. Let L*M, z) be the noncom-
mutative Lebesgue space associated with M and 7 in Segal [10]. We
denote the operators in the left regular representation of M on
LM, 7) by I, x€ M, and those in the right regular representation
by 7,. Put IM)={l,:xe M} and (M) = {r,: x € M}. Since 7o = 7,
there is a unitary operator u on L*(M, 7) induced by «. To construet
a crossed product, we consider the Hilbert space L? defined by

(12— LM, 9| S s < oo}

where |- |2 is the norm of LM, ). For ze M, we define operators
L, R, L,and R, on L* by the formulae (L,f)(n) = zf(n), (B,f)(n) =
fm)ar(x), (L,f)(n) = wf(n—1) and (B, f)(n)f(n—1),ge L, neZ. Put
LM)={L,:xc M} and R(M) = {R,: x € M}. We set & = {L(M), L;}"
and R = {R(M), R;}” and define the left (resp. right) nonselfadjoint
crossed product 2, (resp. R,) to be the o-weakly closed sub-
algebra of 2 (resp. R) generated by L(M) (resp. R(M)) and L,
(resp. R;).

The automorphism group {B.};.r of € dual to a in the sense of
Takesaki [9] is implemented by the unitary representation of R,
{W.}ier, defined by the formula (W,f)(n) = ™ f(n), f €L’ that is,
B(T) = W,TW*, Tef, by definition. Similarly, we define g(T) =
WITWx TeR. It is elementary to check that the spectral resolu-
tion of {W)),.rx is given by the formula W, = Y7 _. ™K, where
E, is the projection on L* defined by the formula

f), k=mn,

(E,.f)k) = 0, P
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We also define the integral

e(T) = Sle‘”j””ﬁt(T)dt , Teg.
0
Furthermore, we define H*> = {f € L* f(n) =0, n < 0}. We refer the
reader to [6] and [7] for discussions of these algebras including
some of their elementary properties.

DEFINITION 2.1. Let I% be a closed subspace of L*. We say
that M is: left-invariant, if LM < M; left-reducing, if LIN I,
left-pure, if N,z L*M = {0}; and left-full, if V,., L;I = L*. The
right hand versions of these concepts are defined similarly, and a
closed subspace which is both left and right is called two-sided
invariant. If 9% is both left-reducing and right-reducing, I is said
to be two-sided reducing.

Throughout this paper, we suppose that a is ergodic on the
center 3(M) of M. By the ergodicity of a on 3(M), 3(M) is either
nonatomic or atomic. Therefore, in §§3 and 4, we consider the
invariant subspaces of L* in two cases, respectively.

3. Case 3(M) is nonatomic. In this section we investigate
the structure of two-sided invariant subspaces of L* for the case
when 3(M) is nonatomic. To prove this, we need the following
lemma. We believe that it is known. But, for completeness, we
have included a proof.

LEMMA 3.1. {L(M), RIM)Y = {L(B(M)), {E ) _.}".

Proof. On L?, which we identify with a direct sum of copies
of L*M, ), the operators L, and R,, x €M, have these matricial
representations;

and
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0]

'ra_l (x)

Ta(-’t)
0 .

Any operator A in {L(M), R(M)} is in L(M) and so has a matricial
representation A = [r,, ] for suitable x,, in M. In order for A
to commute with R(M), it is necessary and sufficient that for each
pair (n, m), the equation a™(¥)x,. = . .2™%y) holds for all y in M.
This is equivalent to the validity of the equation

3.1) YO (X, m) = "X, )™ (y), for all y in M.

If n=m,x,, lies in 3(M). Suppose that » = m and z,, # 0. Let
g be the central support projection of a~"(x,.). Since a is ergodic
on 3(M), it is well-known that a” is freely-acting on 3(M) for n = 0.
Thus there exists a nonzero projection p € 3(M) such that a™ "(p)p =
0and 0 <p=q. By 3.1), pa™(®,.) = a ™, a™"(p)=0. Thisis
a contradiction and so z,,, = 0. Therefore {L(M), R(M)} < {L(3(M)),
{E.}r-._o}'. The converse is clear. This completes the proof.

By [5, Corollary 4.3], every two-sided invariant subspace which
is left- (or right-) reducing is two-sided reducing. Therefore, since &
is a factor by the ergodicity of a on 3(M), such a space is {0} or L*.

THEOREM 3.2. FEvery proper two-sided invariant subspace of L*
18 left-pure, left-full, right-pure and right-full.

Proof. Put M, = Ng-. LI and let P be the projection of L*
onto M,. Since M, is left-reducing, P = R. Since M, is right-
invariant, R,PR¥ < P and Pe R(M). By the finiteness of R, Pe
LNR= 8. Since Lis a factor and P=1, M, = {0}. The rest
are analogously proved.

Let {e,}5-_. be a family of mutually orthogonal central projections
in M such that 37 _.e, =1 and ale,) = >t . e,. Put

L{e)s. ) = { Fels 3 enf(n) = f(n), for all n} .

Then it is clear that L*({e,}3-_.) is a two-sided invariant subspace
of L* which is not left-reducing. Conversely, we have the following

theorem.
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THEOREM 3.3. Suppose that 3(M) is nonatomic. Then every
proper two-sided invariant subspace of L* is of the form L*({e,}n-_.)
where {e,}r-—_« 18 a family of mutually orthogonal central projections
in M such that >3- _.e, =1 and ale,) < S . e,

Proof. Let I be a proper two-sided invariant subspace of L.
By Theorem 3.2, I is right-pure. Put F= MO R,M and let P
(resp. Py) be the projection of L* onto & (resp. M). It is clear that
Pe{L(M), R(M)Y. By Lemma 8.1, there is a family {e,}>-_., of central
projections of M such that (Pf)(n) = e,f(n). Thus we have for all n,

e.f(0) = e, (B;f)(n) = (PR} f)(n) = (B¥"PR; £)(0)
and so, for every m, n(m # n),
ene, f(0) = (BY"PR})(RI"PR;)f)(0) = 0,

because Rf"PR: and R} " PRy are orthogonal. This implies that e,e, =
0, m = n. Further, since (R:PR:*f)(n) = e, .f(n), for all k and =,
we have

Paf)m) = (S BEPR)f Jm) = Sestm) = 3 auf(n) .
Hence feM if and only if f(n) = S}- . ef(n). Now, if f e L, then
(LP.LE)w) = wPLEH0 — 1) = u 3 eLfHn — 1)

=u S e ) = 3, ate)sm) .

Since L;M < M, this implies that izt ale,) < Diie—we,. Since a is
ergodic on 3(M) and a(S v €,) = Do €ny Dme—w €, = 1. Therefore
M = L*({e,}7-—~). This completes the proof.

4, Case B(M) is atomic. In this section we investigate the
structure of two-sided invariant subspaces of L? for the case when
B(M) is atomic. We suppose that « is ergodic on 3(M) and 3(M)
is atomic. Since M is finite, there is a family {p,}2= of mutually
orthogonal minimal projections in 3(M) such that 32 ='», = 1, a(p,) =
Pos, ®=0,1,---) N—2, and a(py_,) = p,. Hence Mp, is a factor
and a*¥|,,, is a *-automorphism of Mp,. In this section we keep
the notations.

To prove Theorems 4.5 and 4.6, we need the following lemmas.
As may be well-known, we include them for completenss in our
version. At first, we have the following lemma easily and so the
proof will be omitted.



184 KICHI-SUKE SAITO

LEMMA 4.1. The following conditions are equivalent.

(1) a* is outer for all k +# 0;

(ii) for everymn =20,1, ---, N — 1, a*"|,, 1is outer for all k + 0;
and

(iii) for some n, a*¥|,, 1is outer for all k + 0.

As in Lemma 3.1, we have the following lemma.

LEMMA 4.2. If o is outer for all k # 0, then {L(M), RIM)} =
{L(3(M)) U {E, )7}

Proof. As in the proof of Lemma 3.1, take 4 = [r,, ,]1€ L(M)'N
R(M)Y. Then ya™(,. = a (&, )a™"y),yeM. If n=m,2,,€
B3(M) and, if m — n # kN, then z,, = 0. Thus, suppose that ,,,
0,m —n=FkN. Put z=a*(,,..v). Then there is a j such that
2p; = 0 and so yz = za*"(y), y€ Mp;. Hence [,l, = [,vl,v*, where v =
w*, and so L,y e (M) = r(M). Since (I,v)(L,v)* € (M)Nr(M) = 1(3(M)),
2z* € 3(M). Hence we have zz*p; = ||2p;||’p;. If w is then chosen
w = zp;/||2p;||, then w is a partial isometry which is an element of
Mp;. Since Mp; is finite, w is a unitary operator when viewed as
an element of Mp; and implements a™"|,,.. By Lemma 4.1, this
is a contradiction and so z = 0. This completes the proof.

It is well-known that if M is a factor and a* is outer for all
k# 0, then & is a factor. In this case, the converse is true and
we have the following.

LEMMA 4.3. aF is outer for all k+0 if and only if & is a
Sactor.

Proof. («). If a*¥ is inner for some %k = 0, then there is a
unitary operator ve M such that a*¥(x) = vxv*. Thus we have
va(x)v* = ¥ (x) = a(@)a(x)a(v*). Hence we have that, for all
n, a®(v) and v induce the same automorphism by conjugation. So
Ly L, Ly = Lgkn oy, hence L,Ln o = Lyn Ly ,,. From L¥L,L,=
L1y, Ly LY = L¥¥ L,. Thus L,Lu L = Lynge Ly g LEY =
L L L, and LguL%¥ € L(M)'. Since L,L,L} = L,,, for all z¢
M, we have L*L,L**" = L .. Since a*¥(v) = v, we have also
a(a*(v)) = a*(v) and a*¥(a™(v*)) = a®(v*). Hence L*" commutes with
L, and L. Put w=va()---a**'(v). Since a(w)=w, we have
L (LYY ¢ L(M). On the other hand, since a(w*)= w*, L,. com-
mutes with L, and L,.(L*)*¥ commutes with L,;. Thus we have
L, (L) ¢ 8(8). Therefore & is not a factor. This completes the
proof.
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(—). Suppose that a* is outer for all k #0. Take Ac3® C
LMY N R(M). By Lemma 4.2, there is a sequence {x,} € 8(M) such
that A =[l, ]. Since A commutes with L; and R;, x, = &, and a(x,) =
x,. Since « is ergodic, A = A1 for some A. Therefore £ is a factor.
This completes the proof.

Next we investigate the center of crossed products when a* is
inner for some k =+ 0.

LEMMA 4.4. Suppose that L is not a factor. Then there are a
unitary operator ve M and k > 0 such that 3(R) = {L,L:"}".

Proof. Put B, = Bise. Then {8}z is a o-weakly continuous
one-parameter group of *-automorphisms of 3(®) with period 1 and
is ergodic on 3(R) in the sense that, if TeB(2) such that B,(T)=
T,teR, then T = \1 for some complex number An. For every ne€ Z,
put K,={Te3®): B(T)=e&™T,tcR}. Then it is clear that
e.(8R) =K, Let Z={neZ:K,+{0}}., We claim that Z, is a
subgroup of the additive group Z. Let T, be a nonzero element
in K, such that ||T,||=1 for a fixed neZ,. Then T}T, T,TF is
nonzero elements of K, (cf. [9, Lemma 1(a)]). Since {8,};.z is ergodic
on 3(%), T, is a unitary operator. By [9, Lemma 1(a)], we have
K, = CT, for every neZ,. Therefore, Z, is a subgroup of Z. Let
m be the smallest positive integer in Z,. By the group property
of Z,, we have Z, = mZ. Hence, by [9, Lemma 1(a)], K,, = CTz,
neZ. By [9, Theorem 1], 3(%) is generated by T,. Since ¢,(8) =
L(M)L? (ef. [3, Corollary 4.3.2]), there is a unitary operator v in
M such that T,, = L,L*™. Since T, < 3(8), we have, for x e M,

Lam(z) = L;anLTm = Lu*TmLz(Lv*Tm)* = Lv*Lva = Lv*zv

and so a™ is inner. Since a” is not inner for all n % jN, there is
a k> 0 such that m = kN. This completes the proof.

The following theorem is proved by McAsey [5] in case M =
*(X), (X) = {x, %, -+, Zy_}. We present the simple proof in more
general setting.

THEOREM 4.5b. Ewvery two-sided invariant subspace which 1s not
left-reducing is left-pure, left-full, right-pure and right-full.

Proof. If a* is outer for all k = 0, by Lemma 4.3, 8 is a factor.
Then we have this theorem as in the proof of Theorem 8.2. Suppose
now that 8 is not a factor. Let M be a two-sided invariant subspace
which is not left-reducing and let P be the projection of L? onto
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Naso LM, Put B={TeQ:TMcIM}. As in the proof of Theorem
3.2 and [6, Theorem 4.1], Pe BN 3(¥). Since 3(¥) N L, is a maximal
o-weakly closed subalgebra of 3(8) ([6, Theorem 2.3]), we find 3() N
B = 3(®) N &, in which case P =0, or 3(8 N B = 3(8®). Butif 3(%)
were contained in B, by Lemma 4.4, L,L**" ¢ B for some unitary
ve M and some k > 0. Since M is left-invariant, Lf € Bandso B =
8. This is a contradiction. Therefore we conclude once more P = 0
and so I is left-pure.

Next, let P be the projection of L* onto ),., R¥MN. Put B =
{(TeR: TM M}, As before, P B(®) N B and we find that 3(®) N
B = 3@ NR,, in which case P =0, or 3() N B = 3(8). Butif 3(¥)
were contained in B, then there exists a unitary veM and & > 0
such that R,R:* € 8(2), as in the proof of Lemma 4.4. Thus B =
R. Therefore M is right-reducing. By [6, Corollary 4.3], M is two-
sided reducing. This is a contradiction. The rest is analogously
proved. This completes the proof.

Asin §2, we define L*({e,}3- ) = {f € L*: S\no_ nf(n) = f(n), for
all n} for a family {e,};7-_.. of mutually orthogonal central projections
in M such that >\7._.e, =1 and a(e,) = > %" .e,. Then it is clear
that L*({e,}7-_.) is a two-sided invariant subspace of L* which is not
left-reducing. Observe that all but finitely many of e, are zero.
Conversely, we have the following theorem by Lemmas 4.2, 4.3 and
Theorem 4.5.

THEOREM 4.6. Suppose that a* is outer for all k+0. Then
every proper two-sided invariant subspace of L* 1s of the form
L*({e.}r-—.) where {e,}5-— 18 a family of mutually orthogonal central
projections in M such that >o-_.e, =1 and ale,) < D2 . en.

Finally, if & is not a factor, then Theorem 4.6 is not valid.
That is, there is a two-sided invariant subspace of L* which is not
of the form L*({e,}r-—.).

ExAMPLE 4.7. Suppose that 3(8) = {L,L*"}’ for some unitary v
in M and some &k > 0. Let 6 be a finite Blaschke product with zeros
{Ng, Aoy - v+, A} such that 0 < |N;| < 1. This ¢ has the form

I (11 G = 2DI0(L = X))

Let V = 6(L,L*") be the unitary operator in 3(¢) defined by # and
the operator L,L%¥ via the functional calculus. Let 32, a;2° be the
power series for 4. Since the power series converges absolutely,
the series >\, a,(L,L:Y)¢ converges in norm to the operator V.
Observe that a, % 0 and Ve&,. Put M =VH: It is clear that M
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is a two-sided invariant subspace of H* which is not left-reducing.
We now suppose that I is of the form L*({e,}3-_..). Since VfeM,
feH?, we have 37 . e (Vf)(m)= (Vf)(m), (Vf)(—m)=0 m>0,
and

(VA = 3 a.(LLEYS0) = 3} a,0mut f(—nkN)
= a,f(0) .

Thus this implies that > -_.e,=1 and >,,._.e, = 0. Therefore
e,=1lande,=0,%n 0. Hence I = H*and so it is clear that V* € &,
which is clearly impossible for V constructed above. Hence IN #
Li({e.}n-—w)-
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